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Abstract. Propensity score matching, where the propensity scores are estimated in a first step,
is widely used for estimating treatment effects. In this context, the naive bootstrap is invalid
(Abadie and Imbens, 2008). This paper proposes a novel bootstrap procedure for the propensity
score matching estimator, and demonstrates its consistency. The proposed bootstrap is built
around the notion of ‘potential errors’, introduced in this paper. Precisely, each observation
is associated with two potential error terms, corresponding to each of the potential states -
treated or control - only one of which is realized. Thus, the variability of the estimator stems
not only from the randomness of the potential errors themselves, but also from the probabilistic
nature of treatment assignment, which randomly realizes one of the potential error terms. The
proposed bootstrap takes both sources of randomness into account by resampling the potential
errors as a pair as well as re-assigning new values for the treatments. Simulations and real data
examples demonstrate the superior performance of the proposed method relative to using the
asymptotic distribution for inference, especially when the degree of overlap in propensity scores
is poor. General versions of the procedure can also be applied to other causal effect estimators
such as inverse probability weighting and propensity score sub-classification, potentially leading
to higher order refinements for inference in such contexts.
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1. Introduction

Inference on average treatment effects in the presence of confounding is a primary goal of
many observational studies. Propensity Score Matching (PSM) is one of the most widely used
methods for estimating treatment effects in such a setting. The propensity score is defined as the
probability of obtaining treatment conditional on covariates. Under the assumption of selection
on observables (i.e the treatment is as good as randomly assigned conditional on the covari-
ates), Rosenbaum and Rubin (1983) show that matching on the propensity score is sufficient
to remove confounding. Using the propensity score for matching reduces the dimensionality of
the procedure by summarizing the information contained in the covariates in a single variable.
Additionally, PSM can be flexibly combined with other strategies such as regression adjustment
to further reduce the bias from the match (Abadie and Imbens, 2011; Imbens and Rubin, 2015).
Such favourable properties have led to PSM becoming one of most commonly used methods
for causal analysis of observational data. See for example Deheija and Wahba (1999), Heck-
man, Ichimura, Smith and Todd (1998), Lechner (2002) and Smith and Todd (2001) for some
important applications and issues arising from its use in economics.

In practice, the propensity scores are usually estimated through a parametric first stage
based on a probit or logit model. Furthermore, to reduce the bias from the match, the number
of matches is usually held fixed at small values, for example one. This introduces complications
for inference since the matching function - defined as the number of times each unit is used as
a match - is a highly non-linear function of the data. Abadie and Imbens (2016) show that the
matching estimator under the estimated propensity score is consistent and asymptotically nor-
mal. Thus inference for the treatment effect can proceed based on a large sample approximation
to the normal distribution, using the variance estimate suggested by the authors. At the same
time, Abadie and Imbens (2008) show that the standard non-parametric bootstrap based on
resampling fails to be consistent in this context. This is because the usual bootstrap procedure
fails to reproduce the distribution of the matching function in the true sample.

In this paper, I propose and demonstrate consistency of a bootstrap procedure for matching on
the estimated propensity score. Both matching with and without replacement is considered. The
proposed bootstrap is built around the concept of ‘potential errors’, introduced in this paper as a
general tool for causal inference. Potential errors formalize the idea that each observation can be
associated with two possible error terms, corresponding to each of the potential states - treated
or control - only one of which is actually realized. Thus, the variability of the estimator stems
not only from the randomness of the potential errors themselves, but also from the probabilistic
nature of treatment assignment, which randomly realizes one of the potential error terms. The
proposed bootstrap takes both sources of randomness into account by resampling the potential
errors as a pair, while also re-assigning new values for the treatments using the estimated
propensity score. Implementing the procedure requires the construction of estimates of the
error terms under both states. Since I only observe the errors under one of the potential states
for any data point, I provide ways to impute these quantities for the other state.
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The notion of potential errors is very general, and can be applied to causal effect estimators
beyond propensity score matching. The exact form of the potential errors depends on both the
estimator and the quantity being estimated (ATE, ATET, etc.), but a unifying theme is that it
is possible to obtain the ‘error representation’1

Estimator− Expected Value = Average(Realized errors).

Here, the terminology ‘realized errors’ refers to the observed values of the potential errors given
the treatment status. For many estimators, directly resampling the realized errors suffices for
valid inference, see e.g. Otsu and Rai (2017). However, such a strategy doesn’t work for propen-
sity score matching since the potential errors are functions of the estimated propensity score,
which is itself a random quantity (see, Section 3.4). Taking the estimation of the propensity
scores into account requires recreating the randomness of treatment assignment closely, since
this determines the variability of the propensity scores. Doing so naturally leads to the proposed
bootstrap statistic. Indeed, my bootstrap statistic is simply the average of the new realized er-
rors - obtained after resampling the potential errors and reassigning treatments - and evaluated
at propensity scores estimated from the bootstrap sample.

The proposed bootstrap can be easily extended to other causal effect estimators satisfying
the error representation, for example inverse probability weighting or propensity score sub-
classification (see, Section 6.3). Since it recreates all the sources of randomness more faithfully,
it generally provides more precise inference compared to asymptotic methods or methods that
only resample the realized errors. The gain in accuracy is especially pronounced when there
is poor overlap between the propensity scores of the treated and control groups. Poor overlap
usually occurs when there is heavily imbalance between the covariate distributions for the treated
and control groups. In such situations, some observations gain disproportionate importance,
for instance the few control units close to the treated units, and vice versa. The resulting
causal estimate is then highly sensitive to possible switches to the treatment status of these
observations. Failure to take this into account leads to severe under-estimation of the actual
variance, as shown in simulations. By contrast, the proposed bootstrap is more accurate, and
constitutes an attractive choice for inference when the overlap is poor.

I demonstrate consistency of this bootstrap procedure using Le Cam’s framework of local
limit experiments, applied on the bootstrap data generating process. To this end, I extend the
techniques of local limit experiments previously employed by Abadie and Imbens (2016), and
Andreou and Werker (2011) to obtain limiting distributions of non-smooth statistics to the setup
of bootstrap inference. Thus, the techniques may be of independent theoretical interest.

The finite sample performance of the bootstrap is assessed through a number of simulations
and real data examples. In almost all cases the bootstrap provides better size control than
inference based on the asymptotic distribution. The results also confirm that the proposed
bootstrap is particularly effective when the balance of covariates across treated and control
samples is poor. Arguably, poor covariate balance is pervasive in observational studies.

1For matching estimators, this is equivalent to the martingale representation of Abadie and Imbens (2012).
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The theoretical results in this paper build on the properties of matching estimators with
finite number of matches, established in an important series of papers by Abadie and Imbens
(2006, 2008, 2011, 2012, 2016). When the number of matches is allowed to increase with sample
size, as in the kernel matching method of Heckman, Smith and Todd (1997), the resulting
estimator is asymptotically linear, and the usual non-parametric bootstrap can be employed. In
the context of a fixed number of matches, Otsu and Rai (2016) propose a consistent bootstrap
method for the version of nearest neighbor matching based on a distance measure (Euclidean,
Mahalanobis etc.) over the full vector of covariates. The proposal of Otsu and Rai (2016) is
equivalent to conditioning on both treatments and covariates, and resampling the realized errors
in the error representation. However, their consistency result doesn’t extend to propensity score
matching because conditioning on both treatments and covariates precludes taking into account
the effect of the estimation of propensity scores. Alternatives to bootstrap that do provide
consistent inference in this context include subsampling (Politis and Romano, 1994) and m-out-
of-n bootstrap (Bickel, Götze and van Zwet, 2012).

2. Setup

The starting point of my analysis is the standard treatment effect model under selection on
observables. I follow the same setup as Abadie and Imbens (2016). The aim is to estimate the
effect of a binary treatment, denoted by W , on some outcome Y . A value of W = 1 implies the
subject is treated, while W = 0 implies the subject hasn’t received any treatment. The causal
effect of the treatment is represented in the terminology of potential outcomes (Rubin, 1974).
In particular, I introduce the random variables (Y (0), Y (1)), where Y (0) denotes the potential
outcome under no treatment, and Y (1) denotes the potential outcome under treatment. I also
have access to a set of covariates X, where dim(X) = k. The goal is to estimate the average
treatment effect

τ = E[Y (1)− Y (0)].

In general, estimation of τ suffers from a missing data problem since only one of the poten-
tial outcomes is observable as the actual outcome variable, Y = Y (W ). To circumvent this,
practitioners commonly impose the following identifying assumptions for τ :

Assumption 1. (Y (1), Y (0)) is independent of W conditional on X almost surely, denoted as
(Y (1), Y (0)) ⊥⊥W |X.

Assumption 2. (Yi,Wi, Xi) are i.i.d draws from the distribution of (Y,W,X).

The first assumption is that of unconfoundedness, which implies that the treatment is as good
as randomly assigned conditional on the covariates X. The second assumption implies that the
potential outcome for individual i is independent of the treatment status and covariates of the
other individuals. This rules out peer effects, for instance.

Define the propensity score, p(X) = Pr(W = 1|X), as the probability of being treated condi-
tional on the covariates. Let µ̄(w,X) and µ(w, p(X)) denote the conditional means E[Y |W =
w,X] and E[Y |W = w, p(X)] respectively. Additionally, let σ̄2(w,X) = E[Y 2|W = w,X] and
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σ2(w, p(X)) = E[Y 2|W = w, p(X)] denote the conditional variances of Y given W = w and
X ; and that of Y given W = w and p(X) respectively. In a seminal paper, Rosenbaum and
Rubin (1983) show that under Assumption 1, the potential outcomes are also independent of
the treatment conditional on the propensity scores, i.e (Y (1), Y (0)) ⊥⊥ W |p(X). Thus, τ can
be alternatively identified as

τ = E[µ(1, p(X))− µ(0, p(X))].

In the literature a number of propensity score matching techniques have been proposed that
exploit the above characterization of τ , see e.g. Rosenbaum (2009) for a detailed survey. In this
section, and for much of this paper, I focus on matching with replacement, with a fixed number
of matches for each unit, denoted by M . This is arguably the most commonly used matching
procedure in economic applications. The case of matching without replacement is discussed in
Section 6.2.

Suppose that I have a sample of N observations. The propensity score matching estimator
for the average treatment effect, when matching with replacement, is defined as

τ̂ = 1
N

N∑
i=1

(2Wi − 1)

Yi − 1
M

∑
j∈JM (i;p(X))

Yj

 ,
where M is the number of matches for each unit, and JM (i; p(X)) is the set of matches for the
individual i. In particular JM (i; p(X)) represents the set of M individuals from the opposite
treatment arm whose propensity scores are closest to i’s own, i.e,

JM (i; p(X)) = {j = 1, . . . , N : Wj = 1−Wi, and ∑
l:Wl=1−Wi

I[|p(Xi)−p(Xl)|≤|p(Xi)−p(Xj)|]

 ≤M
 .

Typically the value of M is taken to be quite small, for example M = 1, so as to reduce the
bias.

The propensity scores are generally not known but have to be estimated. In this paper, I
consider parametric estimates for the propensity scores based on a generalized linear model
p(X) = F (X ′θ), where θ is a finite dimensional vector parameter, and F (.) is a (known) link
function, for instance a logistic or probit function.2 Let (W,X) denote the vector of treatments
and covariates (W1, . . . ,WN , X1, . . . , XN ). I denote the true value of θ by θ0. The latter is
estimated through maximum likelihood as

θ̂ = argmax
θ
L(θ|W,X),

where

L(θ|W,X) =
N∑
i=1

{
Wi lnF (X ′iθ) + (1−Wi) ln(1− F (X ′iθ))

}
,

denotes the log-likelihood function evaluated at θ.
2I assume that the propensity score is correctly specified. To guard against mis-specification, one could employ
an algorithmic procedure for choosing the propensity score that iterates between a PSM specification and balance
checking; see, for example, Deheija and Wahba (1999).
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Let JM (i; θ) denote the set of M closest matches to observation i for the match based on
F (X ′θ) as if it were the true propensity score, i.e

JM (i; θ) = {j = 1, . . . , N : Wj = 1−Wi, and ∑
l:Wl=1−Wi

I[|F (X′iθ)−F (X′
l
θ)|≤|F (X′iθ)−F (X′jθ)|]

 ≤M
 .

The matching estimator, for the match based on F (X ′θ), is defined as

τ̂(θ) = 1
N

N∑
i=1

(2Wi − 1)

Yi − 1
M

∑
j∈JM (i;θ)

Yj

 .
Let KM (i; θ) denote the number of times observation i is used as a match based on F (X ′θ), i.e

KM (i; θ) =
N∑
j=1

Ii∈JM (j;θ).

Then an alternative way to represent τ̂(θ) is provided by the error representation

τ̂(θ)− τ −B(θ) = 1
N

N∑
i=1

εi(Wi; θ),(2.1)

where

B(θ) = 1
N

N∑
i=1

(2Wi − 1) ·

µ(1−Wi, F (X ′iθ))−
1
M

∑
i∈JM (i;θ)

µ(1−Wi, F (X ′iθ))


denotes the bias from the match based on F (X ′θ), and

εi(Wi; θ) =
(
µ
(
1, F (X ′iθ)

)
− µ

(
0, F (X ′iθ)

)
− τ

)
+ (2Wi − 1)

(
1 + KM (i; θ)

M

) (
Yi − µ

(
Wi, F (X ′iθ)

))
(2.2)

denotes the effective error term for each observation. The variance is thus determined by the right
hand side of equation (2.1). Consequently, this expression is of primary interest in approximating
the distribution of τ̂(θ).

The matching estimator for τ based on the estimated propensity score is then given by

τ̂ ≡ τ̂(θ̂) = 1
N

N∑
i=1

(2Wi − 1)

Yi − 1
M

∑
j∈JM (i;θ̂)

Yj

 .
Abadie and Imbens (2016) derive the large sample properties of the above estimator. Under
some regularity conditions, they find that the bias term B(θ̂) converges in probability to zero
at a rate faster than

√
N , and that τ̂ has an asymptotic normal distribution

√
N(τ̂ − τ) d→ N

(
0, σ2 − c′I−1

θ0
c
)
,

where σ2 is the asymptotic variance for matching on the known propensity score,

c = E

[{cov[X,µ(1, X)|F (X ′θ0)]
F (X ′θ0) + cov[X,µ(0, X)|F (X ′θ0)]

1− F (X ′θ0)

}
f(X ′θ0)

]
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with f(.) ≡ F ′(.); and for any value of θ, I(θ) denotes the information matrix evaluated at θ

Iθ ≡ I(θ) = E

[
f2(X ′θ)

F (X ′θ)(1− F (X ′θ))XX
′
]
.

The above result illustrates the well known ‘Propensity Score Paradox’: Matching on the esti-
mated, as opposed to the true propensity scores, in fact reduces the asymptotic variance.

3. Bootstrap procedure

In this section I propose a bootstrap procedure for inference on the propensity score matching
estimator. I fix the following notation: For each w = 0, 1, define µ(w, p; θ) = E[Y (w)|F (X ′iθ) =
p]. In what follows, I abuse notation a bit by dropping the index of µ(., .; θ) with respect to θ
when the context is clear. For w = 0, 1, denote3

e1i(θ) = µ(1, F (X ′iθ))− µ(0, F (X ′iθ))− τ ;

e2i(w; θ) = Yi − µ(w,F (X ′iθ)).

Note that the above are distinct in general from the ‘true’ errors which are defined similarly but
evaluated at θ0.

I present here an informal description of the bootstrap procedure, relegating many of the
formal details to the upcoming sub-sections. Given any value of θ, the pair of potential error
terms for each observation i are given by

εi(w; θ) ≡ e1i(θ) + (2w − 1)
(

1 + K̃M (i;w, θ)
M

)
e2i(w; θ); w = 0, 1,

where K̃M (i;w, θ) is a potential matching function, denoting the number of times observation i
would have been used as a match depending on whether it is in the treated (w = 1) or control
group (w = 0); see Section (3.2) for the formal definition of K̃M (i;w, θ). Clearly, only one
of the quantities εi(w; θ) : w = 0, 1 is directly estimable; the other has to be imputed. Let
ε̂i(w; θ) denote the estimated or imputed values of εi(w; θ). I then sample a set of N covariates
denoted by X∗j for j = 1, . . . , N , along with the associated pair of (estimated) potential error
terms

(
ε̂S∗j (0; θ), ε̂S∗j (1; θ)

)
, where S∗j denotes the bootstrap index corresponding to the j-th

observation in the draw. Subsequently, new bootstrap treatment values are generated using the
estimated propensity scores as

W ∗j ∼ Bernoulli(F (X∗′j θ̂)).

Through this procedure I have sampled a new set of realized error terms given by ε∗j (θ) ≡
ε̂S∗j (W ∗j ; θ) for j = 1, . . . , N . The bootstrap statistic, T ∗N

(
θ̂∗
)
, is the sample average of these

errors, after some appropriate recentering using the function Ξ∗
(
θ̂∗
)

4, i.e

T ∗N

(
θ̂∗
)
≡ 1√

N

N∑
j=1

{
ε∗j

(
θ̂∗
)
− Ξ∗

(
θ̂∗
)}

.

3I do not index τ with θ since the average treatment effect is independent of the propensity score.
4The exact value of the re-centering term Ξ∗ (.) is provided in Section 3.3.
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The errors above are being evaluated at θ̂∗- the bootstrap counterpart of θ̂ - obtained as

θ̂∗ = argmax
θ
L(θ|W∗,X∗).

To formalize the above, I require techniques for: (i) constructing estimates of the error terms,
e1i(θ), e2i(w; θ), for each observation under both treated and control states; and (ii) constructing
the potential matching function, K̃M (i;w, θ), for each observation, also under both states. I now
consider these in turn.

3.1. Constructing estimates of error terms. Denote by µ̂(w,F (X ′iθ)) the estimates of the
conditional expectation function µ(w,F (X ′iθ)) evaluated at F (X ′iθ). These can be obtained
through non-parametric methods, for example series regression or smoothing splines. I then
obtain the residuals

ê1i(θ) = µ̂(1, F (X ′iθ))− µ̂(0, F (X ′iθ))− τ̂(θ);

ê2i(Wi; θ) = Yi − µ̂(Wi, F (X ′iθ)).

These residuals serve as proxies for the unobserved terms e1i(θ), e2i(Wi; θ), approximating the
values of e2i(w; θ) when w = Wi. For the bootstrap procedure, I also need estimates of êi(w; θ)
when w 6= Wi. I obtain these through a secondary matching: Define the secondary matching
function as

Jw(i) =

i if Wi = w

JNN(i) if Wi 6= w,

where JNN(.) denotes the closest match (or nearest neighbor) to observation i from the op-
posite treatment arm, with the closeness measured in terms of a distance metric (Euclidean,
Mahalanobis etc.) based on the full set of covariates. I then obtain:

ê2i(w; θ) = ê2Jw(i)(w; θ).

The definition of e2i(w; θ) proceeds in an analogous fashion.
Note that the secondary matching procedure matches on the full set of covariates, as opposed

to matching on the propensity scores. This is done to preserve the conditional correlation
between X and the error terms e1i, e2i, given the propensity scores. Indeed it is this correlation
that helps drive down the asymptotic variance when using the estimated propensity score.

3.2. Constructing the matching function. As with the error terms, the bootstrap procedure
requires values of the matching function under both treatment and non-treatment, even as only
one of them is actually observed. To obtain the value of K̃M (i;w, θ) in the opposite treatment
arm (i.e when w 6= Wi), I employ another imputation procedure:

Let {π1, . . . , πqN−1} denote the sample qN -quantiles of F (X ′θ̂). I let qN → ∞ as N → ∞.
Set π0 = 0 and πqN = 1. Denote by Sw(l), the set of all observations with Wi = w in the l-th
block, i.e

Sw(l) = {i : πl−1 ≤ F (X ′i θ̂) < πl ∩Wi = w},
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and let S(l) = S1(l) ∪ S0(l). The number of untreated, treated and combined observations in
the block l is given by

N0(l) = #S0(l); N1(l) = #S1(l); N(l) = N0(l) +N1(l),

respectively, where for any set A, #A denotes its cardinality. Suppose now that observation i
falls in the block l. If w = Wi, I set K̃M (i;w, θ) = KM (i; θ). If however w 6= Wi, I set K̃M (i;w, θ)
to the value KM (j; θ), where j is drawn at random from the Sw(l). Formally, denoting by l(i)
the block in which observation i resides, I obtain

K̃M (i;w, θ) =

KM (i; θ) if w = Wi∑
j∈Sw(l(i)) {Mj(i)KM (j; θ)} if w 6= Wi,

where for each i, {Mj(i) : j ∈ Sw(l(i))} ≡ M(i) is a multinomial random vector with a sin-
gle draw on Nw(l(i)) equal probability cells. These multinomial random variables are drawn
independently for each observation i.

Based on these constructions I can define a combined error term excluding the effect of
heterogeneity (i.e excluding e1i(θ)) as

ν̂i(w; θ) =
(

1 + K̃M (i;w, θ)
M

)
ê2Jw(i)(w; θ).

Thus the estimated potential errors are obtained as

ε̂i(w; θ) = ê1i(θ) + (2w − 1)ν̂i(w; θ).

Remark 1. Unlike the error terms, the values of KM (i; θ) cannot be imputed through nearest
neighbor matching. Doing so renders the bootstrap inconsistent since KM (i; θ) and KNN(i) are
correlated (here, KNN(i) denotes the number of times observation i is used as a match, when
closeness is measured in terms of a distance metric on the full set of covariates). Intuitively,
a nearest neighbor based imputation over-selects observations that are already matched often,
and hence fails to recreate the actual distribution of the matching function. A similar comment
also applies to imputing the values through propensity score matching.

Remark 2. Let F (0)
K (.) and F (1)

K (.) denote the conditional distribution functions of KM (i; θ) for
the control and treated groups, given the own-propensity score F (X ′iθ). Consider the estimator,
F̂ (w)
K , of F (w)

K obtained by coarsening/blocking the propensity scores, and using the empirical
distribution of KM (i; θ) for w = 0, 1 within each block. The procedure described in this section
is equivalent to drawing a value from the distribution F̂ (w)

K (F (X ′iθ)), independently for each
i, and using it to impute the value of K̃M (i;w, θ) when w 6= Wi. Coarsening is motivated by
the fact KM (i; θ) takes discrete values, which precludes smoothing. Clearly F̂ (w)

K ≡ F (w)
K if

the propensity scores are constant within the blocks. More generally, F̂ (w)
K approaches F (w)

K

as N → ∞ since I let qN → ∞. The optimal choice of qN would minimize the variability in
propensity scores within blocks while ensuring enough observations in each, thereby estimating
F (w)
K more accurately.
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Sampling from F̂ (w)
K also ensures each KM (i; θ), for i = 1, . . . , N , is used almost exactly once,

on average, in the bootstrap: the term may drop out because W ∗i 6= Wi, but this probability is
balanced by the number of times it may be used for imputations (for details, see Appendix B).
Thus, the original set of matching functions is well reproduced in the bootstrap.

Remark 3. The variables M ≡ {M(i) : 1 ≤ i ≤ N} do not enter the bootstrap distribution as
the particular realization of M is fixed throughout the bootstrap procedure. This is equivalent
to fixing an observation j that imputes for i in all the bootstrap draws. Thus the bootstrap
distribution should be understood as conditional on both M and the observed data. This
necessarily injects some randomness into the critical values obtained from the bootstrap (though
the critical values do converge to the true ones almost surely for each sequence M). To address
this, I suggest repeating the bootstrap procedure for a number of different realizations of M,
and then taking an average (wrt M) of the bootstrap distribution functions; see below.

3.3. The bootstrap algorithm. The bootstrap algorithm proceeds as follows.
Step 0: First obtain a set of multinomial probabilities M based on independent draws for each

individual i as described in Section 3.2. Additionally calculate the nearest neighbor matching
function Jw(i) for each i as defined in Section 3.1. Both these values are kept fixed throughout
the bootstrap.

Step 1: Obtain new values of covariates X∗ = (X∗i , . . . , X∗N ) through a non-parametric
bootstrap draw. This involves drawing N independent categorical random variables S∗ =
(S∗1 , . . . , S∗N ).

Step 2: Based on the estimated propensity score, derive new treatment values W∗ = (W ∗1 , . . . ,W ∗N )
through the random draws

W ∗i ∼ Bernoulli(F (X∗′i θ̂)).

Step 3: Discard bootstrap samples for which N∗0 ≤ M + 1 or N∗1 ≤ M + 1, where N∗0 and
N∗1 denote the number of control and treated observations in the bootstrap sample. For all the
other samples, estimate the bootstrap statistic θ̂∗ using the MLE procedure on (W∗,X∗)

θ̂∗ = argmax
θ
L(θ|W∗,X∗).

Step 4: Based on θ̂∗, obtain the values of matching function KM (i; θ̂∗) for each i using the
original sample of observations W,X. Additionally, derive the residuals

(
ê1i(θ̂∗), ê2i(Wi; θ̂∗)

)
,

evaluated at θ̂∗, for each i through series regression (or any other nonparametric method) applied
on the original sample of observations. From these, along with the values of M and Jw(i) from
Step 0, determine the values of K̃M (i;w, θ̂∗) and ν̂i(w; θ̂∗) for i = 1, . . . , N by following the
procedures laid down in Sections 3.1. and 3.2.

For the remaining steps, define the new ‘bootstrap’ realized errors ε∗i (θ) as

ε∗i (θ) ≡ ε̂S∗j (W ∗j ; θ)

= ê1S∗i (θ) +W ∗i ν̂S∗i (1; θ)− (1−W ∗i )ν̂S∗i (0; θ).
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The bootstrap errors ε∗i (θ) need to be re-centered; the expression for this is given by

Ξ∗(θ) = 1
N

N∑
k=1

{
ê1k(θ) + F (X ′kθ)ν̂k (1; θ)−

(
1− F (X ′kθ)

)
ν̂k (0; θ)

}
.

Note that Ξ∗(θ) ≡ E∗θ [ε∗i (θ)], where E∗θ [.] denotes the expectation over the probability distribu-
tion implied by S∗,W∗ ∼ Bernoulli(F (X∗θ)), conditional on the original data (see also Section
3.4 for a detailed explanation). Finally, for each value of θ, define the bootstrap statistic

T ∗N (θ) = 1√
N

N∑
i=1
{ε∗i (θ)− Ξ∗ (θ)} .

Step 5: Evaluate T ∗N (θ) at the parameter value θ̂∗ to obtain the bootstrap statistic T ∗N
(
θ̂∗
)
.

This step utilizes the values of K̃M (i;w, θ̂∗) and ν̂i(w; θ̂∗) obtained in Step 4.
Step 6: Estimate the critical value by c∗n,α = inf{t : F ∗n(t) ≥ 1 − α}, where F ∗n(.) is the

empirical distribution of T ∗N
(
θ̂∗
)
. This can be obtained by repeating Steps 1-5 for a set of B

bootstrap repetitions.
Step 7: The critical value, c∗n,α, in Step 6 is based on a particular realization of M. To

reduce the dependence on the latter, repeat Steps 1-6 for L different values of M and average
the resulting empirical distribution functions F ∗n(.) to obtain F̄ ∗n(.). The final estimated critical
value is then given by c̄∗n,α = inf{t : F̄ ∗n(t) ≥ 1− α}.

3.4. Discussion. This section elaborates further on key aspects of the bootstrap procedure.

3.4.1. Randomization of treatments. A distinctive feature of the bootstrap procedure is the ran-
domization of the treatments, W∗. For many causal effect estimators, such as nearest neighbor
matching using the vector of covariates, it suffices to resample the realized errors (see, e.g. Otsu
and Rai, 2017). However, such a strategy doesn’t work for propensity score matching because
the potential and realized errors are functions of the random quantity F (X′θ̂). The variability
of W conditional on X thus has a first order effect on inference through the estimation of θ̂,
necessitating the re-drawing of W∗ in the bootstrap. The precise mechanism is the following:
Suppose that one of the covariates is heavily imbalanced between the treatment and control
groups. Then the magnitude of θ̂ corresponding to the covariate increases, and the procedure
places greater emphasis on balancing that covariate. This reduces the conditional (on X,W)
bias, eventually showing up as (unconditional) asymptotic variance reduction, see Section 2.
But for a fixed X, the level of imbalance depends on the assignment of W; hence the conditional
distribution of W given X has a large effect on the variability of the estimate.

3.4.2. Bootstrap Recentering. An interesting feature of the recentering term, Ξ∗(θ), is that it
is based on taking the bootstrap expectation over T ∗N (θ) as if W∗ ∼ Bernoulli(F (X∗θ)), even
though the treatments are actually generated as W∗ ∼ Bernoulli(F (X∗θ̂)). If θ were an exoge-
nous parameter, this would mean the bootstrap expectation of T ∗N (θ) is exactly 0 only when
θ = θ̂. However T ∗N () is evaluated at θ̂∗, itself a function of the bootstrap random variables.
In this case the precise form of the recentering ensures T ∗N

(
θ̂∗
)
converges in distribution to a

11



mean zero random variable. The reasoning is broadly as follows (see however the proof of The-
orem 1 for details): Suppose for the sake of argument that W∗ ∼ Bernoulli(F (X∗θ)). Together
with S∗, this parametrizes the bootstrap probability distribution, denoted by P ∗θ . Under P ∗θ the
test statistic T ∗N (θ) is exactly mean 0, and therefore converges to a mean 0 random variable in
distribution. However for values of θ that are sufficiently close to θ̂, such as θ̂∗, the probability
distributions P ∗θ and P ∗

θ̂
largely coincide. Hence T ∗N (θ) also converges to a mean 0 random

variable under P ∗
θ̂
- the actual bootstrap distribution.

3.4.3. Imputation. The imputation step, Step 0, is critical to the bootstrap. Here, prior to the
bootstrap draws, each observation is linked with two others from the opposite treatment arm:
the first for imputing the errors (cf Section 3.1), and the second for imputing the matching
functions (cf Section 3.2). In general these observations do not coincide. However conditional
on the propensity score, the variables KM (i; θ), e1i, e2i are independent of each other even in the
true DGP. Thus the approximation properties of the bootstrap are not adversely affected.

Alternatively, one may choose to sort the observations into blocks based on the full set of
covariates rather than the propensity scores as in Section 3.2. Then a single observation, drawn
at random from the block, can be used to impute both the errors and the matching functions.
However, even with a binary categorization of the covariates, the number of blocks increases as
2k with the dimension k. Hence even for moderate k (e.g. k ≥ 5), it is highly likely that many
of the blocks only contain observations from a single treatment arm.

4. Asymptotic properties

In this section, I derive the asymptotic properties of the bootstrap procedure outlined in
Section 3.1, and demonstrate its consistency. Let Pθ denote the joint distribution of {Y,W,X}
implied by W ∼ Bernoulli(F (X ′iθ)), the marginal distribution of X, and the conditional dis-
tribution of Y given W,X. The corresponding expectation over Pθ is denoted by Eθ[.]. Also,
denote by P̃θ the joint probability distribution over both {Y,W,X} and M; with Ẽθ[.] as
the corresponding expectation. Per convention, I set P0 ≡ Pθ0 E0[.] ≡ Eθ0 [.], P̃0 ≡ P̃θ0 and
Ẽ0[.] ≡ Ẽθ0 [.].

Because the matching function KM (i; θ) is highly non-linear in θ, it is not possible to use
linearization to derive the asymptotic distribution of T ∗N (θ̂∗). I therefore obtain the limiting
distribution by employing a version of Le Cam’s skeleton argument, analogous to the proof
technique of Abadie and Imbens (2016). The following regularity conditions are similar to
Abadie and Imbens (2016): Let N ≡ {θ : ‖θ − θ0‖ < ε} denote a neighborhood of θ0 for some
ε > 0 arbitrarily small.

Assumption 3. (i) θ0 ∈ int(Θ) with Θ compact, X has bounded support and E[XX ′] is non-
singular; (ii) F (.) is twice continuously differentiable on R with derivatives f(.), f ′(.) strictly
bounded and f(.) strictly positive; (iii) for each θ ∈ N the random variable F (X ′θ) is continu-
ously distributed with interval support; and its pdf gθ(.) is such that the collection {gθ : θ ∈ N}
is uniformly Lipschitz continuous; (iv) at least one component of X is continuously distributed,
has non-zero coefficient in θ0, and has a continuous density function conditional on the rest
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of X; (v) for each θ ∈ N and w = 0, 1, the functions µ(w, p; θ), Var[µ̄(w,X)|F (X ′θ) = p],
Cov[X, µ̄(w,X)|F (X ′θ) = p] and E[σ̄2(w,X)|F (X ′θ) = p] are Lipschitz continuous in p with the
Lipschitz constants independent of θ; furthermore there exists some δ > 0 such that E[Y 4+δ|W =
w,X = x] is uniformly bounded.

Assumption 4. There exists some ε > 0 such that for all θ satisfying ‖θ − θ0‖ < ε, and for any
sequence θN → θ, EθN

[r(Y,W,X)|W,F (X ′θN )] converges to Eθ[r(Y,W,X)|W,F (X ′θ)] almost
surely, for any Rk+2-to-R bounded and measurable function r(y, w, x) that is continuous in x.

The above assumptions rule out the case where all the regressors are discrete. In this case
the matching estimator reduces to the propensity score sub-classification estimator, inference
for which is easily obtained using standard methods. Assumptions 3(i),(ii) ensure that the
propensity scores for all the observations are bounded away from zero and one. Khan and
Tamer (2010) show that under full support, the usual parametric rate is not attainable, and
the rate of convergence depends on the tail behavior of the regressors and error terms. Hence
inference in this context would necessarily be at a non-standard rate, and is beyond the scope
of this paper.

Compared to Abadie and Imbens (2016), the substantive additional assumptions are Assump-
tions 3(iii) and 3(v). They are both uniform extensions of related assumptions in Abadie and
Imbens (2016) - in the sense of holding uniformly in a neighborhood N of θ0. Assumption 4 is
similarly stronger than the corresponding one in Abadie and Imbens (2016). However sufficient
conditions for the latter (Theorem S.12 in Abadie and Imbens, 2016) also imply the former.

I shall also require assumptions to ensure the residuals {ê1i(θ), ê2i(Wi; θ)} are ‘close’ to the
unobserved errors {e1i(θ), e2i(Wi; θ)}. I impose the following high level condition:

Assumption 5. Uniformly over all θ ∈ N , it holds under P0,

1
N

N∑
i=1

(ê1i(θ)− e1i(θ))2 = op(N−ξ), and

1
N

N∑
i=1

(ê2i(Wi; θ)− e2i(Wi; θ))2 = op(N−ξ).

for some ξ > 0.

The assumption posits that the vector of residuals is close to the vector of true errors in terms
of the Euclidean metric. For many of the commonly used non-parametric methods such as series
or kernel regression, Assumption 5 can be verified under fairly weak continuity conditions, for
instance when supθ∈N |∂µ(w, x; θ)/∂x| < ∞ under w = 0, 1. It is usually straightforward to
select the tuning parameters for estimation, such as the number of series terms, either visually or
through cross-validation. In simulations, low order polynomial series, such as first or second order
polynomials, appear to work reasonably well, and constitute an attractive choice in practice.

The final assumption concerns the number of quantile partitions qN .

Assumption 6. The number of quantile partitions satisfies qN → ∞ and q2+η
N /N → 0 as

N →∞ for some η > 0.
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Assumption 6 is fairly weak in that a wide range of choices for qN are allowed. Here, the
choice of qN determines how close the bootstrap variance estimate V̂ ∗ is to the true variance
(due to re-centering, the bootstrap mean is exactly 0). Higher values of qN increase the balance
in the propensity scores within the blocks (thus lowering the bias of V̂ ∗), but reduce the number
of observations in the treatment and control groups in each block (thus increasing the variance
of V̂ ∗), see Remark 2. In fact, this is the same trade-off faced by sub-classification estimators
for average treatment effects. In this case, there exists extensive theoretical and empirical
literature suggesting that small values of qN are sufficient to reduce most of the bias due to the
stratification of the propensity score (see e.g. Rosenbaum and Rubin, 1984; Imbens and Rubin,
2015). Indeed, under some reasonable conditions, Rosenbaum and Rubin (1984), drawing on
previous work by Cochran (1968), find that 4 blocks/sub-classes are sufficient to reduce the bias
by over 85%, while having 5 blocks reduces it by more than 90%. These values are independent
of sample size since the bias depends solely on qN . Consequently, following the recommendation
of Rosenbaum and Rubin (1984), I suggest a default choice of qN = 5.

Based on the above assumptions, I can derive the asymptotic properties of the bootstrap
estimator. Following the techniques of Abadie and Imbens (2016) and Andreou and Werker
(2012), I employ the Le Cam skeleton or discretization device for formalizing the theorem. In
particular, I discretize both the bootstrap and sample estimators , θ̂∗, θ̂ along a grid of cubes
of length d/

√
N . For instance, if the j-th component of θ̂∗, θ̂∗j , falls in the q-th cube where

q =
⌊√

Nθ̂j/d
⌋
with b.c being the nearest integer function, then the corresponding component

of the discretized estimator is given by θ̃∗j = dq/
√
N . Analogously, I also discretize θ̂ as ¯̂

θ =
d
⌊√

Nθ̂/d
⌋
/
√
N . The theoretical results are thus based on using ¯̂

θ rather than θ̂ to construct
the bootstrap samples. The discretization is only a theoretical device for applying the skeleton
arguments and not necessary in practice; indeed, the theory doesn’t specify any minimum grid
size d.

Let P ∗ denote the bootstrap probability distribution conditional on both the observations,
(Y,W,X), and M. In other words, P ∗ represents joint probability distribution of W ∗ ∼
Bernoulli(F (X∗′i

¯̂
θ)) and S∗ conditional on (Y,W,X,M). The asymptotic properties of the

bootstrap procedure are summarized in the following theorem:

Theorem 1. Suppose that Assumptions 1-6 hold. Then for d sufficiently small,

P ∗
(
T ∗N

(
θ̃∗
)
≤ z

)
p→ Pr(Z ≤ z) +O(d)

under P̃0, where Z is a normal random variable with mean 0 and variance V = σ2 − c′I−1
θ0
c.

I refer to the appendix for the formal proof Theorem 1. The derivation parallels that of Abadie
and Imbens (2016) in using Le Cam’s skeleton argument to obtain the limiting distribution. Let
P ∗θ denote the joint distribution of W ∗ ∼ Bernoulli(F (X∗′i θ)) and S∗, conditional on both
the observed data and M. Note that P ∗ ≡ P ∗¯̂

θ
. I consider the bootstrap distribution of the

estimator under a local sequence of bootstrap probability distributions P ∗θN
, indexed by θN =

θ̂+h/
√
N . Here θN can be thought of as local ‘shift’ of the estimated propensity score parameter.

More precisely, I aim to characterize the limiting distribution - under the bootstrap sequence of
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probabilities, P ∗θN
- of the vector 

T ∗N (θN )
√
N(θ̂∗N − θN )
Λ∗N

( ¯̂
θ|θN

)
 ,

where θ̂∗N is the bootstrap estimator of θ under P ∗θN
, and Λ∗N (θ|θ′) ≡ log(dP ∗θ /dP ∗θ′) denotes

the difference in log-likelihood of the bootstrap probability distributions evaluated at θ and θ′ .
The limiting distribution of T ∗N (θ̂∗) under P ∗ can then be obtained by invoking Le Cam’s third
lemma (to switch from P ∗θN

to the actual bootstrap probability P ∗), and using the discretization
device. A technical difficulty is that θ̂ is also random under P̃0. To this end, I extend the proof
techniques of Abadie and Imbens (2016).

Theorem 1 assures that the bootstrap statistic T ∗N (θ̂∗) has the same limiting distribution as
the true sample. A practical consequence of this theorem is c∗n,α

p→ cα under P̃0, where cα is
the critical value from the asymptotic distribution of

√
N
(
τ̂(θ̂)− τ(θ0)

)
. Thus, the bootstrap

procedure is consistent.
As noted earlier, a drawback of the above result is that in finite samples the value of c∗n,α

depends on the particular realization of M. To reduce this dependence, it is possible to proceed
as in Step 7 of the bootstrap procedure (cf Section 3.3) and average the bootstrap empirical
distribution over different values of M. The resulting bootstrap critical value is denoted by c̄n,α
(see Section 3.3). The following corollary assures that c̄n,α is consistent with respect to P0 - the
probability distribution of the original data.

Corollary 1. Suppose that Assumptions 1-6 hold. Then c̄n,α
p→ cα +O(d) under P0.

5. On higher order refinements

In this section I argue that the proposed bootstrap provides a closer approximation to the true
distribution of the propensity score matching estimator, as compared to the asymptotic normal
limit. I focus in particular on the role played by the randomization of the treatment values
and matching functions, and their effect on variance estimation. Previous remarks have already
emphasized the importance of redrawing W∗ for inference with propensity score matching. Here,
I show by examples that the bootstrap can generate second order refinements even with other
causal effect estimators, especially when the overlap in propensity scores is poor.

As the first example, consider the estimation of the variance for the unadjusted treatment
effect estimator τ̂a = Ȳt − Ȳc, where Ȳt,Ȳc denote the sample averages of the outcomes for
the treated and control groups. The estimator is consistent when the data is obtained from a
Bernoulli trial RCT, for example. Neglecting the heterogeneity term E[Y (1)|X]−E[Y (0)|X]−τ0

for simplicity, the potential errors in this example are given by e(1;X) = Y (1)−E[Y (1)|X] and
e(0;X) = E[Y (0)|X]−Y (0). Suppose that both the propensity scores, p(Xi), and the potential
errors, {e(1;Xi), e(0;Xi)}, are known. The asymptotic variance estimate is

V̂ = 1
N

N∑
i=1

e2(Wi;Xi).
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A straightforward extension of the bootstrap procedure can also be used to provide inference
for τ̂a. The resulting bootstrap variance estimate is

V̂boot = 1
N

N∑
i=1

{
p(Xi)e2(1;Xi) + (1− p(Xi))e2(0;Xi)

}
− Ξ2

a,

where Ξa is the re-centering term. Since Ξ2
a = O(N−1), I neglect this in further analysis. Let

∆1 = V̂ − V , ∆2 = V̂boot − V , and ∆3 = V̂ − V̂boot, where V denotes the true variance of the
estimate. It is possible to decompose ∆1 = ∆2 + ∆3, where ∆2 and ∆3 are asymptotically inde-
pendent, since V̂boot ≈ E[V̂ |X]. This immediately implies V̂boot is a more accurate estimator of V
than V̂ . The extent of the gain in accuracy can be characterized using anti-concentration inequal-
ities: with high probability, ∆3 ≥ cN−1/2 for some c > 0. Also, the superior performance of the
bootstrap holds even if the potential errors have to be estimated. Let Ṽboot denote the bootstrap
estimator based on estimates, ê(w;Xi), of the potential errors. If, for instance, X is univariate,
and the conditional means of Y (1) and Y (0) are linear in X, the values of {ê(1;Xi), ê(0;Xi)}
can be obtained from linear regressions, and it follows Ṽboot − V̂boot = Op(N−1). More gen-
erally, as long as the dimension of X is not high (in particular k ≤ 5), it can be shown that
Ṽboot − V̂boot = op(N−1/2) and the bootstrap variance estimate is preferable.

The above example demonstrates that for any given realization of the observations, the boot-
strap variance estimate is typically closer to the truth. This can translate to large gains when
the degree of overlap in propensity scores is poor. The following example is based on propen-
sity score matching for concreteness, but the intuition applies to causal effect estimators more
broadly (for example, simply replacing the matching function with inverse propensity scores
gives the Horvitz-Thomson estimator):

Consider a dataset where the range of propensity scores falls within an arbitrarily narrow
interval centered around a (known) value p0 that is close to 0. This implies the number of
treated observations is very low, but they have a disproportionately high influence, being used
as matches very often. Suppose now that the conditional variances (i.e σ(w;X) = Var(Y (w)|X)
) are independent of w, and determined by a single binary covariate X1 with σ(x1) ≡ σ(w;X)
taking the values H (high) and L (low) when x1 = 0, 1 respectively. I also suppose that X1 takes
the values 0, 1 with equal probability. For simplicity I focus on the within sample variance, by
neglecting the first term (corresponding to e1i) in equation (2.2). In this example, the Abadie-
Imbens variance estimate is

(5.1) V̂AI = 1
N

∑
Wi=1

(
1 + KM (i)

M

)2
σ2(X1i) + 1

N

∑
Wi=0

(
1 + KM (i)

M

)2
σ2(X1i),

with σ(X1i) = L+X1i(H − L). The bootstrap (within-sample) variance estimate is5

(5.2) V̂boot = 1
N

N∑
i=1

p0

(
1 + K̃M (i; 1)

M

)2

σ2(X1i) + 1
N

N∑
i=1

(1− p0)
(

1 + K̃M (i; 0)
M

)2

σ2(X1i).

5This is based on neglecting the recentering term which is of the order N−1. Also I have modified the bootstrap
to take into account the known values of the variances and propensity scores. Even if these modifications were not
made, the error from approximating the resulting bootstrap variance estimator with V̂boot can be made arbitrarily
small compared to the effect of moving the value of p0 closer to 0.
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The Abadie-Imbens variance estimator - particularly the first term in (5.1) - is highly sensitive
to the relative proportion of observations with X1i = 0 or 1 in the treated group. Thus when
the value of p0 is low and H � L, the estimator is highly variable, and therefore inaccurate.
On the other hand V̂boot is more stable. This is because of the re-randomization of treatment
values for all the observations, due to which V̂boot only depends on the observed density of X1i

for the entire sample - a much less variable quantity.
A second robustness property of the bootstrap stems from the random imputation of the

matching functions (c.f Section 3.2). In the previous example, a low value of p0 implies greater
variability in the matching functions for the treatments. Indeed, it can be shown that

Var[KM (i)|Wi = 1] ≈ M

2

(1− p0
p0

)2
+M

1− p0
p0

.

Suppose that the variances σ(w;X) were not exactly known, then both V̂AI, V̂boot would be
modified by replacing σ2(X1i) with estimated (or imputed, in the case of bootstrap) residuals
ê2(w;Xi). Consequently V̂AI is heavily influenced by the error terms of those treated observations
that are used as a match most often. Since maxWi=1KM (i) → ∞ as p0 → 0, this again
implies greater variability and slow rates of convergence for V̂AI. By contrast, the bootstrap also
imputes K̃M (i; 1) for all the control observations from the conditional distribution of KM (i)
given Wi = 1. Thus the high values of KM (i) are paired with a greater range of the error terms
from

{
ê2(1;Xi) : i = 1, . . . N

}
, reducing the influence of a few particular observations.

The above arguments demonstrate as much the benefits of the imputation procedures as
those of the bootstrap. However there are other advantages specific to the bootstrap as well.
For instance, the bootstrap employs the exact values of the matching functions. By contrast,
in the setup of estimated propensity scores, the asymptotic distribution relies on large sample
approximations to the same. When the degree of overlap is poor, or when p0 → 0 in the above
example, the rate of convergence of the matching function to its asymptotic approximation can
be very slow, as evidenced by the large variances for KM (i; θ). As a result the bootstrap would
have better approximation properties.

6. Extensions

6.1. Average treatment effect on the treated. Thus far this paper has focused on infer-
ence for the average treatment effect. An alternative quantity of interest could be the average
treatment effect on the treated (ATET), defined as

τt(θ) = E [Yi(1)− Yi(0)|Wi = 1] ,

when the propensity score is given by F (X ′θ). The estimator is indexed with θ since it is a
function of the propensity score. The parameter of interest is the quantity τt(θ0). The bootstrap
procedure can be readily extended to provide inference for τt(θ0).

The matching estimator for the ATET, for a match based on F (X ′θ), is defined as

τ̂t(θ) = 1
N

N∑
i=1

Wi

Yi − 1
M

∑
j∈JM (i;θ)

Yj

 .
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The estimator has an error representation of the form

τ̂t(θ)− τt(θ)−Bt(θ) = 1
N1

N∑
i=1

εt,i (Wi; θ) ,

where Bt(θ) denotes the bias term, and the potential errors are given by

εt,i (w; θ) = wet,1i(θ) + e2i(w; θ) + (1− w)
(

1 + K̃M (i;w, θ)
M

)
e2i(w; θ)

for w = 0, 1, with
et,1i(θ) ≡ µ(1, F (X ′iθ))− µ(0, F (X ′iθ))− τt(θ).

The large sample properties of this estimator under estimated propensity scores are derived in
Abadie and Imbens (2016). The authors show that the bias is asymptotically negligible (i.e
√
NBt(θ̂)

p→ 0), and that

√
N
(
τ̂t(θ̂)− τt(θ0)

)
d→ N

(
0, σ2

t − c′tI−1
θ0
ct + ∂τ(θ0)

∂θ

′
I−1
θ0

∂τ(θ0)
∂θ

)
,

subject to discretization. I refer to Abadie and Imbens (2016) for the values of σt and ct.
As with the ATE, the potential errors motivate the bootstrap procedure. For each θ, denote

êt,1i(θ) ≡ µ̂(1, F (X ′iθ))− µ̂(0, F (X ′iθ))− τ̂t(θ).

Then my proposed bootstrap statistic for the ATET is

T ∗t,N

(
θ̂∗
)

=
√
N

N∗1

N∑
i=1

{
ε∗t,i

(
θ̂∗
)
− Ξ∗t

(
θ̂∗
)}

,

where for each θ, the bootstrap realized errors are given by

ε∗t,i (θ) = W ∗i

{
êt,1S∗i (θ) + ê2S∗i (1; θ)

}
+ (1−W ∗i )

{
ê2S∗i (0; θ)− ν̂S∗i (0; θ)

}
,

and Ξ∗t (θ) ≡ E∗θ [ε∗t,i (θ)] is the re-centering term for the bootstrap. The latter can be expanded
as

Ξ∗t (θ) = 1
N

N∑
k=1

{
F (X ′kθ) (êt,1k(θ) + ê2k (1; θ)) +

(
1− F (X ′kθ)

)
(ê2k (0; θ)− ν̂k (0; θ))

}
.

The empirical distribution, F ∗t,n(.), of T ∗t,N
(
θ̂∗
)
can be obtained by repeatedly cycling through

Steps 1-5 in Section 3.3 for a set of B bootstrap repetitions. Using F ∗t,n(.), and for a particular
realization of M, the critical value is obtained as c∗t,n,α = inf{u : F ∗t,n(u) ≥ 1−α}. Alternatively,
averaging the empirical distribution F ∗t,n(.) over L different values of M gives F̄ ∗t,n(.). The
resulting critical values, c̄∗t,n,α = inf{u : F̄ ∗t,n(u) ≥ 1 − α}, are less dependent on the particular
realizations of M.

Let ct,α denote the critical value from the asymptotic distribution of
√
N
(
τ̂t(θ̂)− τt(θ0)

)
.

The following theorem assures that the bootstrap procedure for the ATET is consistent. As
with Theorem 1, the formal statement relies on discretization.
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Theorem 2. Suppose that Assumptions 1-6 hold. Then for d sufficiently small,

P ∗
(
T ∗t,N

(
θ̃∗
)
≤ z

)
p→ Pr(Zt ≤ z) +O(d)

under P̃0, where Zt is a normal random variable with mean 0 and variance Vt = σ2
t − c′tI−1

θ0
ct +

∂τ(θ0)
∂θ

′
I−1
θ0

∂τ(θ0)
∂θ . Furthermore, c̄t,n,α

p→ ct,α +O(d) under P0.

The proof of the theorem is similar to that of Theorem 1, and therefore omitted. Similar
results also hold for related estimators like the average treatment effect on the controls.

Remark 4. In empirical examples pertaining to the ATET, it is frequently the case that N1 �
N0. In such cases, the bootstrap resamples would be predominantly dominated by observations
from the control arm. However the error terms and matching functions are imputed from the
treated variables. Hence the information from the treated sample is still incorporated in each
bootstrap draw.

6.2. Matching without replacement. In this section I consider matching without replace-
ment as an alternative for estimating the ATET. This has the advantage of having a lower
variance, compared to matching with replacement. At the same time, if the pool of controls
is sufficiently large, the increase in bias is not substantial. Here I focus on so called optimal-
matching (Rosenbaum, 1989), which is one procedure for matching without replacement. How-
ever, the proposed bootstrap is applicable more generally, for instance to greedy or sequential
matching.

Suppose that the propensity scores are given by F (X′θ). The matching indices, J opt
M (i; θ), for

optimal-matching are obtained as the ones that minimize the sum of matching discrepancies, i.e

J opt
M (·; θ) ∈ argmin{J(i):i=1,...,N}

N∑
i=1

Wi

∑
j∈J(i)

∥∥∥F (X ′iθ)− F (X ′jθ)
∥∥∥ ,

where J(.) : {i : Wi = 1} 7→ {i : Wi = 0} is any one-one mapping from the indices of the treated
observations to that of the controls. The corresponding matching function is denoted by

Kopt
M (i; θ) =

N∑
j=1

Ii∈J opt
M (j;θ).

By definition Kopt
M (i; θ) ∈ {0, 1} for every unit i in the treatment group. For matching based on

F (X ′θ), the optimal-matching estimator for the ATET is then

τ̂opt
t (θ) = 1

N

N∑
i=1

Wi

Yi − 1
M

∑
j∈J opt

M (i;θ)

Yj

 .
The estimators τ̂opt

t (θ) and τ̂t(θ) only differ in employing Kopt
M (i; θ) instead of KM (i; θ) as the

matching function. Thus, the error representation for the τ̂t(θ) applies for τ̂opt
t (θ) as well. With

the estimated propensity score, the quantity of interest is τ̂opt
t (θ̂). To obtain its large sample

properties, I impose the following condition, based on Abadie and Imbens (2012): (Let N denote
some neighborhood of θ0)
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Assumption 7. Uniformly over all θ ∈ N , it holds under P0 that as N1 →∞

1√
N1

N∑
i=1

Wi

∑
j∈J opt(i;θ)

∥∥∥F (X ′iθ)− F (X ′jθ)
∥∥∥ p→ 0.

Assumption 7 is a high level condition ensuring the bias from the optimal matching decays
fast enough to 0. Suppose that g1,θ and g0,θ denote the conditional pdfs of F (X ′θ) conditional
on Wi = 1 and Wi = 0 respectively. Following the arguments of Abadie and Imbens (2012,
Proposition 1), sufficient conditions for Assumption 7 can be provided as: (i) supθ∈N g1,θ, g0,θ ≤
C < ∞ and infθ∈N g0,θ ≥ c > 0; and (ii) N r

1 ≤ cN0 for some c > 0 and r > 1. Here, the
requirement of N1 � N0 is crucial for driving down the bias. Using Assumptions 1-7, it is
possible to derive the limiting distribution of τ̂opt

t (θ̂),

√
N
(
τ̂opt
t (θ̂)− τt(θ0)

)
d→ N

(
0, σ2

w − c′wI−1
θ0
cw + ∂τ(θ0)

∂θ

′
I−1
θ0

∂τ(θ0)
∂θ

)
,

subject to discretization. The proof of the above, together with the expressions for σ2
w, cw, can

be obtained by adapting the arguments of Abadie and Imbens (2012, 2016). In general σ2
w, cw

are distinct from the corresponding quantities, σ2
t , ct, for matching with replacement.

Given the close analogy with τ̂t(θ), it is straightforward to modify the bootstrap procedure
of Section 6.1 to obtain valid inference for τ̂opt

t (θ̂). The primary difference is that the matching
functions are obtained as Kopt

M (i; θ̂∗) rather than KM (i; θ̂∗) in Step 4. Also, only the values of
the potential matching function K̃opt

M (i;w, θ) for w = 0 need to be known, since the optimal-
matching function is defined solely for control variables. The proposed bootstrap test statistic
for τ̂opt

t (θ̂), denoted by T (opt)∗
t,N

(
θ̂∗
)
, thus has the same form as T ∗t,N

(
θ̂∗
)
, with the sole change

being the matches are now given by Kopt
M (i; θ). Consistency of the bootstrap procedure can be

demonstrated by analogous arguments to Theorem 1, using results from Abadie and Imbens
(2012).

Theorem 3. Suppose that Assumptions 1-7 hold. Then for d sufficiently small,

P ∗
(
T

(opt)∗
t,N

(
θ̃∗
)
≤ z

)
p→ Pr(Z(opt)

t ≤ z) +O(d)

under P̃0, where Z(opt)
t is a normal random variable with mean 0 and variance V opt

t = σ2
w −

c′wI
−1
θ0
cw + ∂τ(θ0)

∂θ

′
I−1
θ0

∂τ(θ0)
∂θ .

The bootstrap procedure requires estimating the optimal-matching function for every boot-
strap draw. This could be computationally expensive in large data sets.

6.3. Other causal effect estimators. The bootstrap procedure can easily be extended to
other causal effect estimators. Indeed, many estimators of the ATE that rely on the propensity
score, for instance propensity score sub-classification or Horvitz-Thompson estimators, have a
common structure in terms of an error representation of the form

τ̂ (c) − E[τ̂ (c)] = 1
N

N∑
i=1

ε
(c)
i (Wi; θ),
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where the potential errors are given by6

ε
(c)
i (w; θ) = e1i(θ) + (2w − 1)Λi(X′θ,W−i, w)e2i(w; θ).

Here, Λi(X′θ,W−i, w) may interpreted as quantifying the importance of each observation in
terms of estimating the ATE, depending on whether it is in the treated (w = 1), or control
group (w = 0). The estimators differ only in the choice of Λi(X′θ,W−i, w). The propensity
score matching estimator sets Λi(X′θ,W−i, w) = K̃M (i;w, θ), while setting

Λ−1
i (X′θ,W−i, w) = wF (X ′iθ) + (1− w)(1− F (X ′iθ))

gives the Horvitz-Thompson estimator. In a similar vein, the propensity score sub-classification
estimator sets

Λi(X′θ,W−i, w) = w
N1(bi(θ)) +N0(bi(θ))

N1(bi(θ))
+ (1− w)N1(bi(θ)) +N0(bi(θ))

N0(bi(θ))
,

where bi(θ) denotes the block in which observation i resides when the blocks are obtained by
partitioning F (X′θ); and N1(b), N0(b) denote the number of treated and control observations
in block b. A common theme across all choices is that control (treated) units with high (low)
propensity scores gain greater importance, to compensate for them being fewer in number.

The techniques in Section 3 provide a template for estimating and imputing the potential
error terms, ε(c)

i (w; θ). In particular, the values of e2i(w; θ) for w = 0, 1 can be obtained through
secondary matching as in Section 3.1. Additionally, the unobserved values of the importance
function Λi(X′θ,W−i, w) can be imputed either through a blocking scheme as in Section 3.2, or
directly, if the functional form is known, as in the case of Horvitz-Thompson and propensity score
sub-classification estimators. Consequently, given the potential errors, a bootstrap algorithm
can be constructed by analogy with Section 3.3; indeed, the bootstrap drawing and re-centering
schemes continue to apply.

The consistency of the bootstrap procedure for this more general class of estimators follows
by the same reasoning as in Theorem 1.

7. Simulation

In this section I investigate the finite sample performance of the bootstrap procedure outlined
in Section 3.3 using simulation exercises. These confirm my theoretical results and demonstrate
the accuracy of the bootstrap procedure.

7.1. Simulation designs. I consider different four data generating processes. The first DGP
(DGP1) is taken from Abadie and Imbens (2016, Supplementary material). I generate a two
dimensional vector (X1, X2) of covariates by drawing both variables from a uniform [−1/2, 1/2]
distribution independently of each other. The potential outcomes are generated as Y (0) =
3X1 − 3X2 + U0 and Y (1) = 5 + 5X1 + X2 + U1, where U1 and U0 are mutually independent

6The term W−i denotes the vector of treatments W excluding Wi.
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standard normal random variables. The propensity score is given by the logistic function

p(X) ≡ P (W = 1|X) = exp(X1 + 2X2)
1 + exp(X1 + 2X2) ,

and the treatments are generated as W ∼ Bernoulli(p(X)). Finally, the outcome variables are
generated as Y = WY (1) + (1−W )Y (0).

The second DGP (DGP2) is similar to the first except that the potential outcomes are gener-
ated as Y (0) = −3X1 + 3X2 +U0 and Y (1) = 5 + 7X1 + 12X2

2 +U1. In this DGP the treatment
effect varies more widely with X. Additionally, it also incorporates some non-linearity through
the quadratic term in Y (1).

The third DGP (DGP3) is also similar to the first except that the propensity scores are given
by

P (W = 1|X) = exp(X1 + 7X2)
1 + exp(X1 + 7X2) .

The effect of this is to greatly reduce to amount of overlap in the propensity scores between
the treated and control samples, as compared to DGP1. For instance, out of a set of 1000
observations, less than 5% of the first 200 observations as ordered by the propensity score are
from the treated sample .

The final DGP (DGP4) is adapted from Kang and Schafer (2007). This is chosen for its
resemblance with a real data study.7 For each observation I draw covariates X1, X2, X3, X4

independently of each other from a standard normal distribution. The potential outcomes are
given by Y (1) = 210 + 27.4X1 + 13.7X2 + 13.7X3 + 13.7X4 + U1 and Y (0) = U0 where U1 and
U0 are independent standard normal random variables. The propensity scores are given by

P (W = 1|X) = exp(−X1 + 0.5X2 − 0.25X3 − 0.1X4)
1 + exp(−X1 + 0.5X2 − 0.25X3 − 0.1X4) .

In all DGPs I consider the case of a single match, i.e M = 1. I consider four different sample
sizes: N = 100, 200, 500, 1000. In all cases, the number bootstrap repetitions is B = 399,
and the number of Monte-Carlo repetitions is 2500. To ease the computational burden, I only
present results for the bootstrap procedure based on a single realization of M.

7.2. Choice of tuning parameters. The procedure requires choosing the type of series re-
gression and the number of quantile partitions qN . Based on visual inspection, I used third order
polynomials for the series regression for all DGPs. In practice the number of series terms can also
be chosen through cross-validation. I also experimented with different types of non-parametric
estimators and show the procedure is not sensitive to the particular choices employed. The
choice of qN was discussed in Section 4; there I recommended setting a value of qN = 5. Cor-
respondingly, for the baseline results I set qN = 5 throughout. In a separate table I also report
results for different choices of qN .

For the secondary matching (c.f Section 3.1), I employ nearest neighbor matching based on
the Euclidean metric. Since in all the DGPs the covariates are standard normal and independent
of each other, this is practically equivalent to matching on the Mahalanobis metric.
7The original simulation study of Kang and Schafer (2007) uses a version of this DGP to evaluate the performance
of different procedures under missing data. Here I adapt it to study average treatment effects.
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Table 1. Rejection probabilities under the null for various DGPs

Sample size
N = 100 N = 200 N = 500 N = 1000

DGP1 Bootstrap 0.057 0.044 0.050 0.050
Asymptotic 0.070 0.059 0.054 0.049

DGP2 Bootstrap 0.058 0.052 0.054 0.058
Asymptotic 0.063 0.056 0.058 0.057

DGP3 Bootstrap 0.090 0.069 0.052 0.047
Asymptotic 0.141 0.100 0.092 0.069

DGP4 Bootstrap 0.079 0.066 0.057 0.058
Asymptotic 0.118 0.077 0.061 0.057

7.3. Simulation results. Table 1 reports the performance of the bootstrap inferential proce-
dure for all the DGPs, along with inference based on the asymptotic distribution. I evaluate
the empirical coverage of both the inferential methods under a nominal coverage probability of
0.95. The tuning parameters of the number of series terms and qN haven been deliberately kept
unchanged with sample size to emphasize that the values reported are not due to the particular
selection of these parameters. In all cases, the bootstrap critical values are very close to nominal
even for relatively small sample sizes, for example N = 100.

The bootstrap outperforms inference based on the asymptotic distribution in almost all cases.
The performance of the bootstrap is particularly advantageous when the sample size is small,
see e.g. the results for N = 100; and when the extent of imbalance in propensity scores is high,
e.g. DGP3. At the same time, when there is sufficient overlap between the propensity scores,
and the effect of estimation of propensity scores is negligible, as in DGP2, there is very little
difference between the inferential procedures.

To assess the sensitivity of the bootstrap, I repeated the Monte-Carlo simulations for different
choices of tuning parameters. In Table 2, I experiment with different non-parametric specifica-
tions to estimate the residuals, namely: linear, third and fourth order polynomials, and cubic
smoothing splines (with smoothing parameter 0.99). The bootstrap is quite insensitive to the
choice of the specification. I found similar results for the other sample sizes; for brevity I do not
report these results.

In Table 3, I repeat the procedure for different values of qN under the sample sizes N = 200
and N = 500 for all the DGPs. I find that the bootstrap procedure is largely robust to the
actual choice of qN , except for the value of qN = 1, which corresponds to no partitioning. This
is consistent with the observation, made in Section 4, that small values of qN are sufficient to
reduce most of the bias. At the same time, even for larger sample sizes, the reduction in bias is
marginal as qN increases beyond a certain amount. For example, there is not much variability
in the results between qN = 5 and qN = 8.

7.4. Robustness to Mis-specification. To check the robustness of the inference to mis-
specification, I modify the DGPs by using a Probit link function for the true propensity scores,
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Table 2. Rejection probabilities under the null for different non-parametric es-
timators when N = 500

Non-parametric estimators
Linear Poly-3 Poly-4 Spline

DGP1 0.056 0.050 0.055 0.051
DGP2 0.052 0.054 0.047 0.048
DGP3 0.030 0.052 0.048 0.049
DGP4 0.064 0.057 0.062 0.062

Table 3. Rejection probabilities under the null for different values of qN

Number of quantile partitions
qN = 1 qN = 2 qN = 5 qN = 8

DGP1 N = 200 0.067 0.057 0.046 0.049
N = 500 0.057 0.054 0.050 0.050

DGP2 N = 200 0.072 0.058 0.060 0.048
N = 500 0.070 0.047 0.047 0.060

DGP3 N = 200 0.202 0.082 0.069 0.076
N = 500 0.190 0.078 0.052 0.045

DGP4 N = 200 0.103 0.079 0.066 0.064
N = 500 0.093 0.078 0.057 0.054

Table 4. Rejection probabilities for the null under mis-specification

Data Generating Process
DGP1 DGP2 DGP3 DGP4

N = 200 Bootstrap 0.050 0.046 0.107 0.087
Asymptotic 0.063 0.062 0.141 0.133

N = 500 Bootstrap 0.052 0.052 0.091 0.069
Asymptotic 0.052 0.062 0.142 0.101

even as the estimation and inferential procedures themselves employ the Logistic regression.
Table 4 reports the results of the simulation under various DGPs when N = 200 and 500.
While performance of both inferential procedure degrades somewhat, the bootstrap remains
much more robust. A reason for this could be that the residuals ê1(.), ê2(., .) - obtained under
the mis-specified propensity score - still approximate the actual errors under mis-specification.

8. Case study - The LaLonde datasets

The National Supported Work (NSW) demonstration was a randomized evaluation of a job
training program, first analyzed by LaLonde (1986), and later the focus of papers by Heckman
and Hotz (1989), Deheija and Wahba (1999), Smith and Todd (2005) among others. The
original dataset is based on a randomized study. LaLonde (1986) set aside the experimental
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control group and replaced it with two other sets of observations from the Panel Study of
Income Dynamics (PSID) and the Current Population Survey (CPS). In this section I simulate
observations resembling the LaLonde experimental and observational datasets, and use them
as test cases for analyzing the relative performance of the bootstrap and asymptotic inferential
procedures8.

8.1. Description of the data and the data generating process. The datasets comprise
of the following pre-treatment variables: age (age), years of education (edu), indicator for high
school dropout (nodeg), indicator for married (mar), real earnings (in thousands of dollars) in
1974 (re74), indicator for unemployed in 1974 (un74), real earnings (in thousands of dollars)
in 1975 (re75), indicator for unemployed in 1975 (un75), and finally two indicators for race:
(black) and (hispanic). The outcome variable is real earnings in 1978 (Y ). For the results in
this section I consider only the African American subsample, which comprises the bulk (> 85%)
of the original experimental data. This selects N0 = 215 and N1 = 156 control and treated
observations respectively from the experimental dataset, for a total of N = 371 observations.

For the observational data, I follow LaLonde (1986) in replacing the experimental control
group with the subgroup of all men from PSID and CPS samples who were not working when
surveyed in the spring of 1976 (denoted as PSID-2 and CPS-2 respectively). I further extract
the African-American subsample from these datasets. This selects N0 = 99 and N0 = 286
observations for the control groups based on the PSID and CPS samples, for a total of N = 255
and N = 442 observations respectively (given the N1 = 156 treated observations).

I simulate observations mimicking the experimental and observational datasets by broadly
following the algorithm described in Busso, DiNardo and McRary (2014). Denote by X̃ the
original set of covariates, and let Z denote the set of variables comprised of an intercept, X̃ , all
the squared terms in X̃, and the following interaction terms: un75×un74, edu×re75, re74×re75.
For each simulation draw, I generate N observations using the following procedure: (1) Draw
new covariates X using the population model specified in the next paragraph; (2) Estimate
the propensity scores as p(X) = F (V ′θ0) where F (.) is the Logistic function, V is a vector of
covariates described below, and θ0 is the parameter vector obtained given by running a Logistic
regression on the original datasets; (3) construct Yi(0) = Z ′iδ0 + σ0εi, where δ0 is obtained by
regressing the control observations of the original datasets with Z, σ2

0 is the root mean squared
error of the regression, and ε0i are iid standard normal errors; (4) construct Yi(1) analogously
using the treated observations from the original datasets; (5) construct treatment values as
W ∼ Bernoulli(p(X)); (6) construct outcome values as Yi = WiYi(1) + (1−Wi)Yi(0).

Following Busso, DiNardo and McRary (2014), I draw the new covariates X in the following
way: (1) draw the indicator variables mar, un74, un75 by sapling with replacement from the
original datasets; (2) fix the pair (mar, un74, un75) as a group and simulate the other variables,

8LaLonde (1986) replaced the experimental control group to analyze the accuracy of non-experimental statistical
methods. Here I abstract away from this issue by explicitly imposing selection on observables in simulations.
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Figure 8.1. Representative overlap plots based on kernel density estimates of
propensity scores for control (dotted line) and treated units (solid line)

i.e (age, edu, re74, re75), from a group-specific multivariate normal distribution, where the dis-
tributional parameters are the group means and covariances estimated from the original data;
(3) round the values of age, edu to the nearest integer values.

For the experimental data I use a linear specification for the propensity scores with
V = (age, edu, nodeg, mar, re74, re75, un74, un75). For the observational designs I employ a
somewhat modified version of the propensity score specification used by Deheija and Wahba
(1999): V = (age, edu, mar, nodeg, re74, re75, age2, edu2, re742, re752, edu×re74).

The simulations are designed to replicate the broad features of both the experimental and
observational datasets. Of particular interest is the degree of overlap in the propensity scores
between the treated and control groups. Figure 1 presents a representative plot for the simulated
datasets. In the experimental design there is a high degree of overlap in the propensity scores
which are also bounded away from 0 and 1. On the other hand, the degree of overlap is quite
poor in the observational designs with many of the treated observations concentrated around
the propensity score value of 0. This has a significant impact on the performance of inferential
methods for matching.

8.2. Simulation results. I first describe the bootstrap procedure: For secondary matching,
I used nearest neighbor matching based on the Mahalanobis metric, applied over the unique
set of covariates in the data, i.e overage, edu, mar, re74, re75.9 Additionally, based on a visual
9Indeed the other covariates are defined as functions of these with nodeg=1(edu < 12), un74=1(re74 = 0) and
un75=1(re75 = 0).
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Table 5. Rejection probabilities and average length of confidence intervals (in
thousands of dollars) under experimental and observational designs

Rejection probability Confidence Interval length
Bootstrap Asymptotic Bootstrap Asymptotic True

Experimental 0.061 0.054 3.474 3.528 3.666(N = 371)

Observational (PSID) 0.079 0.214 7.426 5.621 8.335(N = 255)

Observational (CPS) 0.076 0.233 8.669 5.985 9.288(N = 422)

Experimental 0.075 0.075 5.270 5.312 5.756(N = 150)

Observational (PSID) 0.063 0.148 5.984 4.848 6.147(N = 500)

Observational (CPS) 0.062 0.169 7.242 5.363 7.194(N = 1000)

inspection, I employed a linear specification for the series regression in all designs. For the
number of quantile partitions, I employed qN = 5 for the experimental and PSID designs, and
qN = 4 for the CPS design. The reason for the lower value of qN in the latter case is due to the
poor overlap in the propensity scores, which results in some cells having no treated observations
when qN is higher.10 Table 5 reports the performance of the bootstrap and asymptotic inferential
procedures for the matching estimator of the ATE. All values are based on 5000 Monte-Carlo
repetitions with B = 399. The results are provided after bias correction, which in any case is
an order of magnitude smaller than the standard deviation.

The first three rows of Table 5 present the simulation results with the same sample sizes as in
the original datasets. For the experimental design, both the bootstrap and asymptotic methods
provide very similar performance. This is an example in which estimation of the propensity
scores hardly affects variance. The asymptotic method appears to be slightly preferable, even if
the difference is not statistically significant. This is possibly due to the bias introduced by the
nearest-neighbor-matching technique while imputing the error terms.

The performance of the inferential methods declines under both observational designs. Nev-
ertheless, the asymptotic procedure performs considerably worse than the bootstrap, and un-
derestimates the length of the confidence interval by close to 33% of the true length. (I also
found that in about 4-5% of the cases, the asymptotic procedure actually reported a negative
value for the variance!) By contrast, the bootstrap provides good size control, despite the fact
the propensity scores are not bounded away from 0 and 1.

Figure 2 plots the estimates of the finite sample distribution (after centering by the true
value) using bootstrap and asymptotic methods for representative simulation samples. For the

10In the somewhat rare instances where one of the cells has no treated values even with the lower value of qN , I
impute the matching function by drawing treated observations randomly from the neighboring cell.
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Figure 8.2. Estimates of the finite sample distribution using bootstrap (solid
blue) and asymptotic methods (dashed red) for representative simulation sam-
ples. The bars represent the actual finite sample distribution.

observational data, the estimate from the asymptotic method is highly inaccurate and heavily
underestimates the variance. The bootstrap distribution is much closer to the actual one.

In the last three rows of Table 5, I redo the simulation with different sample sizes. Here, I
employ qN = 5 for all the designs. For the experimental design, both inferential methods perform
well even on a sample size that is about half the original one. However, for the observational
designs the bootstrap outperforms asymptotic inference by a considerable margin even after
doubling the number of observations.

9. Conclusion

In this paper, I propose a bootstrap procedure for propensity score matching estimators of
the ATE and ATET, and demonstrate its consistency. The procedure can be easily extended
to other estimators, including, but not limited to, inverse probability weighting (e.g. Horvitz-
Thompson) and propensity score sub-classification. It is built around the concepts of potential
errors and the error representation, introduced in this paper. Both these concepts are also
applicable very generally. Together, they constitute a powerful new formalism for describing
causal effect estimators.

Simulations and theoretical examples suggest the proposed bootstrap achieves greater accu-
racy than asymptotic methods, particularly when the overlap in propensity scores is poor. They
also highlight the key role played by the (re-)randomization of treatment values in obtaining
more precise inference. While beyond the scope of this paper, it would be interesting to formally
investigate the higher order properties of the bootstrap procedure.
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This paper focuses on treatment effects. However, the techniques and results in this paper
may also be useful in other contexts, for instance where the outcome data is missing at random
(i.e the propensity for a data point to be missing is only a function of observed covariates).
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Appendix A. Proofs of main results

Let Z = (Y,W,X) denote the observed data. Let P̃0 denote joint probability distribution of
the observed data Z = (Y,W,X) together with M; and Ẽ0[.], the corresponding expectation
over P̃0. I shall reserve the notation

p→ for convergence in probability with respect to P̃0. I shall
also use the notation a.s-P̃0 for ‘almost surely under P̃0’. As defined in the man text, let P ∗θ
denote the joint distribution of W∗,S∗ conditional on Z,M, when W ∗ ∼ Bernoulli(F (X∗′i θ)).
In other words, this is equivalent to the distribution of the bootstrap sequence of observations
(conditional on the data and M) when the treatments, W∗, are constructed using θ instead of
¯̂
θ. I shall use P ∗ as a shorthand for P ∗¯̂

θ
.

In the proof I consider local sequences of the form θN = ¯̂
θ + h/

√
N for some vector h. This

in turn indexes a local sequence of bootstrap probability distributions P ∗θN
, or P ∗N for simplicity

of notation. Let Z∗N = (W∗
N ,X∗) = f(W∗

N ,S∗) denote the bootstrap observations obtained
under P ∗N . I index the observations with N to reflect the fact that the distribution of Z∗N
as a function of the data depends on θN , which varies with N . I shall denote by L(.) the
(unconditional) probability law of some random variable, and by L∗N (.) the probability law of a
random variable under the bootstrap distribution P ∗N conditional on the data and M. Let E∗N [.]
be the expectation of a random variable with respect to P ∗N .

Let Λ∗N (θ|θ′) ≡ log(dP ∗θ /dP ∗θ′) denote the difference in log-likelihood of the bootstrap proba-
bility distributions evaluated at θ and θ′, i.e.

Λ∗N (θ|θ′) = L(θ|Z∗N )− L(θ′|Z∗N ).

The bootstrap estimator of θ under P ∗N is represented by θ̂∗N . Denote by ψ∗N,i(θN ), the influence
function for θ̂∗N under P ∗N , i.e.

ψ∗N,i(θN ) = X∗i
W ∗N,i − F (X∗′i θN )

F (X∗′i θN )(1− F (X∗′i θN ))f(X∗′i θN ),

and let S∗N (θN ) = N−1/2∑N
i=1 ψ

∗
N,i(θN ) denote the corresponding normalized score function.

Suppose that one had access to e1i(θ), e2i(Wi; θ) instead of ê1i(θ), ê2i(Wi; θ). Then denote

ε̃∗i (θ) = e1S∗i (θN ) +W ∗N,iνS∗i (1; θ)− (1−W ∗N,i)νS∗i (0; θ),

where
νi(w; θ) =

(
1 + K̃(i;w, θ)

M

)
e2Jw(i)(w; θ).

Additionally set

Ξ̃∗(θ) ≡ E∗θ [ε̃∗i (θ)]

= 1
N

N∑
k=1

{
e1k(θ) + F (X ′kθ)νi(1; θ)−

(
1− F (X ′kθ)

)
νi(1; θ)

}
.

Finally define the bootstrap estimator with the ‘true’ error terms e1i(θ), e2i(Wi; θ) as

(A.1) T̃ ∗N (θ) = 1√
N

N∑
i=1

{
ε̃∗i

(
θ̂∗
)
− Ξ̃∗

(
θ̂∗
)}

.
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A.1. Proof of Theorem 1. My proof of the bootstrap consistency parallels the method of
proof of Abadie and Imbens (2016, Theorem 1) to some extent. I aim to show that,

L∗N


T ∗N (θN )

√
N(θ̂∗N − θN )
Λ∗N

( ¯̂
θ|θN

)
 p→ L(V);(A.2)

V ∼ N




0
0

−h′Iθ0h/2

 ,


σ2 c′I(θ0)−1 −c′h
I(θ0)−1c I(θ0)−1 −h
−h′c −h h′I(θ0)h


 .

Given (A.2), the claim follows by similar arguments in Abadie and Imbens (2016) involving the
use of Le Cam’s third lemma together with a Le Cam skeleton or discretization argument as in
Andreou and Werker (2011). Subsequently, I focus on proving (A.2).

To simplify notation I shall assume that ¯̂
θ → θ0 and θN → θ0 almost surely in P̃0. This

is without loss of generality as one can always convert convergence in probability (wrt P̃0) to
almost sure convergence (wrt P̃0) using a subsequence argument.11 Henceforth, in all of the
proofs it is implicitly assumed that I am working within such a subsequence.

Lemma 1 in Appendix B implies that with probability approaching one under P̃0,

Λ∗N
( ¯̂
θ|θN

)
= −h′S∗N (θN )− 1

2h
′I(θ0)h+ oP ∗N (1);

√
N(θ̂∗N − θN ) = I(θ0)−1S∗N (θN ) + oP ∗N (1).

Consequently by the above it suffices for (A.2) to show

(A.3) L∗N

 T ∗N (θN )
S∗N (θN )

 p→ L(V2); V2 ∼ N

 0
0

 ,
 σ2 c′

c I(θ0)

 .
Now by Lemma 2 in Appendix B, it follows∥∥∥ T ∗N (θN )− T̃ ∗N (θN )

∥∥∥ = oP ∗N (1),

with probability approaching one under P̃0. Hence for (A.3), it is enough to show

(A.4) L∗N

 T̃ ∗N (θN )
S∗N (θN )

 p→ L(V2).

Consider the linear combination CN = t1T̃
∗
N (θN ) + t′2S

∗
N (θN ). For any value of θ let

h(x; θ) ≡ E[Xi|F (X ′iθ) = x].

I can then write CN = N−1/2∑N
i=1 δ

∗
N,i, where δ∗N,i = t′2α

∗
N,i + t′2β

∗
N,i + t1γ

∗
N,i, with

α∗N,i = h(X∗′i θN ; θN )
W ∗N,i − F (X∗′i θN )

F (X∗′i θN ) (1− F (X∗′i θN ))f
(
X∗′i θN

)
,

β∗N.i =
{
X∗i − h(X∗′i θN ; θN )

} W ∗N,i − F (X∗′i θN )
F (X∗′i θN ) (1− F (X∗′i θN ))f

(
X∗′i θN

)
,

11That ¯̂
θ

p→ θ0 is simply a consequence of θ̂ p→ θ0, since the grid size d/
√
N also goes to 0 as N →∞.

31



and
γ∗N,i = ε̃∗i (θN )− Ξ̃∗ (θN ) .

Observe that under the bootstrap DGP, E∗N [α∗N,i|X∗i ] = 0 and E∗N [β∗N,i|X∗i ] = 0 by the con-
struction of W ∗N,i; and E∗N [γ∗N,i] = 0 by the definition of Ξ̃∗ (θN ). Hence {δ∗N,i, i = 1 . . . N} are
iid zero mean random variables under P ∗N , and by the Lindberg-Feller central limit theorem for
triangular arrays with iid sequences I obtain

L∗N (CN ) p→ L(v); v ∼ N(0, σ2
B),

with

σ2
B = plim E∗N [δ∗2N,i],

where the plim is taken over P̃0.
I characterize the variance by expanding δ∗2N,i =

(
t′2α
∗
N,i + t′2β

∗
N,i + t1γ

∗
N,i

)2
and considering

the bootstrap expectation of each term in turn. Under the definition of h(.), it follows by the
usual algebra involving Assumptions 3,4 that

E∗N

[(
t′2α
∗
N,i + t′2β

∗
N,i

)2
]

p→ E

[
f2(X ′θ0)

F (X ′θ0)(1− F (X ′θ0))
(
t′2X

)2] = t′2I(θ0)t2.

Thus it only remains to obtain the probability limit under P̃0 of

V1(θN ) ≡ E∗N
[(
t1γ
∗
N,i

) (
t′2α
∗
N,i

)]
,

V2(θN ) ≡ E∗N
[
(t1γ∗N,i)2

]
, and

V3(θN ) ≡ E∗N
[
(t1γ∗N,i) · (t′2β∗N,i)

]
.

Now, within the matching function KM (i; θN ), the treatments in the original sample are dis-
tributed as Wi ∼ Bernoulli(F (X ′iθ0)), whereas the matches are evaluated in terms of the prox-
imity with respect to F (X ′iθN ). Consequently to obtain the probability limits I employ the
skeleton argument of Le Cam again. This exploits the discretization ¯̂

θ of θ̂ defined previously,
and involves replacing ¯̂

θ with the local asymptotic sequence θ̆N = θ0 + h̆/
√
N , for some h̆ ∈ R.

First however I define some convenient notation:
Parametrize the multinomial random variables M (Section 3.2) as M(θ) for the case when

the estimated propensity score is given by θ (rather than ¯̂
θ). Denote by U = (U1, . . . , UN )

a vector of N independent uniform random variables corresponding to each observation, and
drawn independently of W,X,Y. Then it is possible to couple M(θ) = H(U;F (X′θ)), where
H(.;F (X′θ)) is some transformation indexed by the parameter θ.12 I represent by P̄θ the proba-
bility law for W,X,Y,U with W ∼ Bernoulli(F (X′θ)), and let Ēθ[.] denote the corresponding
expectation over P̄θ. A convenient feature of P̄θ (as compared to P̃θ) is that it doesn’t depend
on the value of θ̆N ; indeed, this is the reason for employing the coupling. Given θ̆N , I construct
12H(, ;F (X′θ)) can be interpreted as a function that transforms a uniformly distributed random variable into
a single-draw multinomial random variable. Note that knowledge of F (X′θ) uniquely pins down the quantiles{
π1(θ), . . . , πqN−1 (θ)

}
and the number of treated and untreated populations denoted by N1(l; θ), N0(l; θ) in each

partition. Thus the uniform random variable can be transformed into the multinomial random variable, M(i; θ),
for each observation i, by partitioning the unit interval into Nw(l; θ) equi-spaced segments.
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a local asymptotic sequence for the bootstrap indexed by θ̄N = θ̆N + h/
√
N . Let P̄ ∗N ≡ P ∗

θ̄N

denote the bootstrap probability indexed by θ̄N , and Ē∗N [.] the bootstrap expectation under
P̄ ∗N . For convenience set P̄N ≡ P̄θ̄N

and P̄0 ≡ P̄θ0 , with the corresponding expectation operators
ĒN [.] ≡ Ēθ̄N

[.] and Ē0[.] ≡ Ēθ0 [.]. Finally, I also introduce the quantities

V1(h, θ) ≡ E∗
θ+h/

√
N

[(
t1γ
∗
i

(
θ + h√

N
; θ
))(

t′2α
∗
i

(
θ + h√

N

))]
;

V2(h, θ) ≡ E∗
θ+h/

√
N

[(
t1γ
∗
i

(
θ + h√

N
; θ
))2]

; and

V3(h, θ) ≡ E∗
θ+h/

√
N

[(
t1γ
∗
i

(
θ + h√

N
; θ
))(

t′2β
∗
i

(
θ + h√

N

))]
,

where, for any θ1, θ2,

α∗i (θ1) = h∗(X∗′i θ1; θ1) W ∗i − F (X∗′i θ1)
F (X∗′i θ1) (1− F (X∗′i θ1))f

(
X∗′i θ1

)
,

β∗i (θ1) =
{
X∗i − h∗(X∗′i θ1; θ1)

} W ∗i − F (X∗′i θ1)
F (X∗′i θ1) (1− F (X∗′i θ1))f

(
X∗′i θ1

)
; and

γ∗i (θ1; θ2) = ε̃∗i (θ1; θ2)− E∗θ1 [ε̃∗i (θ1; θ2)].

Here ε̃∗i (θ1; θ2) is defined analogously to ε̃∗i (θ1) but with ¯̂
θ replaced by θ2; in particular, this

involves replacing M in the definition of ε̃∗i (θ1) with M(θ2) = H(U;F (X′θ2)). It is useful to
observe that Vk(θN ) = Vk

(
h; ¯̂
θ
)
for k = 1, 2, 3.

In Lemmas 3 - 5 in Appendix B, I show that for any bounded h̆ within the definition of θ̆N ,

V1(h, θ̆N ) = oP̄N
(1);

V2(h, θ̆N ) = t21σ
2 + oP̄N

(1); and(A.5)

V3(h, θ̆N ) = 2t1c′t2 + oP̄N
(1).

Then, employing a version of Le Cam’s skeleton argument, I show that

V1
(
h,

¯̂
θ
)

= oP̄0
(1);

V2
(
h,

¯̂
θ
)

= t21σ
2 + oP̄0

(1); and

V3
(
h,

¯̂
θ
)

= 2t1c′t2 + oP̄0
(1).

I illustrate the reasoning for the case of V2
(
h,

¯̂
θ
)
; the others can be argued similarly. Note that

P̄N and P̄0 are mutually contiguous by the usual arguments involving Le Cam’s first lemma.
Thus by (A.5) and contiguity, I have V2(h, θ̆N ) = t21σ

2 + oP̄0
(1). Let v denote the asymptotic

normal limit of
√
N(θ̂ − θ0) under P̄0. Then for any j ∈ Zd,

LP̄0

 V2
(
h, θ0 + dj/

√
N
)
− t21σ2

√
N(θ̂ − θ0)− dj

→ L
 0

v− dj

 .
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Additionally, the following events are equivalent for each j ∈ Zd :{√
N
( ¯̂
θ − θ0

)
= dj

}
≡
{
−d2 i <

√
N(θ̂ − θ0)− dj ≤ −d2 i

}
,

where i denotes a vector of ones of dimension d. Combining the above gives that for each j ∈ Zd,
and any ε > 0,

P̄0
{∣∣∣V2

(
h, θ0 + dj/

√
N
)
− t21σ2

∣∣∣ > ε ∩
√
N
( ¯̂
θ − θ0

)
= dj

}
→ 0

as N →∞. Hence for each C <∞,

P̄0
{∣∣∣V2

(
h,

¯̂
θ
)
− t21σ2

∣∣∣ > ε ∩
∣∣∣√N ( ¯̂

θ − θ0
)∣∣∣ ≤ C}

=
∑

j∈Zd:d|j|≤C
P̄0
{∣∣∣V2

(
h, θ0 + dj/

√
N
)
− t21σ2

∣∣∣ > ε ∩
√
N
( ¯̂
θ − θ0

)
= dj

}
→ 0.

Since
√
N
( ¯̂
θ − θ0

)
is OP̄0

(1), letting C →∞ above implies V2
(
h,

¯̂
θ
)

= t21σ
2 +oP̄0

(1), as claimed.

By definition the probability distribution of V2(θN ) under P̃0 is equivalent to that of V2
(
h,

¯̂
θ
)

under P̄0; and similarly for the distribution of V1(θN ), V3(θN ) under P̃0. Combining the above
results, I have thus shown that

σ2
B = t21σ

2 + 2t1c′t2 + t′2I(θ0)t2.

This proves (A.3), which completes the proof of the theorem.

A.2. Proof of Corollary 1. Let F (.) denote the cdf of v ∼ N
(
0, σ2 − c′I−1

θ0
c
)
. By taking L

(cf Step 7 in Section 3.3) sufficiently large, the claim follows if I show that

(A.6) EM [F ∗n(t)|Z] p→ F (t) +O(d)

uniformly over t ∈ R under P0 (here EM [.|Z] denotes the expectation over M conditional
on the data). But by the Glivenko-Cantelli theorem, pointwise convergence implies uniform
convergence, hence it suffices to show (A.6) holds for each t ∈ R under P0. So I fix some
arbitrary t ∈ R.

Recall the definitions of P̄0 and U from the proof of Theorem 1. By Theorem 1, F ∗n(t) p→
F (t) + O(d) under P̄0. By employing a subsequence argument, the convergence in probability
(wrt P̄0) can be converted to almost sure convergence (wrt P̄0). By this construction,

(A.7) F ∗n(t)→ F (t) +O(d), a.s− P̄0.

Note that by independence (of Z,U), P̄0 is equivalent to the product measure, P0 × PU , of the
respective marginal measures, P0, PU , of Z and U. Denote by Ω the set of all realizations, z, of
Z for which F ∗n(t)→ F (t) +O(d), a.s− PU . By the independence of Z and U, it must be that
P0(Ω) = 1 for (A.7) to hold. At the same time, the dominated convergence theorem gives

(A.8) EU [F ∗n(t)]→ F (t) +O(d)

for each z ∈ Ω; hence (A.8) holds almost surely over P0. Since EM [F ∗n(t)|Z] ≡ EU [F ∗n(t)], this
immediately proves (A.6).
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Appendix B. Lemmas

Hereafter, I shall use the notation wpa1-P̃0 as a shorthand for ‘with probability approaching
one under P̃0’.

I also introduce the following notation: For w = 0, 1 let

e3i(w; θ) = µ̄(w;Xi)− µ(w;F (X ′iθ)).

Also let
e4i(Wi; θ) = Yi − µ̄(Wi, Xi).

Note that it is possible to decompose e2i(Wi; θ) = e3i(Wi; θ) + e4i(Wi; θ).
In Lemmas 3-5, I work with the local asymptotic sequence θ̆N = θ0 + h̆/

√
N in place of ¯̂

θ. To
this end, I employ the notation introduced in Appendix A. Represent by

{
π1(θ̆N ), . . . , πqN−1(θ̆N )

}
the sample qN -quantiles of F (X ′θ̆N ) with π0(θ̆N ) = 0 and πqN (θ̆N ) = 1. I introduce l(i) as the
block index of observation i wrt F (X ′i θ̆N ), i.e l(i) = k if πl−1(θ̆N ) ≤ F (X ′i θ̆N ) < πl(θ̆N ). Also,
denote by Sw(l; θ) the set of all observations with Wi = w whose propensity scores evaluated at
θ - i.e F (X ′iθ) - lie in the l-th block (even as the blocks themselves are obtained from quantiles
of F (X ′θ̆N )):

Sw(l; θ) ≡
{
i : πl−1(θ̆N ) ≤ F (X ′iθ) < πl(θ̆N ) ∩ Wi = w

}
.

Based on the above, I set S(l; θ) = S1(l; θ) ∪ S0(l; θ). Furthermore, I also denote

N0(l; θ) = #S0(l; θ); N1(l; θ) = #S1(l; θ); N(l; θ) = N0(l; θ) +N1(l; θ),

where #A denotes the cardinality of any set A.
For w = 0, 1, the average matching function, defined as the expectation of K̃M (i;w, θ) over

U given (X,W), is represented by

K̄M (i;w, θ) =


KM (i; θ) if w = Wi

1
Nw(l(i);θ̆N)

∑
j∈Sw(l(i);θ̆N)KM (j; θ) if w 6= Wi .

Slightly abusing notation, I suppress indexing the quantities K̃M (.), K̄M (.), ν(.), l(.) with the
additional label θ̆N . However it should be understood implicitly that these quantities are now
constructed by replacing ¯̂

θ with θ̆N . Finally, I also define (again suppressing the index with
respect to θ̆N ),

ν(3)i(w; θ) =
(

1 + K̃M (i;w, θ)
M

)
e3Jw(i)(w; θ); .

ν(4)i(w; θ) =
(

1 + K̃M (i;w, θ)
M

)
e4Jw(i)(w; θ).

Lemma 1. Suppose that ¯̂
θ → θ0 a.s-P̃0. Then under Assumptions 1-5, wpa1-P̃0,

Λ∗N
( ¯̂
θ|θN

)
= −h′S∗N (θN )− 1

2h
′I(θ0)h+ oP ∗N (1),(B.1)

and

(B.2)
√
N(θ̂∗N − θN ) = I(θ0)−1S∗N (θN ) + oP ∗N (1).

35



Proof. Define

Î∗N (θ) = 1
N

d2L(θ|Z∗N )
dθdθ′

; Ĭ∗N (θ) = 1
N

N∑
i=1

ψ∗N,i(θN )ψ∗′N,i(θN ).

Under Assumptions 3(i)-(ii), I can show that supθ∈N E∗N
∥∥∥Î∗N (θ)− Ĭ∗N (θ)

∥∥∥2 p→ 0. The same

assumptions also suffice to show supθ∈N
∥∥∥Î∗N (θ)− I∗(θN )

∥∥∥ p→ 0, where

I∗(θN ) ≡ E∗N
[
ψ∗N,i(θN )ψ∗′N,i(θN )

]
= 1
N

N∑
i=1

XiX
′
i

f2(X ′iθN )
F (X ′iθN )(1− F (X ′iθN )) .

The term inside the summation is non-negative and uniformly bounded for all N sufficiently
large (by Assumptions 3(i)-(ii)). Consequently, by Assumption 4 and standard arguments,
supθ∈N ‖I∗N (θ)− I(θ)‖ p→ 0. Combining the above proves that wpa1-P̃0,

(B.3) sup
θ∈N

∥∥∥Î∗N (θ)− I(θ)
∥∥∥ = oP ∗N (1).

Under Assumptions 3(i)-(ii), standard second order Taylor expansion arguments assure that
for any ε > 0,

(B.4) sup
θ∈N

P ∗θ

(∣∣∣∣Λ∗N (θ + h/
√
N |θ

)
− h′S∗N (θ) + 1

2h
′Î∗N (θ)h

∣∣∣∣ > ε

)
p→ 0.

The above implies

(B.5) P ∗N

(∣∣∣∣Λ∗N ( ¯̂
θ|θN

)
+ h′S∗N (θN ) + 1

2h
′Î∗N (θN )h

∣∣∣∣ > ε

)
p→ 0.

Combined with (B.3), I have thus shown the following: wpa1-P̃0,

(B.6) Λ∗N
( ¯̂
θ|θN

)
= −h′S∗N (θN )− 1

2h
′I(θ0)h+ oP ∗N (1).

This proves the first claim of the lemma.
The limiting distribution of S∗N (θN ) under P ∗N can be ascertained using the Lindberg-Feller

central limit theorem for triangular arrays. Indeed, ψ∗N,i(.) is mean zero and uniformly bounded
by Assumptions 3(i)-(ii), which implies the Lyapunov condition is trivially satisfied. The boot-
strap variance of ψ∗N,i(.) is also simply I∗(θN ). Thus by the arguments leading to (B.3), I
obtain

(B.7) L∗N (S∗N (θN )) p→ L(v2)

with v2 ∼ N(0, I(θ0)). From (B.6) and (B.7), it follows by an application of Le Cam’s first
lemma that P ∗N and P ∗ are mutually contiguous, wpa1-P̃0.

I shall now prove that wpa1-P̃0,

(B.8)
∥∥∥θ̂∗ − ¯̂

θ
∥∥∥ = oP ∗(1).

I shall show P ∗
(∥∥∥θ̂∗ − θ0

∥∥∥ > ε
)

p→ 0 for any ε > 0. Since ¯̂
θ → θ0 a.s-P̃0, this proves (B.8). To

this end it suffices to verify the conditions for the consistency result of Newey and McFadden
(1994, Theorem 2.7). Note that each summand within L(θ|W∗,X∗) is uniformly bounded wpa1-
P̃0 (due to Assumptions 3(i)-(ii) and 5(ii)); hence standard arguments using Markov’s inequality
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assure that wpa1-P̃0,
1
N
L(θ|W∗,X∗)− 1

N
E∗ [L(θ|W∗,X∗)] = oP ∗(1).

Now it is possible to expand

1
N
E∗ [L(θ|W∗,X∗)] = 1

N

N∑
i=1

A1N,i(θ),

where

A1N,i(θ) = F
(
X ′i

¯̂
θ
)

lnF
(
X ′iθ

)
+
(
1− F

(
X ′i

¯̂
θ
))

ln
(
1− F

(
X ′iθ

))
.

The uniform law of large numbers, together with the fact ¯̂
θ → θ0 a.s-P̃0, assures

1
N

N∑
i=1

A1N,i(θ)
p→ E0

[
F
(
X ′iθ0

)
lnF

(
X ′iθ

)
+
(
1− F

(
X ′iθ0

))
ln
(
1− F

(
X ′iθ

))]
≡M(θ).

I have thus shown that pointwise for each θ,
1
N
L(θ|W∗,X∗) = M(θ) + oP ∗(1),

wpa1-P̃0. Clearly M(θ) is concave. Furthermore, since E0[XiX
′
i] is positive definite, θ0 is the

unique maximiser ofM(θ) (see Newey and McFadden, 1994, Example 2.1 in p.2125). Combining
the above, it can be noted that all the conditions for applying Theorem 2.7 of Newey and
McFadden (1994) are verified. This proves (B.8).

I can now prove the second claim of the lemma. Using (B.8) and Assumption 3(ii) (finite
second derivatives for F (.)), the usual linearization arguments can be applied show that wpa1-P̃0,

√
N
(
θ̂∗ − ¯̂

θ
)

= Î∗N

( ¯̂
θ
)−1

S∗N

( ¯̂
θ
)

+ oP ∗(1).

Contiguity, proven earlier, then gives

(B.9)
√
N
(
θ̂∗N − θN

)
= −h+ Î∗N

( ¯̂
θ
)−1

S∗N

( ¯̂
θ
)

+ oP ∗N (1),

wpa1-P̃0. Using (B.4) and (B.3), together with Assumption 4 (which implies I(.) is continuous
on N ), I adapt the arguments of Bickel et al (1998, Proposition 2.1.2) to show that wpa1-P̃0,∥∥∥S∗N (θN )− S∗N

( ¯̂
θ
)
− Î∗N

( ¯̂
θ
)
h
∥∥∥ = oP ∗N (1).

Substituting the above in (B.9), and using (B.3) proves (B.2), the second claim of the lemma. �

Lemma 2. Under Assumptions 1-5 and θN → θ0 a.s-P̃0, it holds
∣∣∣T ∗N (θN )− T̃ ∗N (θN )

∣∣∣ = oP ∗N (1),
wpa1-P̃0.

Proof. Define %∗N,i(θN ) = ε∗i (θN )− ε̃∗i (θN ), and observe that

T ∗N (θN )− T̃ ∗N (θN ) = 1√
N

N∑
i=1

{
%∗N,i(θN )− E∗[%∗N,i(θN )]

}
.

Hence, I obtain
E∗
∣∣∣T ∗N (θN )− T̃ ∗N (θN )

∣∣∣2 ≤ E∗ ∣∣∣%∗N,i(θN )
∣∣∣2 ≡ AN .
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I can further bound AN ≤ 2(A1N +A
(0)
2N +A

(1)
2N ), where, for w = 0, 1

A1N = E∗
∣∣∣ê1S∗i (θN )− e1S∗i (θN )

∣∣∣2 , and

A
(w)
2N = E∗

∣∣∣ν̂S∗i (w; θN )− νS∗i (w; θN )
∣∣∣2 .

By Assumption 5, standard arguments assure A1N
p→ 0 under P̃0. Consequently I focus on

the term A
(1)
2N . By the definition of K̃M (i;w, θ), there exists some constant C <∞ for which

A
(1)
2N ≤ C

{
1 + sup

1≤i≤N
K2
M (i; θN )

}
× 1
N

N∑
i=1

{
e2J1(i)(1; θN )− ê2J1(i)(1; θN )

}2

≡ Γ1N × Γ2N .

By Lemma 6 in Appendix C , Γ1N = op(N ξ/2) under P̃0 for any ξ arbitrarily small. Next
consider the term Γ2N : The maximum number of times an observation i is used as a secondary
match is bounded by the matching function for the nearest neighbor matching, given by KNN(i).
Consequently,

Γ2N ≤
{

1 + sup
1≤i≤N

KNN(i)
}

sup
θ∈N

1
N

N∑
i=1
{ê2i(1; θ)− e2i(1; θ)}2 .

Now, by Abadie and Imbens (2006, Lemma 3), sup1≤i≤N KNN(i) = op(N ξ/2) under P̃0 for any ξ
arbitrarily small. Combined with Assumption 5, this assures Γ2N = Op(N−ξ/2) under P̃0. Taken
together, the above imply A(1)

2N
p→ 0. Analogous arguments for w = 0 similarly imply A(0)

2N
p→ 0.

This completes the proof of the lemma. �

Lemma 3. Under Assumptions 1-5 and θ̄N → θ0, it holds V1(h, θ̆N ) = oP̄N
(1).

Proof. I first note that

Ē∗N

[(
t1γ
∗
i (θ̄N ; θ̆N

) (
t′2α
∗
i (θN )

)]
= Ē∗N

[(
t1ε̃
∗
N,i(θ̄N ; θ̆N )

) (
t′2α
∗
i (θ̄N )

)]
since α∗i is mean zero under Ē∗N [.]. Decompose

ε̃∗N,i(θ̄N ; θ̆N ) = e1S∗i (θ̄N ) +W ∗i νS∗i (1; θ̄N )− (1−W ∗i )νS∗i (0; θ̄N ).

Now based on the bootstrap DGP it is straightforward to verify Ē∗N
[
e1S∗i (θ̄N )

(
t′2α
∗
i (θ̄N )

)]
= 0.

Hence the claim follows if I show that

Q
(1)
N (θ̄N ) ≡ Ē∗N

[(
W ∗i νS∗i (1; θ̄N )

) (
t′2α
∗
i (θ̄N )

)]
= oP̄N

(1);

Q
(0)
N (θ̄N ) ≡ Ē∗N

[(
(1−W ∗i )νS∗i (0; θ̄N )

) (
t′2α
∗
i (θ̄N )

)]
= oP̄N

(1).

I show Q
(1)
N (θ̄N ) p→ 0 under P̄N ; that Q(0)

N (θ̄N ) p→ 0 follows by similar reasoning. To this end,
first define the quantity

τ(X ′i θ̄N ) = t1t
′
2h
(
Xiθ̄N ; θ̄N

)
f
(
X ′i θ̄N

)
.

Due to Assumption 3(i), which implies X∗i is bounded, it follows h(.; θ̄N ) is uniformly bounded
over its domain for all θ̄N . Combined with Assumption 3(ii) (boundedness of f(.)), this implies
τ(X ′i θ̄N ) ≤ C <∞ uniformly in both i and N .
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Taking the bootstrap expectations, I obtain after some algebra

Q
(1)
N (θ̄N ) = 1

N

N∑
i=1

τ(X ′i θ̄N )
(

1 + K̃M (i; 1, θ̄N )
M

)
e2J1(i)

(
1; θ̄N

)
.

I can decompose Q(1)
N (θ̄N ) further as

Q
(1)
N (θ̄N ) = 1

N

N∑
i=1

ϑ(3)N,i + 1
N

N∑
i=1

ϑ(4)N,i ≡ Q
(1)
3N (θ̄N ) +Q

(1)
4N (θ̄N ),

where

ϑ(3)N,i = τ(X ′i θ̄N )
(

1 + K̃M (i; 1, θ̄N )
M

)
e3J1(i)

(
1; θ̄N

)
;

ϑ(4)N,i = τ(X ′i θ̄N )
(

1 + K̃M (i; 1, θ̄N )
M

)
e4J1(i)

(
1; θ̄N

)
.

First consider the term Q
(1)
4N (θ̄N ): For each i, ĒN [ϑ(4)N,i|W,X,U] = 0 due to the defini-

tion of e4i(.). Furthermore, I also have ĒN [ϑ(4)N,iϑ(4)N,,j |W,X,U] = 0 for all i, j for which
J1(i) 6= J1(j). Denoting Sk = {i ∈ {1, . . . , N} : J1(i) = k}, I note that the cardinal-
ity of Sk is bounded by KNN(k). Hence it follows that the number of pairs (i, j) for which
ĒN [ϑ(4)N,iϑ(4)N,,j |W,X,U] 6= 0 is bounded above by N sup1≤k≤N KNN(k). Now by Assumption
3(v) (which assures supxE0[Y 4|X = x] ≤ C <∞), it follows sup1≤i≤N ĒN

[
|e4i(1; θ)|2 |W,X,U

]
≤

C < ∞ uniformly over θ ∈ N (note that U is independent of Y1,Y0 by definition). Thus, by
the Markov inequality and the boundedness of τ(.), there exists some C1 <∞for which

ĒN

[{
Q

(1)
4N (θ̄N )

}2
|W,X,U

]
≤ C1N

−1
{

1 + sup
1≤i≤N

KNN(i)
}{

1 + sup
1≤i≤N

K̃2
M (i; 1, θ̄N )

}

= C1N
−1
{

1 + sup
1≤i≤N

KNN(i)
}{

1 + sup
1≤i≤N

K2
M (i; θ̄N )

}
.

Using the result of Abadie and Imbens (2006, Lemma 3), ĒN [sup1≤i≤N K
r
NN(i)] = O(N ξ) for any

finite r, and some ξ > 0 arbitrarily small. Taking a further expectation on both sides of the above
equation and employing Lemma 6, together with Holder’s inequality, gives ĒN

[{
Q

(1)
4N (θ̄N )

}2
]

=

O(N−(1−ξ)) for some ξ > 0 arbitrarily small. This proves Q(1)
4N (θ̄N ) = oP̄N

(1).
Next consider the term Q

(1)
3N (θ̄N ). First I successively approximate this term by the quantities

Q
(1)
31N (θ̄N ), Q(1)

32N (θ̄N ), where

Q
(1)
31N (θ̄N ) = 1

N

N∑
i=1

ϑ(31)N,i; ϑ(31)N,i = τ(X ′i θ̄N )
(

1 + K̃M (i; 1, θ̄N )
M

)
e3i
(
1; θ̄N

)
;

Q
(1)
32N (θ̄N ) = 1

N

N∑
i=1

ϑ(32)N,i; ϑ(31)N,i = τ(X ′i θ̄N )
(

1 + K̄M (i; 1, θ̄N )
M

)
e3i
(
1; θ̄N

)
;
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In the first case, by Lemma 6,∣∣∣Q(1)
3N (θ̄N )−Q(1)

31N (θ̄N )
∣∣∣ ≤ C {1 + sup

1≤i≤N
KM (i; θ̄N )

}
max

1≤i≤N

∣∣∣e3J1(i)(1; θ̄N )− e3i(1; θ̄N )
∣∣∣

= OP̄N
(N ξ) · max

1≤i≤N

∣∣∣e3J1(i)(1; θ̄N )− e3i(1; θ̄N )
∣∣∣ .

The last term can in turn be bounded as

max
1≤i≤N

∣∣∣e3J1(i)(1; θ̄N )− e3i(1; θ̄N )
∣∣∣

≤ max
1≤i≤N

∣∣∣µ̄(1;XJ1(i))− µ̄(1;Xi)
∣∣∣+ max

1≤i≤N

∣∣∣µ (1;F (X ′J1(i)θ̄N ); θ̄N
)
− µ

(
1;F (X ′i θ̄N ); θ̄N

)∣∣∣
≤ max

1≤i≤N

∥∥∥XJ1(i) −Xi

∥∥∥ = OP̄N
(N−1/k),

where the first inequality follows by Assumption 3(i)-(ii); the third by Assumption 3(v) (which
implies Lipschitz continuity of µ̄(1; .) and µ(1; .; θ̄N ) uniformly over θ̄N ∈ N ); and the fi-
nal step follows by the results of Abadie and Imbens (2006, Lemma 2) on the bias of near-
est neighbor matching. This proves

∣∣∣Q(1)
31N (θ̄N )−Q(1)

32N (θ̄N )
∣∣∣ p→ 0 under P̄N . I now argue∣∣∣Q(1)

31N (θ̄N )−Q(1)
32N (θ̄N )

∣∣∣ p→ 0 under P̄N : Observe that Q(1)
32N (θ̄N ) = ĒN [Q(1)

31N (θ̄N )|W,X] (the
expectation being taken over U, conditional on W,X). But conditional on W,X, the random
variables {Ui : 1 ≤ i ≤ N} are all independent of each other. Hence, by standard arguments in-
volving the Markov inequality, together with Lemma 6 (i.e, ĒN

[
sup1≤i≤N K

2
M (i; θ̄N )

]
= o(N δ))

and Assumption 3, (which implies τ(X ′i θ̄N ) <∞ and |e3i(1; θ̄N )| <∞ uniformly in i and N), it
follows

∣∣∣Q(1)
31N (θ̄N )−Q(1)

32N (θ̄N )
∣∣∣ = oP̄N

(1).

It now remains to obtain the probability limit wrt P̄N of Q(1)
32N (θ̄N ). Exploiting the definition

of K̄M (i; 1, θ̄N ) and reordering the variables in the summation gives

Q
(1)
32N (θ̄N ) = 1

N

∑
Wj=1

τ(X ′j θ̄N )
(

1 + KM (j; θ̄N )
M

)
e3j
(
1; θ̄N

)

+ 1
N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)
1

N1(l(j))


∑

i∈S0(l(j);θ̆N)
τ(X ′i θ̄N )e3i

(
1; θ̄N

)
≡ A(1)

N (θ̄N ) +B
(1)
N (θ̄N ).

Conditional on W,X′θ̄N , the summands within A(1)
N (θ̄N ) are mean zero and uncorrelated. Hence

using Assumption 3 and Lemma 6, standard arguments assure A(1)
N (θ̄N ) = oP̄N

(1). Next, con-
sider the term B

(1)
N (θ̄N ): Suppose for simplicity that N/qN is integer valued so that N(l) = N/qN

for all l. I shall successively approximate B(1)
N (θ̄N ) by B(1)

1N (θ̄N ) and B(1)
2N (θ̄N ),13 where

B
(1)
1N (θ̄N ) = 1

N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)
1

F (X ′j θ̄N )

qNN
∑

i∈S0(l(j);θ̆N)
τ(X ′i θ̄N )e3i

(
1; θ̄N

) ;

13Note the difference in summation between the two terms.
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and

B
(1)
2N (θ̄N ) = 1

N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)
1

F (X ′j θ̄N )

qNN
∑

i∈S0(l(j);θ̄N)
τ(X ′i θ̄N )e3i

(
1; θ̄N

) .
I first show that

(B.10)
∣∣∣B(1)

N (θ̄N )−B(1)
1N (θ̄N )

∣∣∣ p→ 0.

Indeed a straightforward consequence of Lemma 9 and Assumption 3 (which implies F−1(.) is
Lipschitz continuous and Xi is uniformly bounded) is that

sup
1≤j≤N

∣∣∣∣ N(l(j))
N1(l(j)) − F

−1(X ′j θ̄N )
∣∣∣∣

≤ sup
1≤j≤N

∣∣∣∣ N(l(j))
N1(l(j)) − F

−1
(
X ′j θ̆N

)∣∣∣∣+ sup
1≤j≤N

∣∣∣F−1(X ′j θ̄N )− F−1
(
X ′j θ̆N

)∣∣∣ = oP̄N
(1).

Combining the above result with Lemma 6, and the fact τ(X ′i θ̄N ), |e3i(1; θ̄N )| are uniformly
bounded, proves (B.10). Next, I show that

(B.11)
∣∣∣B(1)

1N (θ̄N )−B(1)
2N (θ̄N )

∣∣∣ = oP̄N
(1).

Let
∆(l; θ̄N ) ≡ S0(l; θ̆N )4 S0(l; θ̄N ),

where C 4D denotes the symmetric difference between any two sets C,D. Lemma 10 assures

(B.12) P̄N

(
max

1≤l≤qN

#∆(l; θ̄N ) ≥ N (1+δ)/2
)
≤ qN exp(−N δ)→ 0

for any δ > 0 arbitrarily small (where #C denotes the cardinality of a set C). Combined with
the boundedness property of τ(X ′i θ̄N ) and |e3i(1; θ̄N )| , (B.12) implies∣∣∣B(1)

1N (θ̄N )−B(1)
2N (θ̄N )

∣∣∣ = OP̄N

(
qN

N (1−δ)/2

)
× 1
N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)
1

F (X ′j θ̄N )

= OP̄N

(
qN

N (1−δ)/2

)
×OP̄N

(1) = oP̄N
(1),

where the first equality follows from Lemma 6 and Assumption 3; and the final equality follows
by Assumption 6. I have thus shown (B.11).

To complete the proof of the Lemma it remains to show

(B.13) B
(1)
2N (θ̄N ) = oP̄N

(1).

Let ρN,i = τ(X ′i θ̄N )e3i(1; θ̄N ). For each l, the collection of random variables {ρN,i : i ∈ S0(l; θ̄N )}
are mean zero and uncorrelated conditional on X′θ̄N . Furthermore, wpa1-P̄N ,

#S0(l(j); θ̄N ) ≤ N

qN
+ max

1≤l≤qN

#∆(l; θ̄N ) ≤ N

qN
+N (1+δ)/2.

41



Hence for each ε > 0, by the Markov inequality

P̄N

 max
1≤l≤qN

∣∣∣∣∣∣qNN
∑

i∈S0(l;θ̄N )

ρN,i

∣∣∣∣∣∣ ≥ ε
 ≤ qN∑

l=1
P̄N

∣∣∣∣∣∣qNN
∑

i∈S0(l;θ̄N )

ρN,i

∣∣∣∣∣∣ ≥ ε


= O

(
q2
N

N
+ q2

N

N (3−δ)/2

)
= o(1).

This, combined with the fact

1
N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)
1

F (X ′j θ̄N )
= OP̄N

(1),

immediately proves (B.13). �

Lemma 4. Under Assumptions 1-5 and θ̄N → θ0, it holds V2(h, θ̆N ) = t21σ
2 + oP̄N

(1).

Proof. For the remainder of this proof I shall denote pi,N = F (X ′i θ̄N ). Additionally, for a = 3, 4
I set

φ(a)i(w; θ) = (2w − 1)ν(a)i(w; θ).

First, note that Ē∗N
[
ε̃∗i (θ̄N ; θ̆N )

]
= oP̄N

(1). Indeed this follows by a similar argument as in the

proof of Lemma 3. Hence it suffices to show that Ē∗N
[
ε̃∗2i

(
θ̄N ; θ̆N

)]
= σ2 +oP̄N

(1). To this end,
I decompose

(B.14) ε̃∗i (θ̄N ; θ̆N ) = e1S∗i (θ̄N ) + φ(3)S∗i (W ∗i ; θ̄N ) + φ(4)S∗i (W ∗i ; θ̄N ),

and determine the probability limits of all the squared and cross product terms in (B.14), after
taking the bootstrap expectation.

I begin with the probability limit of Ē∗N
[
φ2

(4)S∗i

(
W ∗i ; θ̄N

)]
under P̄N . Note that

Ē∗N

[
φ2

(4)S∗i

(
W ∗i ; θ̄N

)]
= 1
N

N∑
i=1

pi,N

(
1 + K̃M (i; 1, θ̄N )

M

)2

e2
4J1(i)

(
1; θ̄N

)

+ 1
N

N∑
i=1

(1− pi,N )
(

1 + K̃M (i; 0, θ̄N )
M

)2

e2
4J0(i)

(
0; θ̄N

)
≡ Γ(1)

N + Γ(0)
N ,

I shall characterize probability limit of Γ(1)
N . That for Γ(0)

N follows by a similar argument.
Recall the definition σ̄2(w,X) = E[Y 2|W = w,X]. I shall first successively approximate Γ(1)

N

by Γ(1)
1N , Γ(1)

2N , where

Γ(1)
1N = 1

N

N∑
i=1

pi,N

(
1 + K̃M (i; 1, θ̄N )

M

)2

σ̄2(1;XJw(i));

Γ(1)
2N = 1

N

N∑
i=1

pi,N

(
1 + K̃M (i; 1, θ̄N )

M

)2

σ̄2(1;Xi).
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In the first instance, I can expand

Γ(1)
N − Γ(1)

1N = 1
N

N∑
i=1

ζN,i,

where
ζN,i = pi,N Ψ̄i(1, θ̄N )

{
e2

4Jw(i)(Wi, θ̄N )− σ̄2(1;XJw(i))
}
.

Clearly ĒN [ζN,i|W,X,U] = 0 and ĒN [ζN,iζN,j |W,X,U] = 0 for all i, j such that J1(i) 6= J1(j).
Consequently by similar arguments14 as in the proof of Lemma 3, it follows

∣∣∣Γ(1)
N − Γ(1)

1N

∣∣∣ =

oP̄N
(1). Additionally, I can also show

∣∣∣Γ(1)
1N − Γ(1)

2N

∣∣∣ = oP̄N
(1) by similar arguments15 as that used

in the proof of Lemma 3 (note that by Assumption 3(v), σ̄2(1; .) is Lipschitz continuous and
uniformly bounded).

It now remains to obtain the probability limit wrt P̄N of Γ(1)
1N . By paralleling some of the

steps16 in the proof of Lemma 3, it follows∣∣∣Γ(1)
2N − Γ(1)

3N

∣∣∣ = oP̄N
(1),

where

Γ(1)
3N = 1

N

∑
Wj=1

pj,N

(
1 + KM (j; θ̄N )

M

)2

σ̄2(1;Xj)

+ 1
N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)2 1
pj,N

qNN ∑
i∈S0(l(j);θ̄N )

pi,N σ̄
2(1;Xi)

 .
Define

Γ(1)
4N = 1

N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)2

m1
(
pj,N ; θ̄N

)
,

where
m1

(
p; θ̄N

)
= ĒN

[
σ̄2(1;X)|F (X ′i θ̄N ) = p

]
.

I now show

(B.15)
∣∣∣Γ(1)

3N − Γ(1)
4N

∣∣∣ = oP̄N
(1).

To this end, I define an intermediate variable:

Γ(1)
31N = 1

N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)2

pj,N ·m1
(
pj,N ; θ̄N

)

+ 1
N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)2 1− pj,N
pj,N

 1
N0
(
l(j); θ̄N

) ∑
i∈S0(l(j);θ̄N )

pi,N ·m1
(
pi,N ; θ̄N

) .

14Specifically, the ones used to prove Q(1)
4N (θ̄N ) p→ 0.

15Specifically, the ones used to prove
∣∣∣Q(1)

3N (θ̄N )−Q(1)
31N (θ̄N )

∣∣∣ = oP̄N
(1).

16Precisely, the steps leading to
∣∣∣Q(1)

31N (θ̄N )−Q(1)
32N (θ̄N )

∣∣∣ = oP̄N
(1), followed by reordering of the terms in

Q
(1)
32N (θ̄N ), and finally succesive approximations of B(1)

N (θ̄N ) with B(1)
1N (θ̄N ) and B(1)

2N (θ̄N ).
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By Lemmas 9 and 10, and Assumption 6, there exists some c > 0 for which it holds

(B.16) min
1≤l≤qN

N0
(
l(j); θ̄N

)
≥ min

1≤l≤qN

N0(l)−N (1+δ)/2 ≥ cN/qN ,

with probability approaching one under P̄N . The same lemmas together with Assumptions 3,6
also assure

sup
1≤j≤N

∣∣∣∣∣∣
qNN0

(
l(j); θ̄N

)
N

− (1− pj,N )

∣∣∣∣∣∣ ≤ sup
1≤j≤N

∣∣∣∣∣∣
qNN0

(
l(j); θ̄N

)
N

−
(
1− F (X ′j θ̆)

)∣∣∣∣∣∣+ oP̄N
(N−

1
2 )

≤ sup
1≤j≤N

∣∣∣∣∣∣
qNN0

(
l(j); θ̆N

)
N

−
(
1− F (X ′j θ̆)

)∣∣∣∣∣∣+ oP̄N

(
qN

N (1−δ)/2 +N−
1
2

)
= oP̄N

(1).

Additionally, by the usual arguments based on the Markov inequality, and employing (B.16)
together with Assumption 6, it follows

P̄N

 max
1≤l≤qN

∣∣∣∣∣∣ 1
N0
(
l; θ̄N

) ∑
i∈S0(l;θ̄N )

pi,N σ̄
2(1;Xi)−

1
N0
(
l; θ̄N

) ∑
i∈S0(l;θ̄N )

pi,Nm1
(
pi,N ; θ̄N

)∣∣∣∣∣∣ ≥ ε
→ 0.

Combining the above results with the fact

1
N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)2 1
pj,N

= OP̄N
(1),

proves that
∣∣∣Γ(1)

3N − Γ(1)
31N

∣∣∣ = oP̄N
(1). Now, define w1

(
p; θ̄N

)
≡ p ·m1(p; θ̄N ). I can bound∣∣∣Γ(1)

31N − Γ(1)
4N

∣∣∣
≤

 1
N

∑
Wj=1

1− pj,N
pj,N

(
1 + KM (j; θ̄N )

M

)2
 max

1≤l≤qN

max
i,j∈S0(l;θ̄N )

∣∣∣w1
(
pi,N ; θ̄N

)
− w1

(
pj,N ; θ̄N

)∣∣∣
= OP̄N

(1) · max
1≤l≤qN

max
i,j∈S0(l;θ̄N )

∣∣∣w1
(
pi,N ; θ̄N

)
− w1

(
pj,N ; θ̄N

)∣∣∣
≤ OP̄N

(1) · max
1≤l≤qN

max
i,j∈S0(l;θ̄N )

|pi,N − pj,N |

≤ OP̄N
(1) · max

1≤l≤qN

∣∣∣πl−1(θ̆N )− πl(θ̆N )
∣∣∣ = oP̄N

(1),

where the first equality follows by Assumption 3(i)-(iii) together with Lemma 6; the second
inequality follows by the uniform Lipschitz continuity of m1

(
.; θ̄N

)
(Assumption 3(v)); the

third inequality follows by the definition of S0(l; θ̄N ); and the final equality follows by Lemma
8. I have thus shown (B.15).

Now, the probability limit of Γ(1)
4N under P̄N can be obtained by the techniques of Abadie

and Imbens (2016) (See also Lemmas (14)-(16) in appendix D). The probability limit of Γ(0)
4N

under P̄N is obtained analogously. Combining the expressions gives the probability limit of
Ē∗N

[
φ2

(4)S∗i

(
W ∗i ; θ̄N

)]
, which is equivalent to that obtained in Abadie and Imbens (2016).
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Next consider the term Ē∗N

[
φ2

(3)S∗i

(
W ∗i ; θ̄N

)]
. As before I can decompose

Ē∗N

[
φ2

(3)S∗i

(
W ∗i ; θ̄N

)]
= 1
N

N∑
i=1

pi,N

(
1 + K̃M (i; 1, θ̄N )

M

)2

e2
3J1(i)

(
1; θ̄N

)

+ 1
N

N∑
i=1

(1− pi,N )
(

1 + K̃M (i; 0, θ̄N )
M

)2

e2
3J0(i)

(
0; θ̄N

)
≡ ∆(1)

N + ∆(0)
N .

Consider the term ∆(1)
N : By similar arguments as in Lemma 3,

max
1≤i≤N

∣∣∣e3J1(i)(1; θ̄N )− e3i(1; θ̄N )
∣∣∣ = OP̄N

(N−1/k).

Together with Lemma 6, the above assures
∣∣∣∆(1)

N −∆(1)
1N

∣∣∣ = oP̄N
(1), where

∆(1)
1N = 1

N

N∑
i=1

pi,N

(
1 + K̃M (i; 1, θ̄N )

M

)2

e2
3i

(
1; θ̄N

)
.

Now the probability limit of ∆(1)
1N can be analyzed the same arguments as that employed for

Γ(1)
1N . Doing so gives the probability limit for Ē∗N

[
φ2

(3)S∗i

(
W ∗i ; θ̄N

)]
under P̄N , which is again

equivalent to the corresponding expression in Abadie and Imbens (2016).
Finally, it is straightforward to obtain the probability limit of Ē∗N [e2

1S∗i
(θ̄N )] under P̄N using

standard methods. Taken together I can show

Ē∗N [e2
1S∗i

(θ̄N )] + Ē∗N

[
φ2

(4)S∗i

(
W ∗i ; θ̄N

)]
+ Ē∗N

[
φ2

(3)S∗i

(
W ∗i ; θ̄N

)]
= σ2 + oP̄N

(1).

It only remains to verify that the bootstrap expectation of the cross product terms in (B.14)
converge in probability to 0 under P̄N . Consider, for instance,

ΦN ≡ Ē∗N
[
φ(3)i(W ∗i ; θ̄N ) · φ(4)i(W ∗i ; θ̄N )

]
.

Taking the bootstrap expectations, I observe ΦN = Φ(1)
N + Φ(0)

N , where

Φ(1)
N = 1

N

N∑
i=1

pi,N

(
1 + K̃M (i; 1, θ̄N )

M

)2

e3J1(i)(1; θ̄N )e4J1(i)(1; θ̄N ),

and a similar expression holds for Φ(0)
N . Denoting

%N,i = pi,N

(
1 + K̃M (i; 1, θ̄N )

M

)2

e3J1(i)(1; θ̄N )e4J1(i)(1; θ̄N ),

I note that ĒN [%N,i|W,X,U] = 0 and ĒN [%N,i%N,j |W,X,U] = 0 for all i, j such that J1(i) 6=
J1(j). Consequently, by similar arguments as in the proof of Lemma 3, it follows Φ(1)

N
p→ 0 under

P̄N . By symmetry, I also have Φ(0)
N

p→ 0 under P̄N , implying ΦN = oP̄N
(1). Some more algebra

on the usual lines shows that the remaining cross product terms also converge in probability to
0 under P̄N . This completes the proof of the lemma. �

Lemma 5. Under Assumptions 1-5 and θ̄N → θ0, it holds V3(h, θ̆N ) = 2t1c′t2 + oP̄N
(1).
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Proof. For the course of this proof set h(.; θ̄N ) as hN (.). Furthermore, to simplify the algebra I
again employ the notation (first introduced in the proof of Lemma 4)

φ(a)i(w; θ) = (2w − 1)ν(a)i(w; θ).

By the construction of the bootstrap DGP, it follows V3(h, θ̆N ) = Ē∗N

[(
t1ε
∗
i (θ̄N ; θ̆N )

) (
t′2β
∗
i (θ̄N )

)]
since Ē∗N [β∗i (θ̄N )] = 0. I then decompose the term ε∗i (θ̄N ; θ̆N ) as in equation (B.14) and deter-
mine the probability limits of the bootstrap expectations of the resulting terms.

First, taking the bootstrap expectations it can be verified Ē∗N
[
e1S∗i (θ̄N ) · t′2β∗i (θ̄N )

]
= 0. At

the end of the proof I show that

(B.17) Ē∗N

[
φ(4)i(W ∗i ; θ̄N ) · t′2β∗i (θ̄N )

]
= oP̄N

(1).

Hence it suffices for the claim to prove

Ē∗N

[
φ(3)i(W ∗i ; θ̄N ) · t′2β∗i (θ̄N )

]
= t′2c+ oP̄N

(1).

Taking the bootstrap expectations, I obtain

Ē∗N

[
φ(3)i(W ∗i ; θ̄N ) · t′2β∗i (θ̄N )

]
= T

(1)
N + T

(0)
N ,

where for w = 0, 1,

T
(w)
N = 1

N

N∑
i=1

f
(
Xi
′θ̄N

)
t′2

{
Xi − hN

(
Xi
′θ̄N

)}(
1 + K̃M (i;w, θ)

M

)
e3Jw(i)(w; θ).

Let me now denote

T
(w)
1N = 1

N

N∑
i=1

f
(
X ′i θ̄N

)
t′2

{
Xi − hN

(
X ′i θ̄N

)}(
1 + K̃M (i;w, θ̄N )

M

)
e3i(w; θ̄N ).

Using the properties of nearest neighbor matching, I can employ similar arguments as in the
proof of Lemma (3) to show that for w = 0, 1,∣∣∣T (w)

N − T (w)
1N

∣∣∣ = oP̄N
(1).

Thus the probability limit under P̄N of Ē∗N
[
φ(3)i(W ∗i ; θ̄N ) · t′2β∗i (θ̄N )

]
is equivalent to that of

T
(1)
1N + T

(0)
1N . The latter in turn can be obtained by following similar arguments as in the proof

of Lemma 4. Hence, after some algebra I obtain T (1)
1N + T

(0)
1N = t′2c+ oP̄N

(1).
It only remains now to show (B.17). Taking the bootstrap expectation gives

Ē∗N

[
φ(4)i(W ∗i ; θ̄N ) · t′2β∗i (θ̄N )

]
= V

(1)
N + V

(0)
N ,

where for w = 0, 1,

V
(w)
N = 1

N

N∑
i=1

f
(
X ′i θ̄N

)
t′2

{
Xi − hN

(
X ′i θ̄N

)}
ν(4)i(w; θ̄N ) ≡ 1

N

N∑
i=1

σN,i.

By law of iterated expectations ĒN [σN,i|W,X,U] = 0 and ĒN [σN,iσN,j |W,X,U] = 0 for all
i, j such that Jw(i) 6= Jw(j). Consequently by similar arguments as in the proof of Lemma 3,
it follows V (w)

N = oP̄N
(1) for w = 0, 1. This concludes the proof of the lemma. �
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Appendix C. Additional Lemmas

I use the same notation as in Appendices A and B.

Lemma 6. Suppose that Assumptions 1-3 hold . Then for any q < ∞ and δ arbitrarily small,
it holds that uniformly in N ,

sup
θ∈N

Ēθ [|KM (i; θ)|q] <∞,

and
sup
θ∈N

Ēθ

[
sup

1≤i≤N
|KM (i; θ)|q

]
= o(N δ).

Proof. The first claim follows by similar arguments as in Abadie and Imbens (2016, Lemma S.8),
after employing Lemma 11 (in particular the second statement) and Lemma 12. The second claim
follows by paralleling the arguments of Abadie and Imbens (2006, Additional proofs p.23). �

Let N denote some neighborhood of θ0 such that Assumptions 1-5 hold for each θ ∈ N .
Additionally let Gw,θ(.) denote the CDF of the sample propensity score F (X ′θ) conditional on
W = w; and gw,θ(.) the corresponding density function (where it exists). At the same time Gθ(.)
denotes the unconditional CDF of the propensity score F (X ′θ), Qθ(.) ≡ G−1

θ (.) its corresponding
quantile function, and gθ(.) its density function. The empirical CDF of F (X ′θ) is denoted as

Ĝθ(t) = 1
N

N∑
i=1

I{F (X ′iθ) ≤ t),

and the corresponding empirical quantile function as

Q̂θ(p) = inf{t :Ĝθ(t) ≥ p}.

Note that by construction Ĝθ(Q̂θ(p)) = p for any p ∈ (0, 1). To simplify notation I shall employ
the convention Gw,N (.) ≡ Gw,θ̆N

(.), GN (.) ≡ Gθ̆N
(.), Gw(.) ≡ Gw,θ0(.) and G(.) ≡ Gθ0(.) The

other terms gw,N (.), gw(.), gN (.), g(.) and ĜN (.), Q̂N (.) for w = 0, 1 are defined analogously. As
in Appendix B, in what follows I suppress indexing the quantities with the additional label θ̆N .
However it should be implicitly understood that I have replaced ¯̂

θ with θ̆N .

Lemma 7. Suppose that Assumptions 3 hold. Then for any sequence θ̆N such that θ̆N → θ0,

sup
p∈(0,1)

∣∣∣Q̂N (p)−Q(p)
∣∣∣ = oP̄N

(1).

Proof. I first show that

(C.1) sup
t∈[0,1]

∣∣∣Ĝθ(t)−G(t)
∣∣∣ = oP̄N

(1).

Consider the class of functions G ≡ {x′θ; θ ∈ N} (here x denotes the functional argument).
Observe that G is finite dimensional, being a subset of the space of all linear combinations of
e1(x), . . . , ek(x): the (linear) functions corresponding to each axis in the Euclidean Rk space.
By the results of Pollard (2012), this implies that the class of all sets of the form {x :x′θ ≤ t}
for θ ∈ N and t ∈ R is a VC class; equivalently, so is the class of sets {x :F (x′θ) ≤ t} a VC
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class for θ ∈ N and t ∈ R, since F (.) is strictly monotone. Hence, by the uniform law of large
numbers for VC class sets (see Pollard, 2012; also Vapnik and Chervonenkis, 1971), I obtain

sup
θ∈N ; t∈[0,1]

∣∣∣Ĝθ(t)−Gθ(t)∣∣∣ = oP̄N
(1).

By the fact θ̆N → θ0, together with Assumption 3(i)-(ii),

sup
t∈[0,1]

|GN (t)−G(t)| → 0.

Combining the above immediately proves (C.1).
Using (C.1), and recalling that ĜN

(
Q̂N (q)

)
= q, I have

sup
q∈(0,1)

∣∣∣q −G (Q̂N (q)
)∣∣∣ = sup

q∈(0,1)

∣∣∣ĜN (Q̂N (q)
)
−G

(
Q̂N (q)

)∣∣∣→ 0.

NowQ(.) ≡ G−1(.) is uniformly continuous on (0, 1) by virtue of the fact - implied by Assumption
3(iii) - that G(.) is strictly increasing and continuous on its interval valued support. Hence it
follows from the previous display equation that

sup
q∈(0,1)

∣∣∣Q(q)− Q̂N (q)
∣∣∣ = oP̄N

(1),

as claimed in the Lemma. �

Lemma 8. Suppose that Assumptions 3,7 hold. Then for any sequence θ̆N such that θ̆N → θ0,

max
1≤l≤qN

∣∣∣πl−1(θ̆N )− πl(θ̆N )
∣∣∣ = oP̄N

(1) .

Proof. Note that π1(θ̆N ), . . . , πqN (θ̆N ) are obtained by evaluating the quantile function Q̂N (.) at
the values {1/qN , 2/qN , . . . , qN − 1/qN}. The claim is thus a straightforward consequence of the
previous lemma together with uniform continuity of Q(.) and qN →∞. �

Lemma 9. Suppose that Assumptions 3,6 hold. Then for any sequence θ̆N such that θ̆N → θ0,
there exists some universal constant c > 0 for which

P̄N

(
min

1≤l≤qN

Nw(l) ≥ c N
qN

)
≥ 1− o

(
q2
N

N

)
for w = 0, 1. Furthermore,

max
1≤j≤N

∣∣∣∣N1(l(j))
N(l(j)) − F (X ′j θ̄N )

∣∣∣∣ = oP̄N
(1),

and
max

1≤j≤N

∣∣∣∣∣ N(l(j))
N1(l(j)) −

1
F (X ′j θ̄N )

∣∣∣∣∣ = oP̄N
(1).
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Proof. Assume for simplicity that N/qN is an integer. Then N(l) = N/qN for all l. Now,

P̄N

(
min

1≤l≤qN

Nw(l) ≥ c N
qN

)
= P̄N

(
Nw(l) ≥ c N

qN
for l = 1, . . . qN

)

=
qN∏
l=1

P̄N

(
Nw(l) ≥ c N

qN

)
=

qN∏
l=1

P̄N

qN
N

∑
i∈Sw(l)

Wi ≥ c


≥
(

1− η qN
N

)qN

= 1− o
(
q2
N

N

)
,

where the second equality follows by the iid property of the observations; and the inequality
is based on an application of the Markov inequality after noting ĒN [Wi] = F (X ′i θ̄N ) with
min1≤i≤N F (X ′i θ̄N ) ≥ η for some η > 0 by Assumption 3(i). This proves the first claim of the
lemma.

For each l, let ṗl,N ≡ ĒN [qNN1(l)/N ]. Since both ṗl(j),N and F (X ′j θ̄N ) lie within
[
πl−1(θ̆N )− πl(θ̆N )

]
for some l, by Lemma 8 it suffices for the second claim to show that

(C.2) max
1≤l≤qN

∣∣∣∣qNN1(l)
N

− ṗl,N
∣∣∣∣ = oP̄N

(1).

Fix some ε > 0. By the Markov inequality for each 1 ≤ l ≤ qN ,

P̄N

(∣∣∣∣qNN1(l)
N

− ṗl,N
∣∣∣∣ > ε

)
≤ qN
Nε

.

Hence, by Assumption 6 it follows

P̄N

(
max

1≤l≤qN

∣∣∣∣qNN1(l)
N

− ṗl,N
∣∣∣∣ > ε

)
≤ q2

N

Nε
→ 0.

This proves (C.2), which completes the proof of the second claim of the lemma. The third claim
follows immediately from the second, since by the previous arguments in this proof the events

min
1≤l≤qN

N(l)
N1(l) ≥ c > 0; and min

1≤j≤N
F (X ′j θ̄N ) ≥ η > 0

occur with probability greater than or equal to 1− o
(
q2
N/N

)
under P̄N . �

For w = 0, 1 let ∆w(l; θ̄N ) ≡ Sw(l; θ̆N )4 Sw(l; θ̄N ). Also for any set A, let #A denote the
cardinality of that set.

Lemma 10. Suppose that Assumptions 3,7 hold. Then for any sequence θ̆N such that θ̆N → θ0,
it holds, for w = 0, 1 and some δ > 0 arbitrarily small, that

P̄N

(
max

1≤l≤qN

#∆w(l; θ̄N ) ≥ N (1+δ)/2
)
≤ qN exp(−N δ).

Proof. Without loss of generality I consider the case when w = 1. Define

δN = max
1≤i≤N

∣∣∣F (X ′i θ̄N )− F (X ′i θ̆N )
∣∣∣ .
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By Assumption 3(i)-(iii), δN ≤ C/
√
N for some C <∞. Also let Cl,N denote the set

Cl,N ≡
{
i : πl−1(θ̆N )− δN ≤ F (X ′i θ̆N ) ≤ πl−1(θ̆N ) + δN

∪ πl(θ̆N )− δN ≤ F (X ′i θ̆N ) ≤ πl(θ̆N ) + δN
}
.

Clearly #∆w(l; θ̄N ) ≤ #Cl,N . Represent by $i,l,N the random variable I{i ∈ Cl,N}. By the
bound on δN and the fact g1,N ≤ C2 <∞ uniformly in N (in turn due to Assumption 3(iii), see
Lemma 11), it follows ĒN [$i,l,N ] ≤ C3/

√
N for some C3 < ∞ independent of l, N . Hence for

each l, and some sequence MN � N δ independent of l, I obtain

P̄N
(
#∆w(l; θ̄N ) ≥ N (1+δ)/2

)
≤ P̄N

(
#Cl,N ≥ N (1+δ)/2

)
= P̄N

(
1
N

N∑
i=1

$i,l,N ≥
√
N δ−1

)

≤ P̄N

∣∣∣∣∣ 1
N

N∑
i=1

$i,l,N − ĒN [$i,l,N ]
∣∣∣∣∣ ≥

√
MN

N

 ≤ exp(−MN ),

where the final step follows by Hoeffding’s inequality. But

P̄N

(
max

1≤l≤qN

#∆w(l; θ̄N ) ≥ N (1+δ)/2
)
≤

qN∑
l=1

P̄N
(
#∆w(l; θ̄N ) ≥ N (1+δ)/2

)
;

hence the claim follows immediately through the above arguments. �
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Appendix D. Uniform statements of the results in Abadie and Imbens (2016)

The lemmas in this appendix are based on Abadie and Imbens (2016), which are extended
to apply uniformly over all θ in a neighborhood of θ0. I thus modify the proofs of Abadie and
Imbens (2016) accordingly.

I use the same notation as in Appendices A,B and C. In addition, I employ the following:
Let pi(θ) denote p(X; θ) ≡ F (X ′θ) and pi,N = p(Xi; θ̄N ). Also let q0,θ = E0[1 − F (X ′iθ)]
and q1,θ = E0[F (X ′iθ)] denote the unconditional probabilities that Wi = 0 and Wi = 1 re-
spectively when the propensity score is F (X ′θ). To simplify notation I shall employ the
convention qw,N (.) ≡ qw,θ̄N

and qw ≡ qw,θ0 for w = 0, 1. Finally for w = 0, 1, let Nw,θ ={∑N
i=1 IWi=w; Wi ∼ Bernoulli(F (X ′iθ)

}
. Per convention, let Nw ≡ Nw,θ0 and Nw,N ≡ Nw,θ̄N

.

Lemma 11. Suppose that Assumptions 3 hold. Then: (i) the support of gθ(.) and g(.) lies
within the interval [p, p̄] for some 0 < p < p̄ < 1; (ii) there exist universal constants c and C̄
such that c < supθ∈N (g1,θ(p)/g0,θ(p)) < C̄ uniformly over all p such that gθ(p) 6= 0; and (iii)
there exist universal constants 1 > η̄ ≥ η > 0 such that qw,θ ∈ [η, η̄] uniformly in θ ∈ N .

Proof. That the support of gθ(.) and g(.) is within some interval [p, p̄] follows from the bounded
support assumption for X (Assumption 3(i)), and the fact f(.) is strictly positive and bounded
(Assumption 3(ii)). Additionally, the support condition on X together with Assumption 3(ii)
also ensures existence of universal constants 1 > η̄ ≥ η > 0 such that qw,θ ∈ [η, η̄] uniformly in
θ ∈ N . By the Bayes theorem, g0,θ(p) = (1− p)gθ(p)/q0,θ and g1,θ(p) = pgθ(p)/q1,θ. This proves
the existence of gw,θ(.) for w = 0, 1. Given the support condition for gθ(.) proved already, the
claim c < supθ∈N (g1,θ(p)/g0,θ(p)) < C̄ follows by similar arguments as in the proof of Abadie
and Imbens (2016, Lemma S.2). �

Lemma 12. Suppose that for w = 0, 1, Nw,θ are truncated for values smaller than M and
greater than N −M where N > 2M . Then for any q < ∞ and w = 0, 1 there exists Mq < ∞
such that,

sup
θ∈N

Eθ

[∣∣∣∣∣ NNw,θ

∣∣∣∣∣
q]
≤Mq.

Proof. Observe that Nw,θ is a binomial variable with parameters (N, qw,θ) where qw,θ ∈ [η, η̄]
uniformly in θ ∈ N by Lemma 11. Hence the claim follows by similar arguments as in the proof
of Abadie and Imbens (2016, Lemma S.3). �

Let ξ1:Nw , . . . , ξNw:Nw denote the order statistics for a set of Nw random variables drawn from
the uniform distribution. Denote the interval support of F (X ′θ̄N ) by [aN , bN ].

Lemma 13. Suppose that Assumptions 1-4 hold. Then for any sequence {θ̄N} satisfying θ̄N →
θ0 it holds that under P̄N

(D.1) max
i=1,...,N

∣∣∣G−1
w,N (ξi:Nw)−G−1

w,N (i/Nw)
∣∣∣ = op(1).

Proof. I first prove (D.1). By the fact θ̄N → θ0 and Assumptions 3(i),(ii), it follows that Gw,N (.)
is compactly supported for all N sufficiently large. Furthermore, under the same assumptions,
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it follows

(D.2) sup
p∈R
|Gw,N (p)−Gw(p)| → 0.

By Assumption 3(iii), G−1
w,N (.) exists forN sufficiently large (since gN (.) and consequently gw,N (.)

are strictly positive within an interval support for F (X ′θN ))17. Then

sup
q∈(0,1)

∣∣∣Gw (G−1
w,N (q)

)
− q

∣∣∣ = sup
q∈(0,1)

∣∣∣Gw (G−1
w,N (q)

)
−Gw,N

(
G−1
w,N (q)

)∣∣∣→ 0.

Now G−1
w (.) is uniformly continuous on [0, 1] by virtue of the fact Gw(.) is strictly increasing

and, therefore, continuous on a compact set. Hence, it follows from the above that

(D.3) sup
q∈(0,1)

∣∣∣G−1
w,N (q)−G−1

w (q)
∣∣∣→ 0.

I thus obtain

max
i=1,...,N

∣∣∣G−1
w,N (ξi:Nw)−G−1

w,N (i/Nw)
∣∣∣ = max

i=1,...,Nw

∣∣∣G−1
w (ξi:Nw)−G−1

w (i/Nw)
∣∣∣+ o(1) = oP̄N

(1),

where the second equality follows by similar arguments as in Abadie and Imbens (2016, Lemma
S.4). This proves (D.1). �

Let SN,k denote the probability that observation k (with Wi equal to w say) will be used
as a match for an arbitrary observation from the opposite treatment arm under the propensity
score F (X ′θ̄N ), conditional on both W and all the observations from its own treatment status,
denoted by Xw.

Lemma 14. Suppose that Assumptions 1-4 hold. Further suppose that for all θ ∈ N , the
function lw(p; θ) ≤ C uniformly in both p ∈ R and θ ∈ N . Then under P̄N ,

1
N

N∑
i=1

lw
(
pi,N ; θ̄N

)
KM (i; θ̄N )− N1−w,N

N

N∑
i=1

lw
(
pi,N ; θ̄N

)
SN,i = op(1),

and

1
N

N∑
i=1

lw
(
pi,N ; θ̄N

)
K2
M (i; θ̄N )

− 1
N

N∑
i=1

lw
(
pi,N ; θ̄N

) (
N2

1−w,NS
2
N,i +N1−w,NSN,i(1− SN,i)

)
= op(1).

Proof. The proof of this result is a straightforward extension of Abadie and Imbens (2016,
Lemma S.10) and therefore omitted. �

For the next Lemma, let pw,j:N denote j-th order statistic of {pi,N : WN,i = w}. I set
pw,j:N = aN if j < 1 and pw,j:N = bN if j > N , where [aN , bN ] denotes the interval sup-
port of F (X ′θ̄N ). Also let Vi denote the rank of observation i, in terms of F (X ′i θ̄N ), within the
sample of observations that have the same treatment status as itself.

Additionally, define χ0,θ(p) = p
1−p

q0,N

q1,N
for p ∈ [aθ, bθ] and χ1,θ(.) = χ−1

0,θ(.), where [aθ, bθ]
denotes the interval support of F (X ′θ). I also set χ0,N ≡ χ0,θ̄N

and χ1,N ≡ χ1,θ̄N
. Note that

17For the end points I set G−1
w,N (0) = aN and G−1

w,N (1) = bN .
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χw,N (p) = (g1−w,N/gw,N )(p) except on the set {p ∈ [aN , bN ] :gN (p) = 0}, which has Lebesgue
measure zero by Assumption 3(iii).

Lemma 15. Suppose that Assumptions 1-4 hold and that θ̄N → θ0. Further suppose that for
all θ ∈ N , the function lw(p; θ) is uniformly bounded in both p ∈ [aθ, bθ], and θ ∈ N . Then for
each w = 0, 1, under P̄N , (i)

N∑
i=1

lw
(
pi,N ; θ̄N

)

×
(
SN,i − χw,N (pi,N )

Gw,N (pw,Vi+M :Nw,N
)−Gw,N (pw,Vi−M :Nw,N

)
2

)
= op(1).

and (ii)
N∑
i=1

lw
(
pi,N ; θ̄N

)
Nw,N

×

S2
N,i −

(
χw,N (pi,N )

Gw,N (pw,Vi+M :Nw,N
)−Gw,N (pw,Vi−M :Nw,N

)
2

)2
 = op(1).

Proof. In terms of the method for the proof, I adapt the arguments of Abadie and Imbens (2016,
Lemma S.7) to allow for triangular arrays. Without loss of generality I prove the above for the
case w = 0. Also to simplify notation, I set N0,N = N0 for the duration of this proof.

I first show that for any fixed K <∞,

(D.4) max
1≤i≤N0

|p0,Vi+K:N0 − p0,Vi:N0 | = oP̄N
(1).

By equation (D.3) in Lemma 13, and the fact G−1
0 (.) is uniformly continuous on [0, 1], it follows

that the sequence G−1
0,N (.) is uniformly equicontinuous. Hence for each ε > 0, there exists δ > 0

such that

P̄N

(
max

1≤i≤N0
|p0,Vi+K:N0 − p0,Vi:N0 | > ε

)
≤ P̄N

(
max

1≤i≤N0
|G0,N (p0,Vi+K:N0)−G0,N (p0,Vi:N0)| > δ

)
≤ Pr

(
max

1≤i≤N0
|ξVi+K:N0 − ξVi:N0 | > δ

)
→ 0,

where the limit follows by standard properties of uniform spacings. This proves (D.4).
Define

ΩNi ≡
[
p0,Vi:N0 + p0,Vi+M :N0

2 ,
p0,Vi:N0 + p0,Vi−M :N0

2

]
.

Let

ZN,i = l0
(
pi,N ; θ̄N

)
N0

(
SN,i − h0,N (pi,N )G0,N (p0,Vi+M :N0)−G0,N (p0,Vi−M :N0)

2

)
.
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As in the proof of Abadie and Imbens (2016, Lemma S.7), note that

SN,i =
∫ (p0,Vi:N0+p0,Vi+M :N0 )/2

aN

g1,N (p)dp I{Vi≤M}(D.5)

+
∫

ΩNi

g1,N (p)dp I{M<Vi≤N−M}

+
∫ bN

(p0,Vi:N0+p0,Vi−M :N0 )/2
g1,N (p)dp I{Vi>N−M}.

Then by the properties of uniform spacings I obtain

(D.6) N0SN,i −N0

∫
ΩNi

g1,N (p)dp = oP̄N
(1).

Now by the proof of Lemma 11, for each p ∈ [aθ, bθ],(
g1,N
g0,N

)
(p) = p

1− p
q0,N
q1,N

I {gN (p) 6= 0} ≡ χ0,N (p)I {gN (p) 6= 0} ,

where {χ0,N} is uniformly equicontinuous on p ∈ [aN , bN ] by Lemma 11. Since g1,N (p) =
g0,N (p) = 0 whenever gN (p) = 0, the mean value theorem for Lebesgue-Steltjes integrals ensures∫

ΩNi

g1,N (p)dp =
∫

ΩNi

χ0,N (p)g0,N (p)dp =
∫

ΩNi

χ0,N (p)dG0,N (p)

= χ0,N (p̄i,N,M )
(
G0,N

(
p0,Vi:N0 + p0,Vi+M :N0

2

)
−G0,N

(
p0,Vi:N0 + p0,Vi−M :N0

2

))
.

for some p̄i,N,M ∈ ΩNl. Substituting in (D.6), a second application of the mean value theorem
then implies

N0SN,i −N0χ0,N (p̄i,N,M ) g0,N (p̃i,N,M ) (p0,Vi+M :N0 − p0,Vi−M :N0) /2 = oP̄N
(1),

for some p̃i,N,M ∈ ΩNi. Substituting the above in the expression for ZNi, and applying the
mean value theorem again on G0,N (p0,Vi+M :N0)−G0,N (p0,Vi−M :N0), I obtain for some p̌i,N,M ∈
[p0,Vi+M :N0 , p0,Vi−M :N0 ],

ZN,i = oP̄N
(1) + l0

(
pi,N ; θ̄N

)
N0 {χ0,N (p̄i,N,M ) g0,N (p̃i,N,M )− χ0,N (pi,N ) g0,N (p̌i,N,M )}

× (p0,Vi+M :N0 − p0,Vi−M :N0) /2.

Now using (D.4) together with the facts {χ0,N} and {g0,N} are uniformly equicontinuous (the
latter by Assumption 3-(iii)), it follows ZN,i = op(1) under P̄N for each i.

I now show that for any r <∞, there exists some constant Mr <∞ such that,

(D.7) ĒN |ZN,i|r < Mr for all 1 ≤ i ≤ N,

where the expectation here, and in the rest of the proof, is taken under P̄N . By standard
properties of uniform spacings,

ĒN |N0,N {G0,N (p0,Vi+M :N0)−G0,N (p0,Vi−M :N0)}|r

= ĒN |N0,N (ξVi+M :N0 − ξVi−M :N0)|r < M1r
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for some constant M1r < ∞. Hence, by part (ii) of Lemma 11, and the assumption l0(p; θ) is
uniformly bounded, it suffices for (D.7) to show ĒN |N0SN,i|r is uniformly bounded. Let SNi,(a),

SNi,(b) and SNi,(c) denote the three terms in that order from the expression for SN,i in equation
(D.5). By part (ii) of Lemma 11, and the properties of uniform spacings (see Abadie and Imbens,
Lemma S.5; or as applied in their Lemma S.7),

ĒN
∣∣∣N0SNi,(a)

∣∣∣r ≤ C̄rĒN |N0G0,N (p0,2M :N0)|r

≤ C̄rĒN |N0ξ2M :N0 |
r < Mr,(a)

for some Mr,(a) < ∞. A similar argument also shows that ĒN
∣∣∣N0SNi,(c)

∣∣∣r < Mr,(c) < ∞.
Finally, consider∣∣∣SNi,(b)∣∣∣r =

∣∣∣∣∫
ΩNi

χ0,N (p)g0,N (p)dp
∣∣∣∣r ≤ C̄r

∣∣∣∣∣
∫ Vi+M :N0

Vi−M :N0
g0,N (p)dp

∣∣∣∣∣
r

= C̄r |ξVi+M :N0 − ξVi−M :N0 |
r ,

where the inequality follows from supp |χ0,N (p)| < C̄ due to Lemma 11. Hence by the properties
of uniform spacings, ĒN

∣∣∣N0SNi,(b)

∣∣∣r < Mr,(b) <∞. By the above I have thus shown (D.7).
Equation (D.7), together with ZN,i = op(1) under P̄N , implies ĒN |ZNi| → 0. Since the choice

of i was arbitrary, the above holds true for all 1 ≤ i ≤ N0. Hence application of the Markov
inequality assures N−1∑N

i=1 ZN,i = op(1) under P̄N . This proves the first part of the Lemma.
Part (ii) follows by analogous arguments. �

Lemma 16. Suppose that Assumptions 1-4 hold. Further suppose that for all θ ∈ N , the
function mw(.; θ) : [p, p̄]→ R is non-negative, uniformly equicontinuous in N i.e

lim
δ→0

sup
p∈R,θ∈N

|mw(p; θ)−mw(p+ δ; θ)| = 0,

and also satisfies mw(p; θ̇N )→ mw(p; θ0) point-wise in each p for any sequence θ̇N → θ0. Then
for any non-negative integer M , and sequence {θ̄N} satisfying θ̄N → θ0 a.s-P̄N , it holds that
under P̄N ,

N∑
i=1

mw

(
G−1
w,N (ξi:Nw,N

); θ̄N
) (
ξi+M :Nw,N

− ξi−M :Nw,N

)

= 2M
Nw,N

N∑
i=1

mw

(
G−1
w,N (ξi:Nw,N

); θ̄N
)

+ op(1),

and

Nw,N

N∑
i=1

mw

(
G−1
w,N (ξi:Nw,N

); θ̄N
) (
ξi+M :Nw,N

− ξi−M :Nw,N

)2

= 2M(2M + 1)
Nw,N

N∑
i=1

mw

(
G−1
w,N (ξi:Nw,N

); θ̄N
)

+ op(1).

Proof. Using Lemma 6 and Lemma 13, the proof of this result is a straightforward extension of
Abadie and Imbens (2016, Lemma S.6), and therefore omitted. �
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