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Abstract

This paper studies the design of ex ante efficient mechanisms in situations where

a single object is for sale, and agents have positively interdependent values and can

covertly acquire information at some cost before participating in a mechanism. We find

that when the strength of interdependence is low or the number of agents is large, the ex

post efficient mechanism is also ex ante efficient. In cases of high interdependence or a

small number of agents, ex ante efficient mechanisms discourage agents from acquiring

excessive information by introducing randomization to the ex post efficient allocation

rule in areas where the information’s accuracy increases most rapidly if an addition

piece of information is acquired. In special cases, there exists an ex ante efficient

mechanism that has a simple and appealing implementation: standard auctions with

discrete bids.
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1 Introduction

Most of the mechanism design literature assumes that the amount of information pos-

sessed by agents is exogenous. In many important applications, however, this assumption

does not apply. For example, in auctions for offshore oil and gas leases in the U.S., com-

panies use seismic surveys to collect information about the tracts offered for sale before

participating in the auctions. Another example is the sale of financial or business assets, in

which buyers perform due diligence to investigate the quality and compatibility of the assets

before submitting offers. In these settings, the information held by agents is endogenous.

Moreover, it is costly to acquire information. In the example of U.S. auctions for offshore oil

and gas leases (see Haile et al. (2010)), companies can choose to conduct two-dimensional

(2-D) or three-dimensional (3-D) seismic surveys. 3-D surveys can produce more accurate

information, and thus were used in 80% of wells drilled in the Gulf of Mexico by 1996. How-

ever, this number was only 5% in 1989 when 3-D surveys were more expensive than 2-D

surveys.1 Similarly, the legal and accounting costs of performing due diligence often amount

to millions of dollars in the sale of a business asset (see Quint and Hendricks (2013) and

Bergemann et al. (2009)).

Earlier studies have analyzed agents’ private incentives to acquire information and com-

pared that with the social incentives. Maskin (1992) and Bergemann and Välimäki (2002),

among others, focus on the ex post efficient mechanism that implements the ex post efficient

allocations given acquired private information. They find that, if valuations are private,

agents’ incentives to acquire information coincide with the social incentives and the ex ante

efficient information acquisition is achieved. However, if valuations are interdependent, the

ex post efficient mechanism will result in socially sub-optimal information acquisition. The

case of interdependent values is pertinent to many economic applications. For example, in

the U.S. auctions for offshore oil and gas leases, if one company find that the other have a

lower estimate on the amount of extractable oil, they may revise their valuation downward.

In a follow-up paper, Bergemann et al. (2009) study the equilibrium level of information

acquisition when agents face binary information decisions and their values are positively in-

terdependent. They find that the ex post efficient mechanism leads to excessive information

acquisition in equilibrium. In summary, when valuations are interdependent, there is a con-

flict between the provision of ex ante efficient incentives to acquire information and the ex

post efficient use of information. The question regarding how to design an ex ante efficient

mechanism to balance the two trade-offs remains open.

1For instance, it costs $1 million to examine a 50 square mile 3-D seismic survey in 1990, while this
number was less than $100, 000 in 2000.
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In this paper, we study the design of ex ante efficient mechanisms in the sale of a single

object when agents’ values are positively interdependent. The true value of the object to each

agent is initially unknown. Before participating in a mechanism, agents can simultaneously

and independently decide how much information to acquire. An agent acquires information

by increasing the accuracy of the signal he receives. Both the accuracy and the realization of

his signal are an agent’s private information, and the signals are independent across agents.

An agent must incur a higher cost to receive a more accurate signal. We assume that the

accuracy of the signals is supermodular ordered. This notion of information order was first

introduced into the literature by Ganuza and Penalva (2010) and later used by Shi (2012)

when studying revenue-maximizing mechanisms in the independent private value setting

with endogenous information.

In most parts of the paper, we focus on symmetric mechanisms and symmetric equilib-

ria in which all agents acquire the same amount of information before participating in a

mechanism. There are three main results.

Consistent with Bergemann and Välimäki (2002) and Bergemann et al. (2009), it is never

socially optimal to encourage agents acquire more information than they would when they

face the ex post efficient mechanism. To discourage agents from acquiring excessive informa-

tion, the social planner can either withhold the object with some probability, or introduce

pooling or randomization into the allocation rule. The first main result of the paper is to

show that the object is never withheld in an ex ante efficient mechanism. Intuitively, when-

ever the social planner withholds the object, she can also allocate it randomly. By doing so,

the allocative efficiency increases while an agent’s ex ante incentive to acquire information

remains unaffected. In fact, this property holds more generally even if we consider asym-

metric mechanisms and asymmetric equilibria in which agents acquire different amounts of

information. Though intuitive, the proof of this result is non-trivial because of the presence

of the non-standard information acquisition constraint. This result is also important tech-

nically as it facilitates the analysis by allowing us to work with the interim allocation rule

directly.

Second, for any given information choice, we fully characterize all mechanisms that im-

plement this choice and maximize the expected social surplus. Remember that an ex ante

efficient mechanism discourages agents from excessive information acquisition by introduc-

ing pooling or randomization into the allocation rule. Specifically, the optimal pooling areas

are those in which the accuracy of an agent’s posterior mean increases most rapidly if an

additional piece of information is acquired. If this marginal effect of an additional piece

of information is the same for all possible posterior means, we say that the information

structures are uniformly supermodular ordered. In this special case, there exists an ex ante
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efficient mechanism that has a simple and appealing implementation: standard auctions with

discrete bids.

In the model’s environment, standard auctions such as first-price or second-price auc-

tions are ex post efficient. By restricting bids to discrete levels, we bunch nearby posterior

means together, which clearly reduces agents’ marginal benefits from acquiring information.

Restricting bids to discrete levels is not uncommon in auctions in practice. For example,

eBay auctions require that the next bid must exceed the current price plus a bid increment

and FCC spectrum auctions adopt a minimum clock price increment. Most existing auction

theories predict that discrete bids lead to inefficiency and they are mainly used in practice

to simplify communication processes and speed auctions (see Ausubel and Cramton (2004)).

Our results suggest an alternative justification for the prevalence of discrete bids. That is,

when agents have positively interdependent values and can covertly acquire information at

some cost, the use of discrete bids can improve ex ante efficiency.

Despite the simple implementation in special cases, ex ante efficient mechanisms gener-

ally consist of complex pooling areas. Therefore, it is worthwhile to understand when the

relatively simple ex post efficient mechanism is also ex ante efficient. As the third main result

of the paper, we show that this is likely to be the case when the level of interdependence is

low or the number of agents is large. Intuitively, when the level of interdependence is low,

the discrepancy between individual and social incentives to acquire information is small and

therefore the ex post efficient mechanism is likely to be ex ante efficient. When the number of

agents is large, an individual’s marginal benefit from acquiring information is already small

because of the fierce competition. Hence, the social planner need not further discourage

them from acquiring information by distorting the ex post efficient allocation rule.

Finally, we briefly discuss general ex ante efficient mechanisms without restricting atten-

tion to symmetric mechanisms or symmetric equilibria. First, as mentioned above, a robust

property of ex ante efficient mechanisms is that the object is never withhold. To obtain some

further results, we restrict attention to the special case in which the information structures

are uniformly supermodular ordered. In this special case, we provide conditions under which

the socially optimal information choices are the same for all agents and a symmetric ex ante

efficient mechanism exists. These conditions are likely to be satisfied when the level of inter-

dependence is high or the number of agents is small. When these conditions are not satisfied,

we provide an example in which an asymmetric mechanism generates higher expected social

surplus than the optimal symmetric mechanism does. The intuition behind this result is

as follows. As in Bergemann et al. (2009), the agents’ information acquisition decisions are

strategic substitutes. Therefore, it could be socially optimal to discourage other agents from

acquiring information by encouraging one agent to do so.
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Technically, the problem considered in this paper is challenging for two reasons. First, we

want to work directly with interim rather than ex post allocation rules, which has been proved

to be a very useful method in the literature.2 However, when valuations are interdependent,

it is hard to write the social planner’s objective function in terms of interim allocation rules.

We overcome this difficulty by proving that the object is never withhold in an ex ante efficient

mechanism. The second challenge arise because of the non-standard information acquisition

constraint. To overcome this difficulty, we use an approach first proposed by Reid (1968)

and later introduced into the mechanism design literature by Mierendorff (2009). The proof,

however, is not a straightforward modification of Mierendorff (2009). In Mierendorff (2009),

the interim allocation rule is discontinuous at one known point. In this paper, the interim

allocation rule could be discontinuous at most countably many times, at unknown points.

1.1 Related literature

This paper is related to the literature studying agents’ incentives to acquire information in

some commonly used mechanisms. Earlier papers focus on the comparison between first-price

and second-price auctions. For example, Matthews (1984a) considers a first-price auction

with pure common values, and examines how an increase in the number of agents affects

information acquisition. Stegeman (1996) finds that both auctions lead to identical and,

more importantly, efficient incentives for information acquisition when agents’ values are

private and independent. In contrast, Persico (2000) finds that a first-price auction provides

stronger incentives for agents to acquire information than a second-price auction does when

their values are affiliated. The two most closely related papers are Bergemann and Välimäki

(2002) and Bergemann et al. (2009). Both study the efficiency of information acquisition

by agents when ex post efficient mechanisms is used. Instead of focusing on a particular

mechanism, this paper studies the design of ex ante efficient mechanisms.

This paper is also related to papers that study the revenue-maximizing mechanisms with

endogenous information acquisition. The two most closely related papers are Shi (2012)

and Crémer et al. (2009). Shi (2012) considers the sale of a single asset when buyers have

independent private values and who, before the auction, can simultaneously and indepen-

dently decide how much information to acquire. He finds that the optimal reserve price is

always below the standard monopoly price to encourage information acquisition. The focus

of this paper is on efficiency in environments where valuations are interdependent. In Crémer

et al. (2009), the revenue-maximizing mechanism also achieves ex ante efficiency. However,

in Crémer et al. (2009), agents face binary information decisions and the seller can control

2See, for example, Maskin and Riley (1984), Matthews (1983), Mierendorff (2011), Pai and Vohra (2014)
and Li (2017).
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the access to information. The latter assumption assumes away the problem considered in

this paper, which is how to design a mechanism to discourage agents from acquiring exces-

sive information. Several other papers model the information cost as an entry cost (see, for

example, Levin and Smith (1994), Ye (2004) and Lu and Ye (2014)). As a result, agents’

information decisions are observable. But in this paper agents’ information choices are also

his private information.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3 con-

tains the main results. Specifically, Section 3.2 characterizes optimal symmetric mechanisms

for each given information choice and Section 3.3 studies the socially optimal information

choice. Section 4 examines ex ante efficient mechanisms without imposing symmetry restric-

tions. Section 5 concludes. All omitted proofs are relegated to appendix.

2 Model

There are n agents, indexed by i ∈ {1, · · · , n}, who compete for a single object. Each

agent i has a payoff-relevant type θi, which is unknown to the agent or to the social planner ex

ante. Agent i’s valuation depend not only on his own type but on others’ as well. Specifically,

the true value of the object to agent i is

vi(θ) := θi + γ
∑
j 6=i

θj,

where θ := (θ1, . . . , θn) is the type profile and γ ≥ 0 is a measure of interdependence.

We assume that γ ≤ 1, which asserts that a marginal change in agent i’s type affects his

valuation at least as much as it does that of any other agent. This single crossing condition

is necessary and efficient for the implementablility of the ex post efficient allocation in the

current setting. If γ = 0, the model is one of private values; and if γ = 1, the model is of

pure common values. Each agent has a quasi-linear utility. Specifically, agent i’s payoff is

qivi(θ)− ti if he receives the object with probability qi ∈ [0, 1] and pays ti ∈ R.

Initially, agents know only that {θi} are independently distributed with a common cu-

mulative distribution F with support [θ, θ] ⊂ R+. The distribution F has a positive and

continuous density function f and a mean valuation

µ :=

∫ θ

θ

θf(θ)dθ.

Each agent i can covertly acquire a signal xi ∈ R about his type θi by selecting a joint

distribution of (xi, θi) from a family of joint distributions {G(xi, θi|αi)}, indexed by their
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accuracy αi ∈ [α, α] ⊂ R. For each α ∈ [α, α], we also refer the joint distribution G(·, ·|α) as

an information structure. Let g denote the density function associated with G. For all α ∈
[α, α], G(·, ·|α) admits the same marginal distribution of θ as the prior (i.e.

∫
R g(x, θ|α)dx =

f(θ) for all θ ∈ [θ, θ]), and the posterior mean E[θ|x, α] is strictly increasing in x, which

asserts that a higher signal leads to a higher conditional expectation.3 A signal with a

higher α is more accurate (in a sense defined below). Let C(α) denote the cost of acquiring

a signal with accuracy α. As is standard in the literature, we assume that the cost function

C is non-negative, strictly increasing, twice continuously differentiable and strictly convex,

and satisfies C(α) = C ′(α) = 0 and C ′′(α) > 0.

2.1 Information order

Let G(x|α) denote the marginal distribution of signal x for a given accuracy α. We

can define a new signal by applying the probability integral transformation on the original

signal. Specifically, let s := G(x|α). The transformed signal s is uniformly distributed on

[0, 1].4 Clearly, the transformed signal has the same informational content as the original one.

Furthermore, because any two transformed signals have the same marginal distribution, their

realizations are directly comparable. Therefore, we will henceforth work with the transformed

signal directly. Let w(s, α) := E[θ|s, α] denote the conditional expectation or posterior mean

of θ given signal s and accuracy α. By assumption, w(s, α) is strictly increasing in s. For

each α ∈ [α, α], let H(w|α) := P(w(s, α) ≤ w) denote the cumulative distribution function

of w(s, α) and h(w|α) its corresponding density function. We assume that both H(w|α) and

h(w|α) are twice continuously differentiable in w and α. Throughout the paper, we assume

that the information structures are supermodular ordered :

Definition 1 The information structures are supermodular ordered if for all α ∈ [α, α],

−Hα(w|α)

h(w|α)
is strictly increasing in w on [w(0, α), w(1, α)].

This notion of “supermodular precision” was first introduced into the literature by

Ganuza and Penalva (2010). More recently, Shi (2012) also assumes that the information

structures are supermodular ordered for some of his results. To understand the definition,

3For each α ∈ [α, α], let G(θ|x, α) denote the conditional distribution of θ given x. Then one sufficient
condition for this is to assume that G(θ|x, α) satisfies the monotone likelihood ratio property.

4s is uniform on [0, 1] only if G(·|α) is continuous and strictly increasing. This can be assumed without
loss of generality. If G(·|α) has a discontinuity at z, where P(x̃ = z|α) = p, then x can be transformed
into x∗, which has a continuous and strictly increasing distribution function using the following construction
proposed in Lehmann (1988): x∗ = x for x < z, x∗ = x + pU if x = z, where U is uniform on (0, 1), and
x∗ = x+ p for x > z.
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observe that wα(s, α) = −Hα(w(s, α)|α)/h(w(s, α)|α), which is strictly increasing in s. We

prove in Appendix A that this implies that w(s, α) is strictly supermodular:5

Lemma 1 Suppose that the information structures are supermodular ordered. Then w(·, ·)
is strictly supermodular: for all s, s′ ∈ (0, 1), s > s′ and α > α′

w(s, α)− w(s′, α) > w(s, α′)− w(s′, α′). (1)

Intuitively, if the signal s contains little information about θ, the posterior mean w(s, α)

does not vary much as s changes and its distribution concentrates around µ. As s becomes

more informative about θ, w(s, α) varies more as s changes (see (1)) and its distribution

becomes more dispersed.6

For some results of this paper, we further require that the information structures are

uniformly supermodular ordered. Recall that if an information structure is more informa-

tive, w(s, α) changes more dramatically as s changes. Hence, we can interpret the change

rate ws(s, α) as a local measure of the information structure’s accuracy around s. Then

ws,α(s, α)/ws(s, α) is the percentage change of the information structure’s accuracy around

s as α increases. We say that the information structures are uniformly supermodular ordered

if
ws,α(s, α∗)

ws(s, α∗)
=

∂

∂w

[
−Hα(w(s, α∗)|α∗)
h(w(s, α∗)|α∗)

]
is independent of s (or equivalently w). In other words, when α increases, the information

structure becomes more informative “uniformly” over [0, 1]. The formal definition is given

as follows:

Definition 2 The information structures are uniformly supermodular ordered if there exists

a positive function b : [α, α]→ R++ such that, for all α ∈ [α, α] and w ∈ [w(0, α), w(1, α)],

−Hα(w|α)

h(w|α)
=
w − µ
b(α)

.

5Lemma 1 is not an equivalent definition of supermoduler ordered information structures. If w(·, ·) is
strictly supermodular (i.e. satisfies inequality (1)), −Hα(·|α)/h(·|α) is non-decreasing but not necessarily
strictly increasing. I conjecture that all the results still hold if we require only that −Hα(·|α)/h(·|α) is
non-decreasing, but the stronger assumption simplifies the analysis.

6(See Ganuza and Penalva (2010)) Formally, if α > α′, w(s, α) is strictly larger than w(s, α′) in the
dispersive order. Let Y and Z be two real-valued random variables with distributions F and G, respectively.
We say Y is greater than Z in the dispersive order if for all q, p ∈ (0, 1) and q > p,

F−1(q)− F−1(p) ≥ G−1(q)−G−1(p).
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When the information structures are uniformly supermodular ordered, we can obtain

a sharper and simpler characterization of the ex ante efficient mechanisms. The following

two commonly used information technologies in the literature are uniformly supermodular

ordered:7

Example 1 (Linear experiments) Consider the following information structures, which

are called “truth-or-noise” in Lewis and Sappington (1994), Johnson and Myatt (2006) and

Shi (2012). xi is equal to agent i’s true type θi with probability αi ∈ [0, 1] and is an inde-

pendent draw from F with probability 1 − αi. Because the marginal distribution of xi is F ,

the transformed signal is si = F (xi). The posterior mean of an agent who chooses αi and

receives si is w(si, αi) = αiF
−1(si) + (1− αi)µ. It is easy to verify that

−Hαi(wi|αi)
h(wi|αi)

=
wi − µ
αi

.

Hence, the information structures are uniformly supermodular ordered.

Example 2 (Normal experiments) Let {θi} be independently distributed with a normal

distribution: θi
iid∼ N (µ, 1/β) and β > 0. Agent i can obtain a costly signal xi = θi + εi,

where εi
iid∼ N (0, 1/αi) and αi > 0. Because the marginal distribution of xi is also normal

with xi ∼ N (µ, (β + αi)/βαi), the transformed signal is si = Φ
(√

βαi(xi − µ)/
√
β + αi

)
,

where Φ is the distribution function of the standard normal distribution. The posterior mean

of an agent who chooses αi and receives si is

w(si, αi) = µ+

√
αiΦ

−1(si)√
β(αi + β)

.

It is easy to verify that

−Hαi(wi|αi)
h(wi|αi)

=
β(wi − µ)

2αi(αi + β)
.

Hence, the information structures are uniformly supermodular ordered.

2.2 Timing

The game proceeds in the following way: The social planner announces a mechanism. Af-

ter observing the mechanism, the agents simultaneously choose their information structures

{αi} and observe the realized signals {si}. Both αi and si are agent i’s private information.

7See, for example, Ganuza and Penalva (2010) and Shi (2012).
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The agents then simultaneously decide whether to participate in the mechanism. All partic-

ipating agent report their private information to the mechanism. Based on their reports, an

allocation and payments are implemented according to the announced mechanism.

We assume that the payoff structure, the timing of the game, the prior distribution and

the family of information structures are common knowledge. As is standard in the literature,

the solution concept is Bayesian Nash equilibrium.

2.3 Mechanisms

The private information of agent i is two-dimensional including his choice of information

structure αi and the realized signal si. However, similar to Biais et al. (2000), Szalay (2009)

and Shi (2012), the usual difficulties inherent in multi-dimensional mechanism design problem

do not arise here. This is because the posterior mean, w(si, αi), summarizes all the private

information needed to compute agent i’s expected valuation of the object:

Eθ[vi(θ)|αi, si] = w(si, αi) + γ
∑
j 6=i

E[θj].

Furthermore, the social planner cannot screen agents with the same posterior mean but

different choices of information structures. Hence, we can appeal to the revelation principle

and focus on direct mechanisms in which agents report their posterior means directly. For

ease of notation, we use wi to denote wi(si, αi) and w := (w1, . . . , wn) to denote a vector

of posterior means. A direct mechanism is a pair (q, t), where q := (q1, . . . , qn) and t :=

(t1, . . . , tn). For each i = 1, . . . , n, qi : [θ, θ]n → [0, 1] maps a vector of reported posterior

means w to agent i’s probability of receiving the object and ti : [θ, θ]n → R maps w to his

payment. We note here that the message space for each agent in a direct mechanism is the

support of the prior distribution [θ, θ] because any wi ∈ [θ, θ] can arise in the game without

further knowledge on agents’ choices of information structures.

Given a mechanism (q, t), let α∗ := (α∗1, . . . , α
∗
n) denote the equilibrium vector of infor-

mation structures. Define agent i’s interim probability of receiving the object as

Qi(wi) := Ew−i [qi(wi, w−i)|α∗−i], ∀wi ∈ [θ, θ], (2)

where α∗−i are his opponents’ information structures. Then the interim utility of agent i who

has a posterior mean wi and reports w′i is

Ui(wi, w
′
i) := wiQi(w

′
i) + Ew−i

[
γ

(∑
j 6=i

wj

)
qi(w

′
i, w−i)− ti(w′i, w−i)

∣∣∣∣∣α∗−i
]
.
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Note that Qi(wi) and Ui(wi, w
′
i) also depend on α∗−i. Here we suppress the dependence for

ease of notation.

We require the mechanism chosen by the social planner to satisfy the following con-

straints. First, the mechanism must be (interim) individually rational (IR):

Ui(wi) := Ui(wi, wi) ≥ 0, ∀wi ∈ [θ, θ], (IR)

so that the agents are willing to participate in the mechanism. Because the social planner’s

goal is to maximize the social surplus, and transfers between the agents and the social planner

do not affect the social surplus, we can guarantee that (IR) is satisfied by making sufficiently

large lump sum transfers to the agents. Furthermore, as demonstrated later, under some

regularity condition the lump sum transfers can be chosen so that (IR) is satisfied and the

social planner’s revenue is non-negative. Hence, unless noted otherwise, we will ignore (IR) in

the remainder of the paper. Second, the mechanism must be Bayesian incentive compatible

(IC):

Ui(wi) ≥ Ui(wi, w
′
i),∀wi, w′i ∈ [θ, θ], (IC)

so that truth-telling is a Bayesian Nash equilibrium. Lastly, because the information struc-

ture chosen by an agent is unobservable, the mechanism must also satisfy the information

acquisition constraint (IA). That is, no agent stands to gain by deviating from his equilibrium

choice: for each agent i,

α∗i ∈ argmax
αi

Ew

[
qi(w)

(
wi + γ

∑
j 6=i

E[θj]

)
− ti(w)

∣∣∣∣∣αi, αj = α∗j ∀j 6= i

]
− C(αi). (IA)

The social planner’s problem, denoted by (P), is to choose a mechanism (q, t) and a

vector of recommendations of information structures α∗ to maximize the expected social

surplus:

max
α∗,(q,t)

Ew

[∑
i

(wi + γ
∑
j 6=i

wj)qi(w)

∣∣∣∣∣αi = α∗i ∀i

]
−
∑
i

C(α∗i ), (P)

subject to (IC), (IA) and the feasibility constraint (F):

0 ≤ qi(w) ≤ 1,
∑
i

qi(w) ≤ 1,∀w. (F)

We say that a mechanism (q, t) is ex ante efficient or optimal if there exists α∗ such

that α∗ and (q, t) solve the social planner’s problem. We say that a mechanism is ex post

efficient or optimal if the allocation is efficient given acquired information: for all i, qi(w) = 1
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if wi > maxj wj and qi(w) = 0 if wi < maxj wj.

3 Efficient mechanisms

In this section, we restrict attention to mechanisms that treat all agents symmetrically8

as well as symmetric equilibria in which all agents choose the same information structure

(i.e. α∗i = α∗ for all i). This restriction significantly simplifies the analysis but it may result

in a loss of generality. We will relax the symmetric restriction in Section 4.

When the ex post allocation rule q is symmetric and all agents choose the same informa-

tion structure, the corresponding interim allocation rule Qi is independent of i. From here

on, we drop the subscript i from Q, w and α whenever the meaning is clear. By the standard

argument,9 (IC) holds if and only if

Q(w) is non-decreasing in w, (MON)

and Ui(w) is absolutely continuous and satisfies the following envelope condition

Ui(w) = Ui(θ) +

∫ w

θ

Q(w̃)dw̃, ∀w ∈ [θ, θ]. (3)

Consider next the agent’s incentives to acquire information. Supposing that agent i

chooses αi, his (ex ante) expected payoff is given by∫ w(1,αi)

w(0,αi)

Ui(w)dH(w|αi)− C(αi)

=Ui(w(0, αi)) +

∫ w(1,αi)

w(0,αi)

[1−H(wi|αi)]Q(wi)dwi − C(αi). (4)

(The derivation of equality (4) can be found in Appendix A.) Hence, (IA) becomes

α∗ ∈ argmax
αi

Ui(w(0, αi)) +

∫ w(1,αi)

w(0,αi)

[1−H(wi|αi)]Q(wi)dwi − C(αi).

This condition is hard to work with directly. We follow the standard first-order approach, and

replace (IA) by a one-sided first-order necessary condition. In an earlier paper, Bergemann

and Välimäki (2002) show that if the social planner adopts the ex post efficient mechanism,

the agents tend to acquire more information than the socially desired level. This result

8The formal definition of symmetric mechanisms can be found at the beginning of Appendix A.
9See, for example, Myerson (1981).
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suggests that an ex ante efficient mechanism would distort the allocation of the object to

discourage agents from acquiring excessive information. Hence, we hypothesize that to ensure

that (IA) holds in an ex ante efficient mechanism, it suffices to ensure that no agent has

incentives to acquire more accurate signalsq than recommended: for all αi > α∗,

Ui(w(0, α∗)) +

∫ w(1,α∗)

w(0,α∗)

[1−H(w|α∗)]Q(w)dw − C(α∗)

≥ Ui(w(0, αi)) +

∫ w(1,αi)

w(0,αi)

[1−H(w|αi)]Q(w)dw − C(αi).

This implies the following one-sided first-order condition:10

Ew
[
−Hα(w|α∗)
h(w|α∗)

Q(w)

∣∣∣∣αi = α∗
]
≤ C ′(α∗). (IA′)

The left-hand side of the above inequality is agent i’s marginal benefit from choosing α∗, and

the right-hand side is the marginal information cost. We show that, for any non-decreasing

interim allocation rule Q, an agent’s marginal benefit from acquiring information is non-

negative:

Lemma 2 Suppose that Q : [θ, θ]→ R is non-decreasing on [w(0, αi), w(1, αi)], then

Ewi
[
−Hαi(wi|αi)

h(wi|αi)
Q(wi)

∣∣∣∣αi] ≥ 0, (5)

where the equality holds if Q is constant.

An important implication of Lemma 2 is that if an interim allocation rule Q is “steeper”

than another one Q′ in the sense that their difference Q − Q′ is non-decreasing, agent i’s

marginal benefit from acquiring information is higher under Q. Intuitively, a steeper interim

allocation rule implies that the mechanism’s outcome is more sensitive to an agent’s private

information and gives him stronger incentives to acquire information. (In fact, an agent’s

marginal benefit from acquiring information is higher under Q if there exists a partition of

[θ, θ] such that Q − Q′ is non-decreasing in each interval; we omit the details here.) This

property is important for understanding the structure of the ex ante efficient mechanisms

later.

10The main technical reason why we consider a one-sided first-order condition here is to sign the La-
grangian multiplier associated with (IA′). Admittedly, this relaxation also simplifies the proof of Theorem
1. But my conjecture is that Theorem 1 can be proved even if we require the first-order condition holds with
equality.
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Subsequently, we first consider the social planner’s relaxed problem by replacing (IA) by

(IA′), and then show that (IA′) holds with equality when α∗ is chosen optimally. Finally,

the first-order approach is valid if the second-order condition of the agents’ optimization

problem is satisfied. Appendix A.3 provides sufficient conditions that ensure the first-order

approach to be valid.

Although (IA′) is easier to work with than (IA), it is still nonstandard and prevents us

from solving the social planner’s problem directly as in Myerson (1981). To overcome this

difficulty, we focus on reduced form auctions. Formally, a reduced form allocation rule is

defined as follows:

Definition 3 An allocation rule q implements Q : [θ, θ]→ [0, 1] and Q is the reduced form

of q if q satisfies (2) and (F) for all w ∈ [θ, θ]. Q is implementable if q exists implementing

Q.

One important prior result we use in this paper is the necessary and sufficient condi-

tion of Maskin and Riley (1984), Matthews (1984b) and Border (1991), which characterizes

the interim allocation rules implementable by symmetric mechanisms. By Theorem 1 in

Matthews (1984b), any non-decreasing function Q : [θ, θ] → [0, 1] is implementable if and

only if it satisfies

Y (w) :=

∫ θ

w

[
H(z|α∗)n−1 −Q(z)

]
h(z|α∗)dz ≥ 0, ∀w ∈ [θ, θ]. (F′)

The above condition says that the probability of assigning the object to an agent whose

posterior mean is above w, n
∫ θ
w
Q(z)h(z|α∗)dz, must not exceed the probability with which

an agent whose posterior mean is above w exists, 1−H(w|α∗)n = n
∫ θ
w
H(z|α∗)n−1h(z|α∗)dz.

Clearly, this is a necessary condition for Q to be implementable. If Q is non-decreasing,

Theorem 1 in Matthews (1984b) proves that this condition is also sufficient. Hence, given

(MON), we can replace (F) by (F′). Note that in equilibrium the support of the posterior

means is give by W := [w(0, α∗), w(1, α∗)] ⊂ [θ, θ]. Therefore, (F′) imposes no restriction on

Q outside W .

To summarize, the social planner’s relaxed problem, denoted by (P ′), becomes:

max
α∗,(q,t)

E

[∑
i

(wi + γ
∑
j 6=i

wj)qi(w)

∣∣∣∣∣αi = α∗ ∀i

]
− nC(α∗),

subject to (MON), (IA′) and (F′). Note that all three constraints ((IC), (IA) and (F)) in

the original problem (P) are replaced by constraints ((MON), (IA′) and (F′)) that are ex-

pressed as functionals of the interim allocation rule Q. In order to work with reduced form
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auctions, we must also express the social planner’s objective function or the expected social

surplus as a functional of Q. This exercise is trivial when agents have private values (γ = 0),

because in this case an agent’s expected valuation of the object and his winning probability

are independent conditional on his private information. In general, this is impossible when

agents’ values are interdependent (γ > 0), because in this case both an agent’s expected

valuation of the object and his winning probability depend on other agents’ private infor-

mation. Nonetheless, we can still write the expected social surplus as a functional of Q if Q

is the reduced form of an ex ante efficient allocation rule, which never withholds the object.

This is the result of Theorem 1.

Theorem 1 Suppose that the information structures are supermodular ordered, and α∗ and

(q, t) solve the social planner’s relaxed problem (P ′). Then∑
i

qi(w) = 1 for almost all w ∈ W n. (6)

The proof of Theorem 1 can be found in Section 3.1. Using Theorem 1 and the law of

iterated expectations, the social planner’s objective function can be rewritten as a functional

of Q:

Ew

[∑
i

(wi + γ
∑
j 6=i

wj)qi(w)

∣∣∣∣∣αi = α∗ ∀i

]
=
∑
i

Ewi [ (1− γ)wiQ(wi)|αi = α∗] + nγµ.

Because the second term, nγµ, is a constant, we ignore it from here on. Hence, the social

planner’s relaxed problem (P ′) can be rewritten as follows:

max
α∗,Q

Ew [ (1− γ)wQ(w)|α∗]− C(α∗), (P ′)

subject to

Y (w) =

∫ θ

w

[H(z|α∗)n−1 −Q(z)]h(z|α∗)dz ≥ 0, ∀w ∈ [θ, θ]. (F′)

Q(w) is non-decreasing in w, (MON)

Ew
[
−Hα(w|α∗)
h(w|α∗)

Q(w)

∣∣∣∣α∗] ≤ C ′(α∗). (IA′)

In addition to being instrumental in solving the social planner’s problem, Theorem 1 also

has some inherent economic interest. Obviously, when information is exogenous, the efficient

mechanism never withholds the object. This is not obvious when information is endogenous,
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because, by withholding the object occasionally, the social planner can discourage agents

from acquiring excessive information, which may improve efficiency ex ante. However, intu-

itively, whenever the social planner withholds the object, she can also allocate it randomly.

By doing so, the ex post allocative efficiency improves while the agents’ ex ante incentives

to acquire information are unaffected.

Though intuitive, the proof of Theorem 1 is non-trivial. This is because the resulting

mechanism, by simply randomizing the object whenever it is withheld, is likely to violate

(MON) or (IA′). To illustrate this difficulty, let A be a set of types such that
∑

i qi(w) < 1

whenever w ∈ An. Suppose that A has a “hole” in the sense that there exists an interval

(w,w) such that (w,w) ∩ A = ∅ and inf A < w < w < supA.

If we simply redefine q such that it remains unchanged outside An and
∑

i qi(w) = 1 for

all w ∈ An, the resulting Q remains unchanged for all w ∈ (w,w) but increases for all w ∈ A.

If we allocate the object too often to agents whose types are in [θ, w] ∩ A, the resulting Q

will no longer be non-decreasing and violate (MON). If we allocate the object too often to

agents whose types are in [w, θ] ∩ A, the resulting Q is becomes steeper. Because a steeper

interim allocation rule gives an agent a higher marginal benefit from acquiring information,

this change will lead to a violation of (IA′). Hence, to ensure that the new q generates a

higher social surplus while respects all the constraints, we must adjust q not only inside An,

but also outside An.

Finally, Theorem 1 implies that under some regularity condition the lump sum transfers

can be chosen so that (IR) is satisfied and the social planner’s revenue is non-negative. This

result is summarized in the following corollary.

Corollary 1 Suppose that the information structures are supermodular ordered, and α∗ and

(q, t) solve the social planner’s relaxed problem (P ′). Suppose, in addition, that (1− γ)w −
[1−H(w|α∗)] /h(w|α∗) is non-decreasing in w. Then there exists t̃ such that α∗ and (q, t̃)

solve (P ′), and (IR) is satisfied and the social planner’s revenue is non-negative under this

new mechanism.

3.1 Proof of Theorem 1

This section contains the proof of Theorem 1. The readers who are not interested in the

proof may skip this section and proceed directly to Section 3.2 without loss of continuity.

We prove Theorem 1 by proving lemmas 3 and 4. Observe first that if αi = α∗ for all

i, Y (w(0, α∗)) is equal to 1 minus the probability of assigning the object to some agent.

Clearly, (6) is violated if and only if Y (w(0, α∗)) > 0. Then we have the following lemma:
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Figure 1: Proof idea of Lemma 3

Lemma 3 Suppose that the information structures are supermodular ordered and αi = α∗ for

all i. Let Q be any interim allocation rule satisfying (F′), (MON), (IA′) and Y (w(0, α∗)) > 0.

Then there exists Q̂ satisfying (F′), (MON) and (IA′) such that

Q̂(w) ≥ Q(w), ∀w ∈ W, (7)

and the strict inequality holds for a set of w with positive measure.

The intuition behind the proof of Lemma 3 can be illustrated by Figure 1. Supposing

that Q satisfies the assumptions in Lemma 3, one can construct another interim allocation

rule Q̂ by increasing Q at the lower end of its domain as in Figure 1. Clearly, the resulting Q̂

is non-decreasing and implementable if the change is sufficiently small. It remains to verify

that Q̂ also satisfies (IA′). Intuitively, agents have weaker incentives to acquire information

if outcomes are less sensitive to changes in their private information. Formally, recall that

Lemma 2 implies that if Q̂ is less steep than Q in the sense that it differs from Q by a

non-increasing function (as in Figure 1), for any amount of information acquired (or any α),

Q̂ gives agents a smaller marginal benefit from acquiring information that Q does. Hence,

Q̂ satisfies (IA′) as Q does.

The gap between Lemma 3 and Theorem 1 is that, when γ > 0, the expected social

surplus

Ew

[∑
i

(wi + γ
∑
j 6=i

wj)qi(w)

∣∣∣∣∣αi = α∗ ∀i

]
does not directly depend on Q. To prove Theorem 1, we need to show that, for any ex-post

allocation rule q implementing Q, we can find an ex post allocation rule q̂ that implements

Q̂ and yields higher expected social surplus. This is the result of Lemma 4.
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Lemma 4 Suppose that the information structures are supermodular ordered and αi = α∗

for all i. Let Q and Q̂ be two implementable allocation rules satisfying (7). Let q be an

ex-post allocation rule that implements Q. Then there exists an ex-post allocation rule q̂ that

implements Q̂ and satisfies

Ew

[∑
i

(wi + γ
∑
j 6=i

wj)q̂i(w)

∣∣∣∣∣αi = α∗ ∀i

]
> Ew

[∑
i

(wi + γ
∑
j 6=i

wj)qi(w)

∣∣∣∣∣αi = α∗ ∀i

]
.

The proof of Lemma 4 relies on the following technical lemma. We slightly abuse notation

a bit and let h denote the probability measure on W corresponding to H(wi|α∗).

Lemma 5 Let Q : W → [0, 1] be an interim allocation rule and ρ : W n → [0, 1] be a

symmetric measurable function. Then there exists a symmetric ex post allocation rule q that

implements Q and satisfies
∑

i qi(w) ≥ ρ(w) for almost all w ∈ W n if and only if, for all

measurable sets A ⊂ W , the following inequality holds∫
An
ρ(w)dhn(w) ≤ n

∫
A

Q(wi)dh(wi) ≤
∫
An

dhn(w). (8)

To see that inequality (8) is necessary, suppose that there exists an ex post allocation

rule q that implements Q and satisfies
∑

i qi(w) ≥ ρ(w) for almost all w ∈ W n. For any

measurable set A ⊂ W , the probability with which some agent whose type is in A receives

the object is given by n
∫
A
Q(wi)dh(wi). On the one hand, this probability must exceed

the probability with which some agent receives the object when all agents’ types are in A,∫
An

∑
i qi(w)dhn(w), which is bounded below by

∫
An
ρ(w)dhn(w) by assumption. This gives

rise to the first inequality. On the other hand, it cannot exceed the probability with which

an agent whose type is in A exists,
∫
An

dhn(w). This gives rise to the second inequality. In

Appendix A.1, we show that (8) is also sufficient.11

With Lemma 5 in hand, it is easy to prove Lemma 4.

Proof of Lemma 4. Consider two implementable allocation rules Q and Q̂ satisfying (7).

Let q be a symmetric ex-post allocation rule that implements Q. Define ρ : W n → [0, 1] by

ρ(w) :=
∑

i qi(w) for all w ∈ W n. Then ρ is symmetric. By Lemma 5,∫
An

dhn(w) ≥ n

∫
A

Q̂(wi)dh(wi) ≥ n

∫
A

Q(wi)dh(wi) ≥
∫
An
ρ(w)dhn(w).

By Lemma 5, there exists an allocation rule q̂ that implements Q̂ and satisfies
∑
q̂i(w) ≥

11Note also that if A = [w, θ], then the second inequality in (8) becomes (F′).
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ρ(w) =
∑

i qi(w) for almost all w ∈ W n. Hence,

Ew

[∑
i

(
wi + γ

∑
j 6=i

wj

)
q̂i(w)

∣∣∣∣∣αi = α∗ ∀i

]

=
∑
i

Ewi
[

(1− γ)wiQ̂(wi)
∣∣∣αi = α∗

]
+ Ew

[(
γ
∑
i

wi

)(∑
i

q̂i(w)

)∣∣∣∣∣αi = α∗ ∀i

]

>
∑
i

Ewi [ (1− γ)wiQ(wi)|αi = α∗] + Ew

[(
γ
∑
i

wi

)(∑
i

qi(w)

)∣∣∣∣∣αi = α∗ ∀i

]

= Ew

[∑
i

(
wi + γ

∑
j 6=i

wj

)
qi(w)

∣∣∣∣∣αi = α∗ ∀i

]
,

where the strict inequality holds because Q and Q̂ satisfies (7) and
∑

i q̂i(w) ≥
∑

i qi(w) for

almost all w ∈ W n. This completes the proof.

3.2 Optimal mechanisms for fixed α∗

We solve the principal’s relaxed problem (P ′) in two steps. In this subsection, we solve

the following sub-problem for each α∗ ∈ [α, α], denoted by (P ′-α∗):

V (α∗) := max
Q

Ew [wQ(w)|α∗] , (P ′-α∗)

subject to (F′), (MON) and (IA′). In Section 3.3, we solve maxα∈[α,α](1− γ)V (α)− C(α).

Fix α∗. If the principal adopts the ex post efficient mechanism, the interim allocation

rule is given by Q(w) = H(w|α∗)n−1 for all w. Clearly, if α∗ is such that

Ew
[
−Hα(w|α∗)
h(w|α∗)

H(w|α∗)n−1
∣∣∣∣α∗] ≤ C ′(α∗), (9)

the ex post efficient mechanism solves (P ′-α∗). In the rest of this subsection, we assume

that α∗ is such that (9) is violated. In what follows, we consider two cases in turn. In

Section 3.2.1, we consider the special case in which the information structures are uniformly

supermodular ordered. In this case, we first solve a relaxed problem of (P ′-α∗) by ignoring

the monotonicity constraint (MON), and then show that if the information structures are

uniformly supermodular ordered, the solutions of this relaxed problem automatically satisfy

(MON). In Section 3.2.2, we consider the general case when the information structures are

supermodular ordered. In this case, the solutions of the relaxed problem violates (MON) in

general. In the main text, we present an informal arugument to derive the optimal solutions
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of (P ′-α∗) using Myerson (1981)’s ironing procedure. The formal analysis can be found in

Appendix A.2.

3.2.1 Optimal mechanisms in the regular case

If we ignore the monotonicity constraint (MON), the following Lagrangian relaxation can

be used to get an intuition of the optimal solution:

L :=

∫ w(1,α∗)

w(0,α∗)

ϕλX (H(w|α∗), α∗)Q(w)h(w|α∗)dw + λXC
′(α∗), (10)

where λX > 0 is the Lagrangian multiplier associated with (IA′) and ϕλX (·, α∗) is defined

by12

ϕλX (t, α∗) := H−1(t|α∗) + λX
Hα(H−1(t|α∗)|α∗)
h(H−1(t|α∗)|α∗)

, ∀t ∈ [0, 1].

ϕλX (H(w|α∗), α∗) can be viewed as the “virtual value” associated with posterior mean w:

ϕλX (H(w|α∗), α∗) = w + λX
Hα(w|α∗)
h(w|α∗)

. ∀w ∈ W.

The first term in the virtual value, w, is the posterior mean of an agent’s type. In the case

of private values (γ = 0), this is equal to his expected valuation of the object. In the ex post

efficient mechanism, an agent is rewarded based on his posterior mean. When the agents

can choose how much information to acquire, we must subtract, from an agent’s posterior

mean, λX multiplied by the marginal change of his posterior mean if he acquires more precise

information:

−Hα(w|α∗)
h(w|α∗)

= wα(s, α∗),

where s is such that w(s, α∗) = w. In an ex ante efficient mechanism, an agent is rewarded

based on his virtual value. When the information structures are supermodular ordered,

−Hα(w|α∗)/h(w|α∗) is strictly increasing in w. Hence, the virtual value (as a function of the

posterior mean) is less steeper than the posterior mean. In other words, an agent’s virtual

value is less sensitive to his private information than his posterior mean. This difference

discourages agents from acquiring excessive information as they do under the ex post efficient

mechanism.13

12We define ϕλX (·, α∗) as a function of percentiles rather than posterior means simply to make it easier
to define “ironed virtual values” later when the pointwise virtual surplus maximizer violates (MON).

13The standard virtual value in a revenue maximization problem is defined as the difference between
a type’s true value and the information rents necessary to induce truthtelling. Here, because the social
planner’s goal is to maximize the social surplus rather than her revenue, the inverse hazard rate associated
with the information rents does not appear.
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If the virtual values are non-decreasing in w when λX is chosen optimally, the optimal

solution to (P ′-α∗) can be obtained by maximizing the virtual surplus pointwise because there

exists a pointwise virtual surplus maximizer that is non-decreasing and satisfies (MON).

This method works in the simple case in which the information structures are uniformly

supermodular ordered. Recall that in this case we have

−Hα(w|α∗)
h(w|α∗)

=
w − µ
b(α∗)

, ∀w.

Hence, the virtual values are given by

ϕλX (H(w|α∗), α∗) = w − λX
w − µ
b(α∗)

, ∀w.

We argue that the optimal λX is equal to b(α∗). Suppose that λX < b(α∗). In this case,

the virtual value is strictly increasing and the pointwise virtual surplus maximizer is the ex

post efficient allocation rule: Q(w) = H(w|α∗)n−1 for all w. However, by assumption, α∗

is such that (9) is violated. This implies that (IA′) is violated, which is a contradiction.

Hence, λX ≥ b(α∗). Suppose that λX > b(α∗). In this case, the virtual value is strictly

decreasing and the interim allocation rule Q that maximizes the expected virtual surplus

and satisfies (MON) is constant. However, this implies that (IA′) holds with strict inequality

and therefore λX = 0, which contradicts to the hypothesis that λX > b(α∗) > 0. Hence, the

optimal λX is equal to b(α∗).

When λX = b(α∗), the virtual value is constant: ϕλX (w, α∗) = µ for all w. Hence, any

feasible non-decreasing allocation rule Q satisfying condition (6) maximizes the expected

virtual surplus. If Q also satisfies (IA′) with equality, it solves (P ′-α∗). These arguments

prove the following proposition.

Proposition 1 Suppose that the first-order approach is valid and the information structures

are uniformly supermodular ordered. Suppose, in addition, that α∗ is such that (9) is violated.

Then Q solves (P ′-α∗) if and only if Q is non-decreasing and Q satisfies (6) and (IA′) with

equality.

Note that there are typically multiple interim allocation rules that solve (P ′-α∗). Corol-

lary 2 below describes one of them whose corresponding direct mechanism has a simple and

appealing implementation: standard auctions with discrete bids.

Corollary 2 Suppose that the first-order approach is valid and the information structures

are uniformly supermodular ordered. Suppose, in addition, that α∗ is such that (9) is vio-

lated. There exists a sequence of {wk}m+1
k=0 such that w(0, α∗) = w0 < w1 < · · · < wm <
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wm+1 = w(1, α∗) such that the following interim allocation rule solves (P ′-α∗): for each

k = 0, 1, . . . ,m

Q(w) :=
1
n

[
H(wk+1|α∗)n −H(wk|α∗)n

]
H(wk+1|α∗)−H(wk|α∗)

if wk < w < wk+1.

The corresponding optimal direct mechanism can be implemented by a standard auction with

m discrete bids.

In a standard auction with m discrete bids, an agent can choose a bid from a set pre-

determined bids: b1 < · · · < bm. The agent with the highest bid wins and pays his or the

second highest bid depending on the auction rule. Ties are broken uniformly at random. By

restricting bids to discrete levels, we bunch nearby posterior means together, which clearly

reduces agents’ marginal benefits from gathering information. We further illustrate this idea

in the following example in which agents can perform linear experiments.

Example 3 (Linear experiments) Consider the information structures in Example 1.

Assume that F (θ) = θ with support [0, 1] and the cost function is given by

C(α) =
3

8

(
α− 1

2

)2

, ∀α ∈
[

1

2
, 1

]
,

Then, as we demonstrate in Appendix A.3, the first-order approach is valid. Assume that

there are n = 2 agents. Finally, let γ = 7/8.

As a benchmark, consider first the case in which the social planner runs a second-price

auction with no restriction on bids. Suppose that both agents choose the same information

structure before partipating in the auction. By Krishna (2009), in this auction there exists

a symmetric equilibrium in which an agent’s bid is strictly increasing in his posterior mean.

Therefore, the allocation is ex post efficient. We argue that in this case it is an equilibrium

for both agents to choose α̂ = 11/18. Supposing that agent 2 chooses α̂ = 11/18, agent 1’s

marginal benefit from acquiring information is 1/12. Clearly, it is optimal for agent 1 to

choose α̂ = 11/18 as well.

However, this second-price auction is not socially optimal. As we demonstrate later in

Example 4, the socially optimal information choice in this example is α∗ = 7/12, which is

strictly less than α̂ = 11/18. It can be verified that the following interim allocation rule

solves (P ′-α∗):

Q(w) =

{
1
4

if w < 1
2

3
4

if w > 1
2

.
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Furthermore, the corresponding ex ante efficient mechanism can be implemented by the fol-

lowing second-price auction with two allowable bids:

b = −1

2
+
α∗

2
− γα∗

2
+
γα∗2

4
,

b =
5

2
− 3α∗

2
+

5γα∗

2
− 3γα∗2

4
.

Ties are broken uniformly at random. We argue that, if both agents chooses α∗ = 7/12 ex

ante, it is an equilibrium in which an agent bids b if w < 1/2 and bids b otherwise. Supposing

that agent 2 follows this strategy, the payoff of agent 1 whose posterior mean is w and bids

b is given by

U(b;w) =

{
1
4
w + α∗

8
− 1

8
if b = b

3
4
w + α∗

8
− 3

8
if b = b

.

It is easy to see that it is optimal for agent 1 to bid b if w < 1/2 and bid b otherwise. (In fact,

this is true regardless of agent 1’s information choice.) Next, consider agent 1’s incentives

to acquire information. Supposing that agent 2 chooses α∗ = 7/12, agent 1’s marginal benefit

from acquiring information is 1/16. Clearly, it is optimal for agent 1 to choose α∗ = 7/12

as well.

Restricting bids to discrete levels is not uncommon in auctions in practice. For example,

eBay auctions require that the next bid must exceed the current price plus a bid increment

and FCC spectrum auctions adopt a minimum clock price increment. Most existing auction

theories predict that discrete bids lead to inefficiency and they are mainly used in practice

to simplify communication processes and speed auctions (see Ausubel and Cramton (2004)).

Our results suggest an alternative justification for the prevalence of discrete bids. That is,

when agents have interdependent values and can covertly acquire information at some cost,

the use of discrete bids can improve ex ante efficiency.

3.2.2 Optimal mechanisms in the general case

If the information structures are not uniformly supermodular ordered, typically a point-

wise virtual surplus maximizer is not non-decreasing (or violates (MON)) and ironing is

necessary. In particular, an optimal solution can be obtained by ironing ϕλX (·, α∗) in the

following procedure first introduced by Myerson (1981). For each t ∈ [0, 1], define

JλX (t, α∗) :=

∫ t

0

ϕλX (τ, α∗)dτ.
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Figure 2: Ironing

Let J
λX

denote the convex hull of JλX , defined by

J
λX

(t, α∗) := min {βJ(t1, α
∗) + (1− β)J(t2, α

∗)|t1, t2 ∈ [0, 1], βt1 + (1− β)t2 = t} , ∀t ∈ [0, 1].

This is illustrated by Figure 2. Because J
λX

(·, α∗) is convex, it is continuously differen-

tiable virtually everywhere. Define the ironed virtual value ϕλX (·, α∗) as follows. First, for

each t ∈ (0, 1) such that ∂J
λX

(t, α∗)/∂t exists, let ϕλX (t, α∗) := ∂J
λX

(t, α∗)/∂t. Second,

extend ϕλX (·, α∗) to [0, 1] by right continuity. Because J
λX

(·, α∗) is convex, ϕλX (·, α∗) is

non-decreasing.

Let λX be chosen optimally. By the standard argument, we can show that the expected

social surplus is bounded above by the maximum ironed virtual surplus plus a constant:∫ w(1,α∗)

w(0,α∗)

zQ(z)h(z|α∗)dz ≤
∫ w(1,α∗)

w(0,α∗)

ϕλX (H(z|α∗), α∗)H(z|α∗)n−1dH(z|α∗) + λXC
′(α∗).

(11)

Furthermore, an interim allocation rule Q achieves this upper-bound (or solves (P ′-α∗)) if

and only if (i) Q satisfies (IA′) with equality; (ii) Y (w(0, α∗)) = 0 (i.e. Q allocates the object

with probability one); and (iii) Q satisfies the following two pooling properties :

1. If JλX (H(w|α∗), α∗) > J
λX

(H(w|α∗), α∗) for all w ∈ (w,w) and let (w,w) be chosen

maximally, Q is constant on (w,w).

2. If Y (w) > 0 for all w ∈ (w,w) and let (w,w) be chosen maximally, ϕλX (H(·|α∗), α∗)
is constant on (w,w).

(The derivation of inequality (11) can be found in Appendix A.) The first pooling property

says that if JλX (H(w|α∗), α∗) > J
λX

(H(w|α∗), α∗) for all w ∈ (w,w) and let (w,w) be chosen
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maximally, all posterior means in (w,w) are pooled together. The second pooling property

says that if posterior means in (w,w) are pooled together, ϕλX (H(·|α∗), α∗) is constant on

(w,w). By construction, JλX (·, α∗) ≥ J
λX

(·, α∗). If JλX (t, α∗) > J
λX

(t, α∗) for some t,

J
λX

(·, α∗) is linear and therefore ϕλX (·, α∗) is constant in a neighborhood of t (see Figure 2).

Therefore, the first pooling property characterizes the minimum pooling area in an optimal

allocation rule and the second pooling property characterizes the maximum pooling area in

an optimal allocation rule. Intuitively, more pooling leads to less steep allocation rules and

weaker incentives to acquire information. The optimal amount of pooling is chosen so that

Q satisfies (IA′) with equality.

The main difficulty is to determine the optimal multiplier λX . In order to do so, we first

define the “steepest” allocation rule Q+ and the “least steep” allocation rule Q− satisfying

conditions (ii) and (iii) given above. Define Q+(·, λX) as follows. If JλX (H(w|α∗), α∗) >
J
λX

(H(w|α∗), α∗) for w ∈ (w,w) and let (w,w) be chosen maximally, then let

Q+(w, λX) :=
1
n
[H(w|α∗)n −H(w|α∗)n]

H(w|α∗)−H(w|α∗)
, ∀w ∈ (w,w).

Otherwise, let Q+(w, λX) := H(w|α∗)n−1. Define Q−(·, λX) as follows. If ϕλX (H(·|α∗), α∗)
is constant on (w,w) with w < w and let (w,w) be chosen maximally, then let

Q−(w, λX) :=
1
n
[H(w|α∗)n −H(w|α∗)n]

H(w|α∗)−H(w|α∗)
, ∀w ∈ (w,w).

Otherwise, let Q−(w, λX) := H(w|α∗)n−1. Clearly, both Q+ and Q− are non-decreasing

and implementable and satisfy conditions (ii) and (iii). As we have argued above, among

all non-decreasing implementable Q’s satisfying conditions (ii) and (iii), Q+ contains the

minimum pooling area and Q− contains the maximum pooling area. We prove in Lemma 23

in Appendix A.2.3 that, for all non-decreasing implementable Q’s satisfying conditions (ii)

and (iii), Q+ gives the agents’ highest marginal benefit from acquiring information and Q−

gives them the lowest:

E
[
−Hα(w|α∗)
h(w|α∗)

Q+(w, λX)

∣∣∣∣α∗] ≥ E
[
−Hα(w|α∗)
h(w|α∗)

Q(w)

∣∣∣∣α∗] ≥ E
[
−Hα(w|α∗)
h(w|α∗)

Q−(w, λX)

∣∣∣∣α∗] .
Hence, there exists a non-decreasing implementable Q satisfying conditions (i)-(iii) if and

only if λX is such that

E
[
−Hα(w|α∗)
h(w|α∗)

Q+(w, λX)

∣∣∣∣α∗] ≥ C ′(α∗) ≥ E
[
−Hα(w|α∗)
h(w|α∗)

Q−(w, λX)

∣∣∣∣α∗] . (12)
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The following Lemma 6 proves that such a λX exists and is unique, and its proof can be

found in Appendix A.2.4.

Lemma 6 Suppose that the first-order approach is valid and the information structures are

supermodular ordered. Suppose, in addition, that α∗ is such that (9) is violated. There exists

a unique λX > 0 such that inequality (12) holds.

The main result of this section is the following Theorem 2, which demonstrates that the

unique λX given in Lemma 6 is indeed optimal and the allocation rules we have derived

above solve (P ′-α∗):

Theorem 2 Suppose that the first-order approach is valid and the information structures are

supermodular ordered. Suppose, in addition, that α∗ is such that (9) is violated. Let λX > 0

be such that inequality (12) holds and Q be a non-decreasing implementable allocation rule.

Then Q solves (P ′-α∗) if and only if Y (w(0, α∗)) = 0, and Q satisfies (IA′) with equality

and the two pooling properties.

Theorem 2 describes optimal mechanisms in terms of the reduced form but not how to

implement them. Similar to the regular case, there exists an ex ante efficient interim alloca-

tion rule such that the corresponding direct mechanism can be implemented by restricting

the set of allowable bids in standard auctions. But the optimal set of allowable bids can be

very complex due to the complex pooling areas. We omit the details here.

We interpret the optimal pooling areas as follows: Optimally, pooling occurs where

ϕλX (H(·|α∗), α∗) is not strictly increasing, i.e.,

ws,α(s, α∗)

ws(s, α∗)
=

∂

∂w

[
−Hα(w(s, α∗)|α∗)
h(w(s, α∗)|α∗)

]
≥ 1

λX

Recall that if an information structure is more informative, then w(s, α) changes more dra-

matically as s changes, i.e., ws(s, α) is larger. Hence, one can interpret ws(s, α) as a lo-

cal measure of the information structures’ accuracy around s. Then, ws,α(s, α)/ws(s, α)

is the percentage change of the information structures’ accuracy around s as α increases.

Intuitively, the most effective way to discourage agents from acquiring too much informa-

tion is to introduce randomization to areas where the information structures’ accuracy in-

creases most rapidly. If the information structures are uniformly supermodular ordered,

ws,α(s, α)/ws(s, α) is a constant. In other words, when α increases, the information struc-

ture becomes more informative uniformly over [0, 1]. As a result, the choice of pooling areas

is not important (as it is the case in Proposition 1).14

14When the information structures are uniformly supermodular ordered, the minimum pooling area is
empty and the maximum pooling area is the support of the posterior means W in equilibrium.
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Though the result is intuitive, the proof of Theorem 2 is difficult because of the presence

of both the non-standard constraint (IA′) and the monotonicity constraint (MON). In this

paper, we use the following approach first proposed by Reid (1968) and later introduced

into the mechanism design literature by Mierendorff (2009). We first solve (P ′-α∗) under an

additional restriction, that Q is Lipschitz continuous with global Lipschitz constant K:

|Q(w)−Q(w′)| ≤ K|w − w′|, ∀w,w′ ∈ W.

Denote the modified maximization problem by (PK-α∗). We show that the optimal solutions

of (PK-α∗) converge to that of (P ′-α∗) as K →∞. Then we can obtain a characterization of

the optimal solutions of (P ′-α∗) in the limit. The formal analysis can be found in Appendix

A.2.

The proof is not a straightforward modification of Mierendorff (2009). Let Q and QK

denote the optimal solutions to (PK-α∗) and (P ′-α∗), respectively. In Mierendorff (2009),

Q is discontinuous at exactly one known point, and, for K sufficiently large, the slope of

QK is equal to K only in a neighborhood around the discontinuity point. In this paper,

however, Q could be discontinuous at most countably many times, at unknown points.

If Q is discontinuous at w, it is possible that every neighborhood of w contains another

discontinuity point. Hence, it is non-trivial to characterize Q as the limit of QK .

We conclude this subsection by briefly discussing why we cannot apply control theoy

directly. In the published version of Mierendorff (2009), Mierendorff (2016) does not use

the approach described above, and directly appeals to Theorems 7 and 8 in Seierstad and

Sydsæter (1987). However, the problem considered here, (P ′-α∗), is more complex for the

following two reasons. First, as discussed above, in Mierendorff (2016), state variable Q

is discontinuous at exactly one point, while in (P ′-α∗), Q could be discontinuous at most

countably many points. Second, the problem in Mierendorff (2016) can be written as a

control problem without restrictions on the state variables, while (P ′-α∗) contains pure state

constraints (constraints in which control variables do not appear). To the best of my knowl-

edge, no existing theorem can be applied to provide necessary and sufficient conditions for

the optimal solutions of (P ′-α∗).

3.3 Optimal α∗

Given the optimal solutions of (P ′-α∗), we can now study the socially optimal information

choice. For each α, let πs(α) := (1− γ)V (α)−C(α) denote the maximum average expected

social surplus. Let α∗ ∈ argmaxα∈[α,α] π
s(α) denote a socially optimal information structure.

We begin the analysis by showing that it is not optimal for the social planner to encourage
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the agents to acquire more accurate information than they would when facing the ex post

efficient mechanism. Then we provide a sharper characterization of the socially optimal α∗

in the special case when the information structures are uniformly supermodular ordered.

Recall that the ex post efficient mechanism solves (P ′-α∗) if α∗ is such that the following

inequality holds:

Ew
[
−Hα(w|α∗)
h(w|α∗)

H(w|α∗)n−1
∣∣∣∣α∗] ≤ C ′(α∗), (9)

Let

α̂ := inf {α ∈ [α, α]|(9) holds for α} , (13)

which is independent of γ, and satisfies α̂ > α. First, we argue that the socially optimal α∗ is

bounded above by α̂. Lemma 27 in Appendix A.3 proves that if the second-order condition

of the agents’ optimization problem is satisfied,∫ w(1,α)

w(0,α)

−Hα(w|α)H(w|α)n−1dw − C ′(α) is strictly decreasing in α. (14)

This implies that inequality (9) holds strictly for all α > α̂. Hence, for all α > α̂, the optimal

solution to (P ′-α∗) is the ex post efficient allocation rule: Q(w) = H(w|α)n−1 for all w. In

this case, the average expected social surplus is

πs(α) = (1− γ)

∫ w(1,α)

w(0,α)

wH(w|α)n−1h(w|α)dw − C(α).

Taking derivative with respect to α gives

πs′(α) = (1− γ)

∫ w(1,α)

w(0,α)

−Hα(w|α)H(w|α)n−1dw − C ′(α).

Because of (14) and the fact that C ′(α) is strictly increasing, πs′(α) is strictly decreasing.

By construction, πs′(α̂) = −γC ′(α̂) ≤ 0. Hence, πs′(α) < 0 for all α > α̂ and a socially

optimal information choice must satisfy α∗ ≤ α̂. Note that, by construction, if the ex post

efficient mechanism is used, all agents choose α̂ is the unique symmetric equilibrium. In

other words, it is not optimal for the social planner to encourage the agents to acquire more

information than they would under the ex post efficient mechanism. This result is consistent

with Bergemann and Välimäki (2002) and Bergemann et al. (2009). The fact that α∗ ≤ α̂

also implies that (IA′) always holds with equality when α∗ is chosen optimally.15 Hence, it

15If α∗ = α̂, the ex post efficient mechanism is optimal and (IA′) holds with equality by the definition of
α̂. Suppose that α∗ < α̂. Suppose, to the contrary, that (IA′) holds with strict inequality. Then the ex post
efficient mechanism is optimal. However, because inequality (9) is violated when α∗ < α̂, (IA′) is violated,
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is sufficient to consider the one-sided first-order condition.

Second, the upper-bound α̂ converges to α as the number of agents n increases because

the agents’ incentives to acquire information diminish as n increases. To see this, consider

the ex post efficient allocation rule: Q(w) = H(w|α)n−1 for all w. In this case, the agents’

marginal benefit from acquiring information (measured by the first term in (14)) is of order

1/n.16 It is nature to conjecture that α̂ is decreasing in n. For example, this is the case when

the agents can perform linear experiments (see Example 4). But we remark that in general

the agents’ marginal benefits from acquiring information may not be monotonic in n. This

is because when n increases, the interim allocation rule becomes less steep for low posterior

means but steeper for high posterior means. Therefore, the aggregate effect is ambiguous.

Finally, we argue that when the agents have private values (γ = 0), the ex post efficient

mechanism is also ex ante efficient. To see this, note that the average expected social surplus

is bounded above:

πs(α) ≤
∫ w(1,α)

w(0,α)

wH(w|α)n−1h(w|α)dw − C(α),

where the right-hand side is maximized at α̂. If γ = 0, this upper-bound is also achieved by

the left-hand side at α̂. In the special case when agents can perform linear experiments, we

show a even stronger result holds: the ex post efficient mechanism is also ex ante efficient

when the positive dependence is weak (i.e. γ is small) (see Example 4). This result is also

consistent with Bergemann and Välimäki (2002) and Bergemann et al. (2009). Specifically,

the latter shows that, in the ex post efficient mechanism, the difference between the equilib-

rium level of information and socially optimal level of information diminishes as the positive

dependence weakens.

These results are summarized in the following proposition:

Proposition 2 Suppose that the second-order condition of the agents’ optimization problem

is satisfied and the information structures are supermodular ordered. The socially optimal

information choice α∗ is bounded above by α̂, where α̂ is such that (9) holds with equality

and limn→∞ α̂(n) = α. Furthermore, if γ = 0, α∗ = α̂.

For α ≤ α̂, the analysis in Section 3.2 shows that the maximum average expected social

which is a contradiction. Hence, (IA′) holds with equality.
16The first term in (14) is of order 1/n:∫ w(1,α)

w(0,α)

−Hα(w|α)

h(w|α)
H(w|α)n−1h(w|α)dw <

∫ w(1,α)

w(0,α)

−Hα(θ|α)

h(θ|α)
H(w|α)n−1h(w|α)dw =

1

n

(
−Hα(θ|α)

h(θ|α)

)
.
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surplus is given by

πs(α) = (1− γ)

∫ w(1,α)

w(0,α)

ϕλX (H(w|α), α)H(w|α)n−1h(w|α)dw + (1− γ)λXC
′(α)− C(α),

where the optimal λX depends on α in a complex way. Therefore, it is hard to characterize

the optimal α∗ in the general case. To obtain a sharper characterization of the socially

optimal information structure α∗, we assume in the rest of this section that the information

structures are uniformly supermodular ordered. In this case, the average expected social

surplus can be written as

πs(α) = (1− γ)
[µ
n

+ b(α)C ′(α)
]
− C(α), ∀α ∈ [α, α̂]. (15)

Assume that maxα∈[α,α] [(1− γ)b(α)C ′(α)− C(α)] has a unique solution and denote it by

α◦. Clearly, α◦ is independent of n. The socially optimal information choice is given by

α∗(n, γ) = min{α◦(γ), α̂(n)}. Taking derivatives of πs(α) with respect to α gives

πs′(α) = [(1− γ)b′(α)− 1]C ′(α) + (1− γ)b(α)C ′′(α), ∀α ∈ [α, α̂].

If agents have pure common values (γ = 1), πs′(α) = −C ′(α) ≤ 0 and the inequality holds

strictly for all α > α. Hence, it is socially optimal for the agents not to acquire information:

α∗ = α◦ = α. This is intuitive because information has no social value in the case of pure

common values. If γ < 1, πs′(α) = (1 − γ)b(α)C ′′(α) > 0. Therefore, α◦ > α. Recall that

α̂ > α and limn→∞ α̂ = α. Hence, when n is sufficiently large, α∗(γ, n) = α̂(n) and the ex

post efficient mechanism is also ex ante efficient. Intuitively, when there is a large number of

agents, an individual agent’s incentive to acquire information is already small because of the

fierce competition, and the social planner need not further discourage them from acquiring

information by distorting the allocation rule. These results are summarized by the following

proposition:

Proposition 3 Suppose that the second-order condition of the agents’ optimization problem

is satisfied and the information structures are uniformly supermodular ordered. The socially

optimal information structure is given by α∗(n, γ) = min{α◦(γ), α̂(n)}, where limγ→1 α
◦ = α

and limn→∞ α̂ = α.

We conclude this section by illustrating the results in Propositions 2 and 3 in the following

example in which agents can perform linear experiments.
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Example 4 (Linear experiments) Consider the information structures in Example 1.

Assume that F (θ) = θ with support [0, 1] and the cost function (used in Persico (2000))

is of the form

C(α) = K (α− α)2 , ∀α ∈ [α, 1],

where 0 < α < 1 and K ≥ 1/8α. Then, as we demonstrate in Appendix A.3, the first-order

approach is valid. In this case α̂ is such that

2K(α̂− α) =
n− 1

2n(n+ 1)
.

The left-hand side of the above equation is the marginal cost of information, which is strictly

increasing in α̂. The right-hand side is the agents’ marginal benefit from acquiring informa-

tion, which is strictly decreasing in n for n ≥ 2 and converges to 0 as n goes to infinity.

Hence, α̂ is strictly decreasing in n and goes to α as n goes to infinity. Finally,

πs′(α) = 2K [γα− (2γ − 1)α] .

If γ ≤ 1
2
, πs′(α) ≥ 0 for all α and therefore α∗ = α̂. If γ > 1

2
, πs′(α) is strictly decreasing in

α and therefore

α∗ = min

{
γα

2γ − 1
, α̂

}
.

Thus, if γ is sufficiently small or n is sufficiently large, α∗ = α̂, and the ex post efficient

mechanism is also ex ante efficient. If γ is sufficiently large or n is sufficiently small, the

optimal α∗ is strictly decreasing in γ, and goes to α as γ increases to 1.

4 Efficient asymmetric mechanisms

In this section, we relax the restriction that mechanisms treat all agents symmetrically

and all agents choose the same information structure in equilibrium. First, we show that the

result in Theorem 1 can be generalized (i.e. an ex ante efficient mechanism never withholds

the object). Second, when the information structures are uniformly supermodular ordered,

we provide conditions under which the socially optimal information choices are the same

for all agents and therefore a symmetric ex ante efficient mechanism exists. When these

conditions are not satisfied, we provide an example in which an asymmetric mechanism

generates higher expected social surplus than the optimal symmetric mechanism does.

We follow the same method used in Section 3 to solve the social planner’s problem. First,
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by the standard argument, (IC) holds if and only if

Qi(w) is non-decreasing in w, (MON)

and Ui(w) is absolutely continuous and satisfies the envelope condition. Next we consider the

relaxed problem of the social planner by replacing (IA) by the one-sided first-order conditions

Ew
[
−Hαi(w|α∗i )

h(w|α∗i )
Qi(w)

∣∣∣∣αi = α∗i

]
≤ C ′(α∗i ), ∀i. (IA′)

and focus on reduced form auctions. Later on, we show in the appendix that if α∗ is chosen

optimally, (IA′) holds with equality for all i. Let Q := (Q1, . . . , Qn), where Qi : [θ, θ]→ [0, 1]

is non-decreasing for all i. Let Wi := [w(0, α∗i ), w(1, α∗i )] denote the support of wi for all i.

By Theorem 3 in Mierendorff (2011), Q is implementable if and only if it satisfies

n∑
i=1

∫ w(1,α∗i )

wi

Qi(zi)dH(zi|α∗i ) ≤ 1−
n∏
i=1

H(wi|α∗i ), ∀w ∈
n∏
i=1

Wi. (F′)

Thus, given (MON), we can replace (F) by (F′). Finally, as in the symmetric case, an ex

ante efficient mechanism never withholds the object:

Theorem 3 Suppose that the information structures are supermodular ordered and α∗ and

(q, t) solve the relaxed problem of the social planner. Then

∑
i

qi(w) = 1 for almost all w ∈
n∏
i=1

[w(0, α∗i ), w(1, α∗i )]. (16)

Using Theorem 3 and the law of iterated expectations, the social planner’s objective

function can be rewritten as a functional of Q:

Ew

[∑
i

(wi + γ
∑
j 6=i

wj)qi(w)

∣∣∣∣∣αi = α∗i ∀i

]
=
∑
i

Ewi [ (1− γ)wiQi(wi)|αi = α∗i ] + nγµ.

Because the second term, nγµ, is a constant, we ignore it from here on. To summarize, the

social planner’s relaxed problem, denoted by (P ′), becomes:

max
α∗,Q

Ew

[∑
i

(1− γ)wiQi(wi)

∣∣∣∣∣αi = α∗i ∀i

]
−
∑
i

C(α∗i ), (P ′)
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subject to

n∑
i=1

∫ w(1,α∗i )

wi

Qi(zi)dH(zi|α∗i ) ≤ 1−
n∏
i=1

H(wi|α∗i ), ∀w ∈
n∏
i=1

Wi, (F′)

Qi(wi) is non-decreasing in wi, ∀i, (MON)

Ewi
[
−Hαi(wi|α∗i )

h(wi|α∗i )
Qi(wi)

∣∣∣∣αi = α∗i

]
≤ C ′(α∗i ), ∀i. (IA′)

In general, it is hard to solve (P ′) because both (F′) and (IA′) are much more complex

here than they are under the symmetric restriction. In the rest of this section, we focus on

the special case in which the information structures are uniformly supermodular ordered.

Analogous to Proposition 2, Proposition 4 below proves that it is not optimal for the

principal to encourage all the agents to acquire more information than they would under

the ex post efficient mechanism. In particular, if all agents choose the same information

structure (i.e. α∗1 = · · · = α∗n), (17) implies that α∗i ≤ α̂, where α̂ is defined by (13).

Proposition 4 Suppose that the second-order condition of the agents’ optimization problem

is satisfied and the information structures are uniformly supermodular ordered. Let α∗ be a

socially optimal information choices. Then α∗ satisfies the following condition: there exists

agent i such that

Ewi

[
−Hαi(wi|α∗i )

h(wi|α∗i )
∏
j 6=i

H(wi|α∗j )

∣∣∣∣∣α∗
]
≥ C ′(α∗i ). (17)

Furthermore, for any α∗ that satisfies the above condition, the expected social surplus is given

by

πs(α∗) = (1− γ)

[
µ+

n∑
i=1

b(α∗i )C
′(α∗i )

]
−
∑
i

C(α∗i ). (18)

Proposition 4 also gives an expression of the expected social surplus. Compare (18) with

(15). It follows immediately that if α◦ ≤ α̂, where α◦ is the unique solution to maxα∈[α,α](1−
γ)b(α)C ′(α) − C(α) and α̂ is defined by (13), the socially optimal information choices are

the same for all agents and a symmetric ex ante efficient mechanism exists:

Proposition 5 Suppose that the second-order condition of the agents’ optimization problem

is satisfied and the information structures are uniformly supermodular ordered. Suppose, in

addition, that α◦ ≤ α̂. Then the socially optimal information choices are the same for all

agents and a symmetric ex ante efficient mechanism exists.

The analysis in Section 3 suggests that the condition α◦ ≤ α̂ is more likely to be satisfied

when the number of agents is small or the level of interdependence is high. If α◦ > α̂, we
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give an example in which an asymmetric mechanism generates higher expected social surplus

that the optimal symmetric mechanism does.

Example 5 (Linear experiments) Consider Example 4. Let n = 2, α = 1/2 and K =

3/8 ≥ 1/8α. Then, as we demonstrate in Appendix A.3, the first-order approach is valid.

By Proposition 4, a socially optimal information choice α must be such that

α1 ≤
9α2

18α2 − 2
or α2 ≤

9α1

18α1 − 2
. (19)

When α satisfies (19), the expected social surplus is given by

πs(α) = (1− γ)

[
1

2
+

3

4
α1

(
α1 −

1

2

)
+

3

4
α2

(
α2 −

1

2

)]
− 3

8

(
α1 −

1

2

)2

− 3

8

(
α2 −

1

2

)2

.

In this case, α̂ is such that

3

4

(
α̂− 1

2

)
=

1

12
or α̂ =

11

18
.

Furthermore, (1−α)b(α)C ′(α)−C(α) = (1−γ)3
4
α(α− 1

2
)− 3

8
(α− 1

2
)2 has a unique maximizer

on [1
2
, 1]. If γ ≤ 1

2
, α◦ = 1; and if γ > 1

2
, α◦ = γ/(4γ − 2). By Proposition 5, if α◦ ≤ α̂ or

γ ≥ 11/13, the socially optimal information choices are the same for all agents.

Assume that γ < 11/13. In this case, the optimal symmetric mechanism is ex ante

efficient, and induces the following symmetric equilibrium: α1 = α2 = α̂. In this case, the

expected social surplus is given by

πs(α̂, α̂) =
192− 195γ

324
≈ 0.59− 0.60γ.

Consider the following asymmetric mechanism

q1(w1, w2) =

{
0 if max

{
7
32
, w1

}
< w2

1 if min
{
w1,

25
32

}
> w2

,

and q2(w1, w2) = 1−q1(w1, w2) for all (w1, w2) ∈ [0, 1]2. Given this mechanism, the following

information choices constitute an equilibrium: α∗1 = 9/16 and α∗2 = 1. Given α∗2 = 1, the

interim allocation rule of agent 1 is given by

Q1(w1) =


7
32

if w1 ∈
[
0, 7

32

]
w1 if w1 ∈

[
7
32
, 25
32

]
25
32

if w1 ∈
[
25
32
, 1
] .
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It is easy to verify that∫ w(1,α1)

w(0,α1)

−Hα(w1, α1)Q1(w1)dw1 − C ′(α1) = −8α1

12
+

3

8
.

Hence, it is optimal for agent 1 to choose α∗1 = 9/16. Similarly, given α∗1 = 9/16, the interim

allocation rule of agent 2 is given by

Q2(w2) =
16

9
w2 −

7

18
,∀w2 ∈ [0, 1].

It is easy to verify that∫ w(1,α2)

w(0,α2)

−Hα(w2, α1)Q2(w2)dw2 − C ′(α2) = −65α2

108
+

3

8
> 0, ∀α2 ∈

[
1

2
, 1

]
.

Hence, it is optimal for agent 2 to choose α∗2 = 1. In this case, the expected social surplus is

given by

πs(α∗1, α
∗
2) =

728− 923γ

1024
≈ 0.71− 0.90γ.

Clearly, if γ < 0.4, this asymmetric mechanism generates strictly higher expected social

surplus that the optimal symmetric mechanism does.

To obtain some intuition behind this result, fix α∗ and consider the ex post efficient

mechanism. If agent j acquires more information, the change of agent i’s marginal benefit

from acquiring information is negative:

Ewi

[
−Hαi(wi|α∗i )

h(wi|α∗i )
Hαj(wi|α∗j )

∏
k 6=i,j

H(wi|α∗k)

∣∣∣∣∣α∗
]

=Ewi

[
−(wi − µ)2h(wi|α∗j )

∏
k 6=i,j

H(wi|α∗k)

∣∣∣∣∣α∗
]
< 0.

This result suggests that the agents’ information acquisition decisions are strategic substi-

tutes. Hence, an asymmetric mechanism could possibly outperform the optimal symmetric

mechanism because, by encouraging one agent to acquire information, it reduces other agents’

incentives to do so. This is exactly the case in Example 5. This finding is also consistent

with Bergemann et al. (2009), who model information acquisition as a binary decision and

show that an agent’s value of being informed is decreasing in the number of informed agents.
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5 Conclusion

Consider the sale of a single object when agents have positively interdependent values and

can covertly acquire information at some cost before participating in a mechanism. Maskin

(1992), Bergemann and Välimäki (2002) and Bergemann et al. (2009), among others, have

shown that using the ex post efficient mechanism will give agents too strong incentives to

acquire information. In other words, there is a conflict between the provision of ex ante

efficient incentives to acquire information and the ex post efficient use of information. In

this paper, we show how to design ex ante efficient mechanisms to balance the two trade-offs.

We conclude by discussing potential directions for future work.

In this paper, we assume that all agents simultaneously acquire information before par-

ticipating in the mechanism. One important direction for future research is to allow for the

possibility of sequential information acquisitions. It is likely that the efficiency can be im-

proved if agents are asked to acquire information in turn, and one’s information acquisition

decision can depend on the signals received by those who take actions earlier. It is also

interesting to consider the impact of initial private information. In this paper we have only

considered static mechanisms in which agents only report their private information once.

In general, one can consider a dynamic mechanism in which agents report their private

information both before and after acquiring information.

One standard assumption in the auction literature we maintain here is that the payment

by an agent depends only on his report and not on his realized valuation. Although it is

true that in some cases the value of the auctioned asset is subjective and cannot be verified,

in many important applications such as the oil and gas lease auctions and the sales of a

financial or business asset, the benefits to the agents are contractible. For example, in U.S.

auctions for offshore oil and gas leases, the winner’s payment to the government is a bonus

plus a fraction of revenues from any oil and/or gas extracted. When selling a company

to an acquirer or soliciting venture capital, equity and other securities are commonly used.

Another important direction for future research is to consider mechanisms with contingent

payments.

A Omitted proofs in sections 2 and 3

Before proceeding to the proofs, we first define symmetric mechanisms formally. Let

σi,j : W n → W n denote the function that interchanges the ith and the jth coordinates, i.e.,

σi,j(w1, . . . , wn) = (w1, . . . , wi−1, wj, wi+1, . . . , wj−1, wi, wj+1, . . . , wn), ∀(w1, . . . , wn).
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We say that an allocation rule q is symmetric if q1 is such that q1(w) = q1(σi,j(w)) for all

i, j 6= 1 and all w, qi(w) = q1(σ1,i(w)) for all i all w and
∑

i qi(w) ≤ 1 for all w. We say

that a mechanism (q, t) is symmetric if its allocation rule q is symmetric.

Proof of Lemma 1. By construction, H(w(s, α)|α) = s for all s ∈ [0, 1] and α ∈ [α, α].

Taking derivative of both sides of the equation with respect to α yields

h(w(s, α)|α)wα(s, α) +Hα(w(s, α)|α) = 0,

or equivalently,

− Hα(w(s, α)|α)

h(w(s, α)|α)
= wα(s, α). (20)

Because the information structures are supermodular ordered, −Hα(w|α)/h(w|α) is strictly

increasing in w. Furthermore, w(s, α) is strictly increasing in s. Hence, wα(s, α) is strictly

increasing in s. Thus, for all s, s′ ∈ (0, 1), s′ > s and α′ > α′′ we have

w(s′, α′)− w(s′, α′′) =

∫ α′

α′′
wα(s′, α)dα

>

∫ α′

α′′
wα(s, α)dα

= w(s, α′)− w(s, α′′).

That is, w(·, ·) is strictly supermodular.

Derivation of equality (4). Supposing that agent i chooses αi, his expected payoff is∫ w(1,αi)

w(0,αi)

Ui(w)dH(w|αi)− C(αi)

=

∫ w(1,αi)

w(0,αi)

[
Ui(θ) +

∫ w

θ

Q(w̃)dw̃

]
dH(w|αi)− C(αi)

=Ui(θ) +

∫ w(1,αi)

θ

Q(w)dw −
∫ w(1,αi)

w(0,αi)

H(w|αi)Q(w)dw − C(αi)

=Ui(w(0, αi)) +

∫ w(1,αi)

w(0,αi)

[1−H(wi|αi)]Q(wi)dwi − C(αi),

where the first and the last equalities hold by the envelope condition (3) and the second

equality holds by integration by parts.

We say a function J(w) is quasi-monotone if w′ > w and J(w) > 0 imply J(w′) ≥ 0.17 In

other words, a quasi-monotone function J(w) crosses the line y ≡ 0 at most once and from

17See Karamardian and Schaible (1990).
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below, as w increases. The following result of Persico (2000) is useful for later proofs.

Lemma 7 (Lemma 1 in Persico (2000)) Let (c, d) be an interval of the real line, J be a

quasi-monotone function and Q be a non-decreasing function. Assume that for some measure

h on R we have
∫ d
c
J(w)dh(w) = 0. Then

∫ d
c
J(w)Q(w)dh(w) ≥ 0.

Proof of Lemma 2. Observe that a non-decreasing function is quasi-monotone. Because

both Q and −Hαi (wi|αi)
h(wi|αi) are non-decreasing on [w(0, αi), w(1, αi)], it suffices to show that

∫ w(1,αi)

w(0,αi)

Hαi(wi|αi)dwi = 0. (21)

On the one hand, by integration by parts,∫ w(1,αi)

w(0,αi)

H(wi|αi)dwi = wiH(wi|αi)
∣∣∣w(1,αi)w(0,αi)

−
∫ w(1,αi)

w(0,αi)

widH(wi|αi),

= w(1, αi)− µ.

Taking derivative with respect to αi yields

∂

∂αi

∫ w(1,αi)

w(0,αi)

H(wi|αi)dwi = wαi(1, αi). (22)

On the other hand, by the chain rule, we have

∂

∂αi

∫ w(1,αi)

w(0,αi)

H(wi|αi)dwi = wαi(1, αi) +

∫ w(1,αi)

w(0,αi)

Hαi(wi|αi)dwi. (23)

Comparing (22) and (23) proves (21). By Lemma 7, inequality (5) holds. If Q is constant,

the equality holds by (21).

Proof of Lemma 3. Define w[ := sup {wi |Y (w′i) > 0, ∀w(0, α∗) ≤ w′i ≤ wi}. By the

continuity of Y , we have Y (w[) = 0 and w[ > w(0, α∗). The proof is by construction. There

are four cases to consider.

Case I: Suppose that there exists w′i ∈ (w(0, α∗), w[) such that Q is discontinuous at w′i.

Let Q(w
′+
i ) denote the right-hand limit of Q at w′i and Q(w

′−
i ) the corresponding left-

hand limit. Let 0 < ε ≤ min
{

minw(0,α∗)≤wi≤w′i
Y (wi)

H(w′i|α∗)
, Q(w

′+
i )−Q(w

′−
i )
}

. Define Q̂ as

follows. If wi ≤ w(0, α∗), let Q̂(wi) := Q(wi); and if wi > w(0, α∗), let

Q̂(wi) := Q(wi) + εχ{wi≤w′i},
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0
w

Q
Q̂

w[iw′i

ε

(a) Case I

0
w

Q
Q̂

w[iw′i

ε

(b) Case II

Figure 3: Proof of Lemma 3

where χ{wi≤w′i} is an indicator function. (See Figure 3a for an illustration.) By construction,

Q̂(w) ≥ Q(w) for all w ∈ W and the inequality holds strictly on a positive measure set. It

is also clear that Q̂ satisfies (MON). We now verify that Q̂ satisfies (IA′) and (F′). Because

χ{wi≤w′i} is non-increasing on [w(0, α∗), w(1, α∗)], by Lemma 2, we have

E
[
−Hαi(wi|α∗)

h(wi|α∗)
Q̂(wi)

∣∣∣∣αi = α∗
]
,

=E
[
−Hαi(wi|α∗)

h(wi|α∗)
Q(wi)

∣∣∣∣αi = α∗
]

+ εE
[
−Hαi(wi|α∗)

h(wi|α∗)
χ{wi≤w′i}

∣∣∣∣αi = α∗
]
,

≤C ′(α∗) + 0 = C ′(α∗).

Hence, Q̂ satisfies (IA′). Finally, let

Ŷ (wi) :=

∫ θ

wi

[
H(z|α∗)n−1 − Q̂(z)

]
h(z|α∗)dz.

If wi ≤ w′i, Ŷ (wi) = Y (wi)− ε[H(w′i|α∗)−H(wi|α∗)] ≥ Y (wi)− εH(w′i|α∗) ≥ 0. If wi > w′i,

Ŷ (wi) = Y (wi) ≥ 0. Hence, Q̂ satisfies (F′).

Case II: Suppose that Q is continuous on [w(0, α∗), w[].

We first show that there exists w′i ∈ (w(0, α∗), w[) such that Q(w′i) < Q(w[). Suppose, to

the contrary, that Q(wi) = Q(w[) for all wi ∈ (w(0, α∗), w[). If Q(w[) ≥ H(w[|α∗)n−1,
Y (w(0, α∗)) =

∫ w[
w(0,α∗)

[H(z|α∗)n−1 − Q(z)]h(z|α∗)dz < 0, a contradiction. If Q(w[) <

H(w[|α∗)n−1, by the continuity ofQ andH, there exists δ > 0 such thatQ(wi) < H(wi|α∗)n−1
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for all wi ∈ [w[, w[ + δ]. Hence,

0 = Y (w[) =

∫ w[+δ

w[
[H(z|α∗)n−1 −Q(z)]h(z|α∗)dz + Y (w[ + δ) > Y (w[ + δ),

a contradiction. Thus, there exists w′i ∈ (w(0, α∗), w[) such that Q(w′i) < Q(w[).

By the continuity of Q, there exists w′′i ∈ (w′i, w
[) such that Q(w′′i ) = 1

2

(
Q(w′i) +Q(w[)

)
.

Let 0 < ε ≤ min
{

minw(0,α∗)≤wi≤w′′i
Y (wi)

H(w′′i |α∗)
, Q(w′′i )−Q(w′i)

}
. Let

Q̂(wi) :=


max{Q(w′i) + ε,Q(wi)} if wi > w′i,

Q(wi) + ε if w(0, α∗) < wi ≤ w′i,

Q(wi) if wi ≤ w(0, α∗).

(See Figure 3b for an illustration.) Note that if wi ≥ w′i
′, Q(wi) ≥ Q(w′i

′) ≥ Q(w′i) + ε.

Hence, Q̂(wi) = Q(wi) for wi ≥ w′i
′. By construction, Q̂(w) ≥ Q(w) for all w ∈ W and

the inequality holds strictly on a positive measure set. Clearly, Q̂ satisfies (MON). We

now verify that Q̂ satisfies (IA′) and (F′). It is easy to verify that Q̂ − Q is non-increasing

on [w(0, α∗), w(1, α∗)] and therefore Q̂ satisfies (IA′) by Lemma 2. Finally, if wi ≥ w′i
′,

Ŷ (wi) = Y (wi). If wi < w′i
′,

Ŷ (wi) =

∫ w[

wi

[
H(z|α∗)n−1 − Q̂(z)

]
h(z|α∗)dz,

=Y (wi)−
∫ w′i

′

wi

[
Q̂(z)−Q(z)

]
h(z|α∗)dz,

≥Y (wi)− ε [H(w′i
′|α∗)−H(wi|α∗)] ,

≥Y (wi)− εH(w′i
′|α∗) ≥ 0.

Hence, Q̂ satisfies (F′).

Case III: Suppose that Q is continuous on [w(0, α∗), w[) and Q(w[−) < H(w[|α∗)n−1.
Define R(wi) := Y (wi)/(H(w[|α∗)−H(wi|α∗)) for wi < w[. Then by L’Hopital’s rule,

lim
wi→w[−

R(wi) = H(w[|α∗)n−1 −Q(w[−) > 0.

Let 0 < ε ≤ min
{

infw(0,α∗)≤wi<w[ R(wi), Q(w[+)−Q(w[−)
}

. Define Q̂ as follows. If wi ≤
w(0, α∗), let Q̂(wi) := Q(wi); and if wi > w(0, α∗), let Q̂(wi) := Q(wi) + εχ{wi<w[}. By

construction, Q̂(w) ≥ Q(w) for all w ∈ W and the inequality holds strictly on a positive

measure set. Clearly, Q̂ satisfies (MON). We can verify that Q̂ satisfies (IA′) following
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the arguments in Case I. Finally, if wi < w[, Ŷ (wi) = Y (wi) − ε[H(w[|α∗) − H(wi|α∗)] ≥
Y (wi)−R(wi)[H(w[|α∗)−H(wi|α∗)] = 0. If wi ≥ w[, Ŷ (wi) = Y (wi) ≥ 0. Hence, Q̂ satisfies

(F′).

Case IV: Suppose that Q is continuous on [w(0, α∗), w[) and Q(w[−) ≥ Hn−1(w[|α∗).
We first show that Q(w[−) = Hn−1(w[|α∗). Suppose to the contrary that Q(w[−) >

Hn−1(w[|α∗). Then by the continuity of Q and H on [w(0, α∗), w[), there exists δ > 0 such

that Q(wi) > Hn−1(wi|α∗) for all wi ∈ (w[ − δ, w[). Then

Y (w[ − δ) =

∫ w[

w[−δ
[H(z|α∗)n−1 −Q(z)]h(z|α∗)dz + Y (w[) < 0,

a contradiction. Hence, Q(w[−) = Hn−1(w[|α∗). Second, we show that there exists w′i ∈
(w(0, α∗), w[) such that Q(w′i) < Q(w[−). Suppose to the contrary that Q(wi) = Q(w[−) for

all wi ∈ (w(0, α∗), w[), then Y (w(0, α∗)) =
∫ w[
w(0,α∗)

[Hn−1(z|α∗)−Q(z)]h(z|α∗)dz+Y (w[) < 0,

a contradiction. Hence, there exists w′i ∈ (w(0, α∗), w[) such that Q(w′i) < Q(w[−). The rest

of the proof follows from that of Case II.

Proof of Corollary 1. The social planner’s revenue is

n∑
i=1

Ew [ti(w)] =
n∑
i=1

Ewi

[
(1− γ)wiQi(wi) + Ew−i

[
γ

(
n∑
j=1

wj

)
qi(wi, w−i)

]
− Ui(wi)

]

=
n∑
i=1

Ewi
[(

(1− γ)wi −
1−H(wi|α∗)
h(wi|α∗)

)
Qi(wi)

]
+ nγµ−

n∑
i=1

Ui(θ),

where the last equality follows from Theorem 1 and the envelope condition (3). Let t̃i(w) :=

ti(w)+Ui(θ) for all i and w. Clearly, (IR) is satisfied. The social planner’s revenue becomes

n∑
i=1

Ew
[
t̃i(w)

]
=

n∑
i=1

Ewi
[(

(1− γ)wi −
1−H(wi|α∗)
h(wi|α∗)

)
Qi(wi)

]
+ nγµ

=
n∑
i=1

Ewi
[(

(1− γ)wi + γµ− 1−H(wi|α∗)
h(wi|α∗)

)
Qi(wi)

]
≥0,

where the last inequality follows from Lemma 7 because (1− γ)wi + γµ− 1−H(wi|α∗)
h(wi|α∗) is non-

decreasing in wi, Ewi
[
(1− γ)wi + γµ− 1−H(wi|α∗)

h(wi|α∗)

]
= 0 and Qi is non-decreasing.

Proof of Corollary 2. We prove the corollary by construction. For m = 0, 1, . . . , define
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Qm as follows

Qm(w) :=
1
n

[
H(wk|α∗)n −H(wk−1|α∗)n

]
H(wk|α∗)−H(wk−1|α∗)

if wk−1 ≤ w < wk,

where wk := w(0, α∗) + k[w(1, α∗)− w(0, α∗)]/2m for k = 0, 1, . . . , 2m. For k = 0, 1, . . . , 2m,

define Qm,k as follows

Qm,k(w) :=

{
Qm+1(w) if w ≤ wk

Qm(w) otherwise
.

Then Qm,0 = Qm and Qm,2m = Qm+1. It is easy to verify that, for all k = 0, 1, . . . , 2m,

Qm,k+1 −Qm,k is quasi-monotone and∫ w(1,α∗)

w(0,α∗)

[
Qm,k+1(w)−Qm,k(w)

]
h(w|α∗)dw =

1

n
− 1

n
= 0.

Furthermore, −Hα(w|α∗)/h(w|α∗) is non-decreasing. By Lemma 7,∫ w(1,α∗)

w(0,α∗)

−Hα(w|α∗)
h(w|α∗)

[
Qm,k+1(w)−Qm,k(w)

]
h(w|α∗)dw ≥ 0.

By induction, ∫ w(1,α∗)

w(0,α∗)

−Hα(w|α∗)
h(w|α∗)

[
Qm+1(w)−Qm(w)

]
h(w|α∗)dw ≥ 0.

If there exists m such that Qm satisfies (IA′) with equality, we are done. Otherwise, because∫ w(1,α∗)
w(0,α∗)

−Hα(w|α∗)Q0(w)dw = 0 < C ′(α∗) and

lim
m→∞

∫ w(1,α∗)

w(0,α∗)

−Hα(w|α∗)Qm(w)dw =

∫ w(1,α∗)

w(0,α∗)

−Hα(w|α∗)H(w|α∗)n−1dw > C ′(α∗),

there exists m such that∫ w(1,α∗)

w(0,α∗)

−Hα(w|α∗)Qm(w)dw < C ′(α∗) <

∫ w(1,α∗)

w(0,α∗)

−Hα(w|α∗)Qm+1(w)dw.

If there exists k such that Qm,k satisfies (IA′) with equality, we are done. Otherwise, there

exists k such that∫ w(1,α∗)

w(0,α∗)

−Hα(w|α∗)Qm,k(w)dw < C ′(α∗) <

∫ w(1,α∗)

w(0,α∗)

−Hα(w|α∗)Qm,k+1(w)dw.
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For each r ∈ [wk, wk+1], define Qm,k,r as follows

Qm,k,r(w) :=



Qm+1(w) if w < wk
1
n [H(r|α∗)n−H(wk|α∗)n]
H(r|α∗)−H(wk|α∗) if wk ≤ w < r

1
n [H(wk+1|α∗)n−H(r|α∗)n]
H(wk+1|α∗)−H(r|α∗) if r ≤ w < wk+1

Qm(w) if w ≥ wk+1

.

By construction, Qm,k,wk+1
= Qm,k+1 and Qm,k,wk = Qm,k. By continuity, there exists r ∈

[wk, wk+1] such that Qm,k,r satisfies (IA′) with equality. By Proposition 1, Qm,k,r solves

(P ′-α∗).
Derivation of Inequality (11). The proof is based on Toikka (2011). For the ease of
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notation, we suppress the dependence of ϕλX , ϕλX , Jλ
X

and J
λX

on λX . Then we have∫ w(1,α∗)

w(0,α∗)

zQ(z)h(z|α∗)dz

≤
∫ w(1,α∗)

w(0,α∗)

[
z + λX

Hα(z|α∗)
h(z|α∗)

]
Q(z)h(z|α∗)dz + λXC

′(α∗) (24)

=

∫ w(1,α∗)

w(0,α∗)

ϕλX (H(z|α∗))Q(z)dH(z|α∗) + λXC
′(α∗)

=

∫ w(1,α∗)

w(0,α∗)

[
ϕλX (H(z|α∗))− ϕλX (H(z|α∗))

]
Q(z)dH(z|α∗)

+

∫ w(1,α∗)

w(0,α∗)

ϕλX (H(z|α∗))Q(z)dH(z|α∗) + λXC
′(α∗)

=−
∫ w(1,α∗)

w(0,α∗)

[
JλX (H(z|α∗))− JλX (H(z|α∗))

]
dQ(z)

+

∫ w(1,α∗)

w(0,α∗)

ϕλX (H(z|α∗))Q(z)dH(z|α∗) + λXC
′(α∗) (25)

≤
∫ w(1,α∗)

w(0,α∗)

ϕλX (H(z|α∗))Q(z)dH(z|α∗) + λXC
′(α∗) (26)

=

∫ w(1,α∗)

w(0,α∗)

ϕλX (H(z|α∗))H(z|α∗)n−1dH(z|α∗) +

∫ w(1,α∗)

w(0,α∗)

ϕλX (H(z|α∗))Y ′(z)dz + λXC
′(α∗)

(27)

≤
∫ w(1,α∗)

w(0,α∗)

ϕλX (H(z|α∗))H(z|α∗)n−1dH(z|α∗)−
∫ w(1,α∗)

w(0,α∗)

Y (z)dϕλX (H(z|α∗)) + λXC
′(α∗)

(28)

≤
∫ w(1,α∗)

w(0,α∗)

ϕλX (H(z|α∗))H(z|α∗)n−1dH(z|α∗) + λXC
′(α∗). (29)

Here, inequality (24) holds because λX ≥ 0 and Q satisfies (IA′) and the equality holds if

and only if Q satisfies (IA′) with equality. Equality (25) follows from integration by parts.

Inequality (26) holds because JλX ≥ J
λX

and the equality holds if and only if Q satisfies the

first pooling property. Equality (27) follows from the definition of Y . Inequality (28) follows

from integration by parts and the fact that Y ((w(0, α∗))) ≥ 0 and the equality holds if and

only if Y (w(0, α∗)) = 0. Finally, inequality (29) holds because Y ≥ 0 and the equality holds

if and only if Q satisfies the second pooling property.
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A.1 Proof of Lemma 5

The proof uses a network-flow approach (see Che et al. (2013) for detailed discussions of

this approach). For simplicity, we prove here the result for the case of finite W . By a similar

argument to the proof of Theorem 5 in Che et al. (2013), the result generalizes to the case

of continuum W . A direct and more involved proof for the continuum case based on Border

(1991) is available upon request.

We abuse notation a bit and let f denote the probability mass function in the case of

finite W . In this case, (8) becomes:

∑
w∈An

n∏
i=1

f(wi)ρ(w) ≤ n
∑
w∈A

f(w)Q(w) ≤
∑
w∈An

n∏
i=1

f(wi), ∀A ⊂ W. (30)

The proof is similar to that of Theorem 3 in Che et al. (2013). Before proceeding to the

proof, we first introduce some notations and definitions. Let Di := {(wi, i)|wi ∈ W} and

D := ∪ni=1Di, where the latter is known as the disjoint union of the individual posterior

mean spaces. To simplify notation, we write typical elements of D as wi instead of (wi, i).

Given an interim allocation rule Q, define a circulation network (N,E, k, d) as follows. The

node set is N := D ∪W n ∪ {◦} consisting of demand nodes D, supply nodes W n, and a

circulation node ◦. Directed edges E ⊂ N × N specify the pairs of nodes that can carry

flows. There are three different kinds of edges:

• Edges from supply nodes to demand nodes: (w̃, wi) ∈ E if w̃i = wi.

• Edges from demand nodes to the circulation node ◦: (wi, ◦) ∈ E for all wi ∈ D.

• Edges from the circulation node ◦ to supply nodes: (◦,w) ∈ E for all w ∈ W n.

Let d(ν,N ′) and k(ν,N ′) denote a lower and upper bound for the total flow from node ν to

subset N ′ ⊂ N\{ν}. There are three different kinds of flow capacities:

• Flow capacities from supply nodes: For each supply node w ∈ W n, let d(w, N ′) =∏n
i=1 f(wi)ρ(w) if N ′ ⊃ {w1, . . . , wn} or else d(w, N ′) = 0; and let k(w, N ′) =∏n
i=1 f(wi) if N ′ ∩ {w1, . . . , wn} 6= ∅ or else k(w, N ′) = 0.

• Flow capacities from demand nodes: For each demand node wi ∈ D, let k(wi, N
′) =

d(wi, N
′) = f(wi)Q(wi) if ◦ ∈ N ′ or else k(wi, N

′) = d(wi, N
′) = 0.

• Flow capacities from ◦: Let d(◦, N ′) = 0 and k(◦, N ′) = K for some K > 0 sufficiently

large.
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A feasible circulation flow on (N,E, k, d) is a function ζ : E → R+ that satisfies the capacity

constraints

d(ν,N ′) ≤
∑

ν′∈N ′:(ν,ν′)∈E

ζ(ν, ν ′) ≤ k(ν,N ′), ∀ν ∈ N,∀N ′ ⊂ N\{ν},

and the flow conservation law∑
ν′:(ν,ν′)∈E

ζ(ν, ν ′) =
∑

ν′:(ν′,ν)∈E

ζ(ν ′, ν), ∀ν ∈ N.

By Theorem 1 in Che et al. (2013), an interim allocation rule Q is implementable by an ex

post allocation rule q satisfying
∑n

i=1 qi(w) ≥ ρ(w) for all w if and only if there exists a

feasible circulation flow for the network (N,E, k, d) defined above. It is easy to verify that

for every ν ∈ N , k(ν, ·) and d(ν, ·) are paramodular :

1. k(ν, ·) is submodular : For any N ′, N ′′ ⊂ N , k(ν,N ′) + k(ν,N ′′) ≥ k(ν,N ′ ∪ N ′′) +

k(ν,N ′ ∩N ′′).

2. d(ν, ·) is supermodular : For any N ′, N ′′ ⊂ N , d(ν,N ′) + d(ν,N ′′) ≤ d(ν,N ′ ∪ N ′′) +

d(ν,N ′ ∩N ′′).

3. k(ν, ·) and d(ν, ·) are compliant : For anyN ′, N ′′ ⊂ N , k(ν,N ′)−d(ν,N ′′) ≥ k(ν,N ′\N ′′)−
d(ν,N ′′\N ′).

Hence, by Theorem 1 in Hassin (1982), a feasible circulation flow ζ : E → R+ exists if and

only if ∑
ν∈N\N ′

d(ν,N ′) ≤
∑
ν∈N ′

k(ν,N\N ′), ∀N ′ ⊂ N, (31)

which requires that the sum of lower bounds on the flows entering N ′ does not exceed the

sum of upper bounds on the flows exiting N ′.

Necessity : Suppose that the interim allocation rule Q is the reduced form of an ex post

allocation rule q satisfying
∑n

i=1 qi(w) ≥ ρ(w) for all w. Then, by Theorem 1 in Che et al.

(2013) and Theorem 1 in Hassin (1982), (31) holds. Let N ′ = ∪ni=1{(wi, i)|wi ∈ A} ⊂ D,
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where A ⊂ W is a measurable set. The right-hand side of (31) becomes∑
ν∈N ′

k(ν,N\N ′) =
∑
wi∈N ′

k(wi, ◦)

=
∑
wi∈N ′

f(wi)Q(wi)

= n
∑
w∈A

f(w)Q(w)

and the left-hand side of (31) becomes∑
ν∈N\N ′

d(ν,N ′) =
∑

w:{wi}⊂N ′
d(w, N ′)

=
∑
w∈An

n∏
i=1

f(wi)ρ(w),

which proves the first inequality in (30). Let N ′ = N\∪ni=1 {(wi, i)|wi ∈ A}. The right-hand

side of (31) becomes

∑
ν∈N ′

k(ν,N\N ′) =
∑
w∈An

n∏
i=1

f(wi)

and the left-hand side of (31) becomes

∑
ν∈N\N ′

d(ν,N ′) =
n∑
i=1

∑
wi∈A

d(wi, ◦)

= n
∑
w∈A

f(w)Q(w),

which proves the second inequality in (30).

Sufficiency : Because ρ is symmetric, by a similar argument to that in the proof of

Theorem 7 in Che et al. (2013), (30) holds if and only if

∑
w∈

∏
i Ai

n∏
i=1

f(wi)ρ(w) ≤
n∑
i=1

∑
wi∈Ai

f(wi)Q(wi) ≤
∑

w∈∪i(Ai×Wn−1)

n∏
i=1

f(wi), ∀
n∏
i=1

Ai ⊂ W n.

(32)

For completeness, we include a proof of this claim in Lemma 8 below. In what follows, we

show that (32) implies (31). Hence, (30) implies (31). Then sufficiency follows from Theorem

1 in Hassin (1982) and Theorem 1 in Che et al. (2013).
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Fix N ′ ⊂ N . Suppose first that ◦ /∈ N ′. Let Ai = N ′ ∩Di for all i. In this case,∑
ν∈N ′

d(ν,N ′) = d(◦, N ′ ∩W n) +
∑

w∈Wn\N ′
d(w, N ′ ∩D)

=
∑

w∈Wn\N ′
d(w, N ′ ∩D)

≤
∑
w∈Wn

d(w, N ′ ∩D)

=
∑

w∈
∏n
i=1 Ai

d(w, N ′ ∩D)

=
∑

w∈
∏n
i=1 Ai

n∏
i=1

f(wi)ρ(w)

≤
n∑
i=1

∑
wi∈Ai

f(wi)Q(wi)

=
∑

wi∈D∩N ′
k(wi, ◦)

=
∑
ν∈N ′

k(ν,N\N ′).

Suppose next ◦ ∈ N ′. Then if W n * N ′, we have
∑

ν∈N ′ k(ν,N\N ′) ≥ k(◦, N\N ′) = K >∑
ν∈N\N ′ d(ν,N ′) for K sufficiently large. Otherwise, if W n ⊂ N ′, then let Ai = Di\N ′ for

all i and ∑
ν∈N ′

k(ν,N\N ′) =
∑

w∈∪i(Ai×Wn−1)

k(w, D\N ′)

=
∑

w∈Ai×Wn−1

n∏
i=1

f(wi)

≥
n∑
i=1

∑
wi∈Ai

f(wi)Q(wi)

=
∑

ν∈D\N ′
d(ν,N ′).

Lemma 8 Suppose that all the condition in Lemma 5 are satisfied. (30) holds if and only

if (32) holds.

Proof. Clearly, if (32) holds, (30) holds. Suppose that (30) holds. We prove here only the

first inequality in (30). Virtually the same argument can be applied to prove the second

inequality in (32).
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Suppose, to the contrary, that there exists
∏n

i=1Ai ⊂ W n such that the first inequality

in (32) is violated. Suppose that
∏n

i=1Ai is minimal in the sense that for all proper subsets∏n
i=1A

′
i (

∏n
i=1Ai, the first inequality in (32) holds. Let A := ∪iAi. We want to show that

the first inequality in (30) is violated for A, which is a contradiction.

To show this, we show that starting from
∏n

i=1Ai , we can construct a finite sequence of

sets
∏n

i=1Ai = S 1 ( S 2 ( · · · ( SM = A
n

such that the first inequality in (32) is violated

for all S m. The sequence is constructed inductively:

Step 1. Let S 1 :=
∏n

i=1Ai.

Step m. If S m−1 = A
n
, we are done. Otherwise, there exist j, k ∈ {1, . . . , n} such that

Bj := Aj\S m−1
k 6= ∅ or Bk := Ak\S m−1

j 6= ∅. Let S m := (S m−1
j ∪ Bk) × (S m−1

k ∪ Bj) ×∏
i 6=j,k S m−1

i .

Because there are a finite number of agents, the construction stops after a finite number

of steps. Next we show that if the first inequality in (32) is violated for S m, it is also

violated for S m+1. Recall that the first inequality in (32) is violated for
∏n

i=1Ai:

n∑
i=1

∑
wi∈Ai

f(wi)Q(wi) <
∑

w∈
∏n
i=1 Ai

n∏
i=1

f(wi)ρ(w) (33)

Because
∏n

i=1Ai is chosen minimally, we have

n∑
i=1

∑
wi∈Ai

f(wi)Q(wi)−
∑
wj∈Bj

f(wj)Q(wj)−
∑
wk∈Bk

f(wk)Q(wk)

≥
∑

w∈(Aj\Bj)×(Ak\Bk)×
∏
i 6=j,k Ai

n∏
i=1

f(wi)ρ(w).

Hence, ∑
wj∈Bj

f(wj)Q(wj) +
∑
wk∈Bk

f(wk)Q(wk)

<
∑

w∈
∏n
i=1 Ai

n∏
i=1

f(wi)ρ(w)−
∑

w∈(Aj\Bj)×(Ak\Bk)×
∏
i 6=j,k Ai

n∏
i=1

f(wi)ρ(w).
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For S m+1 = (S m
j ∪Bk)× (S m

k ∪Bj)×
∏

i 6=j,k S m
i , we have

n∑
i=1

∑
wi∈Sm

i

f(wi)Q(wi) +
∑
wj∈Bk

f(wj)Q(wj) +
∑
wk∈Bj

f(wk)Q(wk)

=
n∑
i=1

∑
wi∈Sm

i

f(wi)Q(wi) +
∑
wj∈Bj

f(wj)Q(wj) +
∑
wk∈Bk

f(wk)Q(wk)

<
∑
w∈Sm

n∏
i=1

f(wi)ρ(w) +
∑

w∈Aj×Ak×
∏
i 6=j,k Ai

n∏
i=1

f(wi)ρ(w)−
∑

w∈(Aj\Bj)×(Ak\Bk)×
∏
i 6=j,k Ai

n∏
i=1

f(wi)ρ(w)

=
∑
w∈Sm

n∏
i=1

f(wi)ρ(w) +
∑

w∈Ak×Aj×
∏
i 6=j,k Ai

n∏
i=1

f(wi)ρ(w)−
∑

w∈(Ak\Bk)×(Aj\Bj)×
∏
i6=j,k Ai

n∏
i=1

f(wi)ρ(w)

≤
∑
w∈Sm

n∏
i=1

f(wi)ρ(w) +
∑

w∈(Sm
j ∪Bk)×(Sm

k ∪Bj)×
∏
i 6=j,k Sm

i

n∏
i=1

f(wi)ρ(w)

−
∑

w∈Sm
j ×Sm

k ×
∏
i 6=j,k Sm

i

n∏
i=1

f(wi)ρ(w)

=
∑

w∈Sm+1

n∏
i=1

f(wi)ρ(w),

where the fourth line holds because ρ is symmetric, and the fifth line holds because

∑
w∈

∏n
i=1 Ai

n∏
i=1

f(wi)ρ(w)

is supermodular over
∏n

i=1Ai.

A.2 Solving (P ′-α∗)

Throughout Appendix A.2 we assume that all the conditions in Theorem 2 are satisfied.

Recall that the sub-problem (P ′-α∗) is

V (α∗) := max
Q

E [wQ(w)|α∗] ,
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subject to

Y (w) :=

∫ θ

w

[H(z|α∗)n−1 −Q(z)]h(z|α∗)dz ≥ 0, ∀w ∈ [θ, θ]. (F′)

Q(w) is non-decreasing in w, (MON)

E
[
−Hα(w|α∗)
h(w|α∗)

Q(w)

∣∣∣∣α∗] ≤ C ′(α∗). (IA′)

For brevity, denote w(0, α∗) by w, w(1, α∗) by w, h(w|α∗) by h(w), H(w|α∗) by H(w) and

Hα(w|α∗) by Hα(w). Let X(w) :=
∫ w
0
Hα(z)Q(z)dz for all w ∈ [w,w]. Then this is a control

problem with state variables X, Y and Q, and a control variable a ≥ 0. The evolution of

the state variables is governed by

X ′(w) = Hα(w)Q(w), (34)

Y ′(w) = −[H(w)n−1 −Q(w)]h(w), (35)

Q′(w) = a(w), (36)

where the last equality holds if Q(w) is differentiable at w. The non-negativity constraint

for a guarantees that Q is non-decreasing. This implies some regularity on Q, but still leaves

some problems to apply control theory directly. First, we have to allow for (upward) jumps in

the state variable Q. Second, Q is not guaranteed to be piecewise continuous and piecewise

continuously differentiable.

These problems can be circumvented by solving the maximization problem under the

additional restriction that Q is Lipschitz continuous with global Lipschitz constant K:

Q ∈ LK := {Q : W → [0, 1]||Q(z)−Q(z′)| ≤ K|z − z′| ∀z, z′ ∈ [0, 1]} .

We define the maximization problem (PK-α∗) as (P ′-α∗) subject to the additional constraint

Q ∈ LK .

We say that Q is a feasible solution of (P ′-α∗) if it satisfies (MON), (F′) and (IA′), and

an optimal solution of (P ′-α∗) if it maximizes E [wQ(w)|α∗] subject to (MON), (F′) and

(IA′). Similarly, we say that Q ∈ LK is a feasible solution of (PK-α∗) if it satisfies (MON),

(F′) and (IA′), and an optimal solution of (PK-α∗) if it maximizes E [wQ(w)|α∗] subject to

(MON), (F′) and (IA′).

Lemma 9 in Appendix A.2.1 shows that an optimal solution of (P ′-α∗) exists, and for

every K > 0, an optimal solution of (PK-α∗) exists. Lemma 10 in Appendix A.2.1 shows

that there exists an optimal solution of (P ′-α∗), which is the pointwise limit of the optimal
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solutions of (PK-α∗) as K goes to infinity.

The rest of Appendix A.2 is organized as follows. Appendix A.2.1 introduces and proves

Lemmas 9 and 10. Appendix A.2.2 gives the necessary conditions that an optimal solution

of (PK-α∗) must satisfy. Appendix A.2.3 proves Theorem 2. Appendix A.2.4 proves Lemma

6.

A.2.1 Existence of optimal solutions

Before introducing and proving Lemmas 9 and 10, we first introduce some notations. We

abuse notation a bit and let h denote the probability measure on W corresponding to H(w).

In what follows, let L2(h) denote the set of measurable functions whose absolute value raised

to the 2nd power has finite integral. For brevity, denote L2(h) by L2. Because L2 is the

dual of L2 under the duality 〈f, g〉 = Ew [f(w)g(w)|α = α∗], topologize L2 with its weak∗, or

σ(L2, L2), topology.

Lemma 9 The following two statements are true.

1. An optimal solution of (P ′-α∗) exists.

2. For every K > 0, an optimal solution of (PK-α∗) exists.

Proof. The proof is based on Mierendorff (2009).

1. Let {Qν} be a sequence of feasible solutions of (P ′-α∗) such that∫ w

w

zQν(z)h(z)dz → V (α∗).

By Helly’s selection theorem, there exists a subsequence {Qνκ} and a non-decreasing

function Q such that Qνκ converges pointwise to Q. Let D collect all Q : W → [0, 1]

that satisfies (F′), (MON) and (IA′). Consider D as a subset of L2. Recall that h is

the probability measure on W corresponding to H(z). Then D is σ(L2, L2) compact

by a proof similar to that of Lemma 5.4 in Border (1991) and Lemma 8 in Mierendorff

(2011). Therefore, after taking subsequences again, Qνκ converges to Q in σ(L2, L2)

topology and Q ∈ D . Because z ∈ L2 and h ∈ L2, the weak convergence of {Qνκ}
implies that ∫ w

w

zQ(z)h(z)dz = V (α∗).
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2. Let {Qν} be a sequence of feasible solutions of (PK-α∗) such that∫ w

w

zQν(z)h(z)dz → V K(α∗).

After taking subsequences, we can assume that Qν converges to Q pointwise and in

σ(L2, L2) topology, and Q ∈ D as in part 1. Because Qν ∈ LK , for all z, z′ ∈ W ,

|Q(z)−Q(z′)| = lim
ν→∞
|Qν(z)−Qν(z′)| ≤ K|z − z′|.

Hence, Q ∈ LK .

Lemma 10 Let {QK} be a sequence of optimal solutions of (PK-α∗) where K →∞. Then

there exists a feasible solution Q of (P ′-α∗) and a subsequence QKν such that QKν converges

to Q for almost every w ∈ W . Furthermore, Q is optimal, i.e.,∫ w

w

zQ(z)h(z)dz = V (α∗).

Proof. The proof is based on Reid (1968) and Mierendorff (2009). After taking a subse-

quence, we can assume that QK converges pointwise to a feasible solution Q̂ of (P ′-α∗) (see

the proof of Lemma 9). To show the optimality of Q̂, let Q be an optimal solution of (P ′-α∗).
We can extend Q to R by setting Q(z) := 0 for z < w and Q(z) := 1 for z > w. Define

Qd : R→ [0, 1] as

Qd(z) :=
1

d

∫ z

z−d
Q(ζ)dζ, ∀z ∈ R.

By the Lebesgue differentiation theorem (see, e.g., Theorem 3.21 in Folland (1999)), Qd(z)→
Q(z) for almost every z ∈ W as d → 0. Because Q is non-decreasing and Q(z) ∈ [0, 1] for

all z, Qd is non-decreasing, Qd ≤ Q, and Qd(z) ∈ [0, 1] for all z. Furthermore, Qd ∈ L
1
d : For
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all z > z′,

0 ≤ Qd(z)−Qd(z
′) =

1

d

(∫ z

z−d
Q(ζ)dζ −

∫ z′

z′−d
Q(ζ)dζ

)

=
1

d

(∫ z

z′
Q(ζ)dζ −

∫ z−d

z′−d
Q(ζ)dζ

)
≤1

d

∫ z

z′
Q(ζ)dζ

≤1

d
(z − z′).

Finally, Qd satisfies (F′) because Qd ≤ Q and Q satisfies (F′).

Define Q̃d := Qd if −
∫ w
w
Hαi(z)Qd(z)dz ≤ C ′(α∗) and otherwise Q̃d := βdQd+(1−βd)/n,

where

βd =
C ′(α∗)

−
∫ w
w
Hαi(z)Qd(z)dz

.

Then by Lemma 2, −
∫ w
w
Hαi(z)Q̃d(z)dz ≤ C ′(α∗). Thus, Q̃d is a feasible solution of (PK-α∗),

where K = 1/d. Because βd → 0, Q̃d → Q almost everywhere as d→ 0. By the dominated

convergence theorem,∫ w

w

zQ̃d(z)h(z)dz →
∫ w

w

zQ(z)h(z)dz, as d→ 0

and ∫ w

w

zQK(z)h(z)dz →
∫ w

w

zQ̂(z)h(z)dz, as K →∞.

Let d = 1/K. Then, for all K, Q̃d is a feasible solution of (PK-α∗) and therefore∫ w

w

zQ̃d(z)h(z)dz ≤
∫ w

w

zQK(z)h(z)dz.

Hence, ∫ w

w

zQ̂(z)h(z)dz =

∫ w

w

zQ(z)h(z)dz.

This completes the proof.
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A.2.2 Solving (PK-α∗)

In this subsection, we derive the necessary conditions that an optimal solution of (PK-α∗)

must satisfy. The problem (PK-α∗) can be summarized as follows:

max
X,Y,Q,a

∫ w

w

zQ(z)h(z)dz, (PK-α∗)

subject to

X ′(z) = Hα(z)Q(z), (34)

Y ′(z) = −[H(z)n−1 −Q(z)]h(z), (35)

Q′(z) = a(z), (36)

X(w) = 0, X(w) ≥ −C ′(α∗), (37)

Y (w) = 0, Y (w) = 0, (38)

Q(w) ≥ 0, Q(w) ≤ 1, (39)

0 ≤ a(z) ≤ K, (40)

Y (z) ≥ 0. (41)

We say that some property holds virtually everywhere if the property is fulfilled at all z except

for a countable number of z’s. We use the following abbreviation for “virtually everywhere”:

v.e. By Theorem 6.7.15 in Seierstad and Sydsæter (1987), we have

Lemma 11 Let (X, Y,Q, a) be an admissible pair that solves (PK-α∗). Then there exist a

number λ0, vector functions (λX , λ̌Y , λQ) and (η
a
, ηa), and a non-decreasing function ηY , all
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having one-sided limits everywhere, such that the following condition holds:

λ0 = 0 or λ0 = 1, (42)

(λ0, λX(z), λ̌Y (z), λQ(z), ηY (w)− ηY (w)) 6= 0, ∀z, (43)

λQ(z)a(z) ≥ λQ(z)a, ∀a ∈ (0, K), v.e. (44)

λQ(z)− ηa(z) + η
a
(z) = 0, v.e. (45)

ηY is constant on any interval where Y > 0. (46)

λX and λQ are continuous. (47)

λ′X(z) = 0, v.e. (48)

λ′Q(z) = −
[
λ0z + λX(z)

Hα(z)

h(z)
+ λ̌Y (z)

]
h(z) + ηY (z)h(z), v.e. (49)

λ̌Y (z) + ηY (z) is continuous, (50)

λ̌′Y (z) + η′Y (z) = 0, v.e. (51)

λX(w) ≥ 0(= 0 if X(w) > −C ′(α∗)), (52)

λQ(w) ≤ 0(= 0 if Q(w) < 1), (53)

λQ(w) ≤ 0(= 0 if Q(w) > 0). (54)

η
a
(z) ≥ 0(= 0 if a(z) > 0), (55)

ηa(z) ≥ 0(= 0 if a(z) < K). (56)

In what follows, we assume that (X, Y,Q, a) is an admissible pair that solves (PK-α∗) and

(X, Y,Q, a, λ0, λX , λ̌Y , λQ, ηa, ηa, ηY ) satisfy the conditions in Lemma 11. We begin the anal-

ysis by simplifying the conditions in Lemma 11.

Because λX is continuous and λ′X(z) = 0 virtually everywhere, λX(z) is constant on

[w,w]. We abuse notation a bit and denote this constant by λX . Then (52) is equivalent to

λX ≥ 0(= 0 if X(w) > −C ′(α∗)).

Similarly, because λ̌Y +ηY is continuous and λ̌′Y (z)+η′Y (z) = 0 virtually everywhere, λ̌Y (z)+

ηY (z) is constant on [w,w]. We can assume without loss of generality that λ̌Y (z)+ηY (z) = 0

for all z ∈ [w,w]. Let λY := 2λ̌Y . Then ηY = −λY /2 and condition (46) is equivalent to

λY (z) is constant on any interval where Y (z) > 0, (57)
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and (49) is equivalent to

λ′Q(z) = −
[
λ0z + λX(z)

Hαi(z)

h(z)
+ λY (z)

]
h(z), v.e.

Furthermore, ηY is non-decreasing if and only if λY is non-increasing. Because λY has one-

sided limits everywhere, we can assume without loss of generality that λY (w) = limz→w λY (z)

and λY (w) = limz→w λY (z). Finally, (44), (45), (55) and (56) can be simplified to for virtually

all z ∈ (w,w): If 0 < a(z) < K, λQ(z) = ηa(z) = η
a
(z) = 0. If a(z) = 0,ηa(z) = 0 and

−η
a
(z) = λQ(z) ≤ 0. If a(z) = K, η

a
(z) = 0 and ηa(z) = λQ(z) ≥ 0.

Then the conditions in Lemma 11 can be simplified as follows:

Corollary 3 Let (X, Y,Q, a) be an admissible pair that solves (PK-α∗). If (X, Y,Q, a) is

optimal, there exist a constant λX , a continuous and piecewise continuously differentiable

function λQ, and a non-increasing function λY such that the following holds:

λX ≥ 0 (= 0 if X(w̄) > −C ′(α∗)). (58)

λ′Q(z) = −
[
z + λX

Hαi(z)

h(z)
+ λY (z)

]
h(z), v.e. (59)

λY is constant on any interval where Y > 0. (60)

λQ(w) = 0. (61)

λQ(w) = 0. (62)

a(z) =


= 0 if λQ(z) ≤ 0,

∈ [0, K] if λQ(z) = 0,

= K if λQ(z) ≥ 0.

v.e. (63)

Proof. We prove Corrollary 3 by proving the following two lemmas.

Lemma 12 λQ(w) = λQ(w) = 0.

Proof. By the transversality condition (54), λQ(w) ≤ 0 and the equality holds if Q(w) > 0.

Suppose, to the contrary, that λQ(w) < 0. Then Q(w) = 0. By continuity there exists δ > 0

such that λQ(z) < 0 for all z ∈ (w,w + δ). Hence, by (44), a(z) = 0 for all z ∈ (w,w + δ).

This implies that Q(z) = 0 for all z ∈ (w,w + δ). Let z ∈ (w,w + δ), then

0 = Y (w) =

∫ z

w

H(ζ)n−1h(z)dz + Y (z) > Y (z),

a contradiction. Hence, λQ(w) = 0. A similar argument proves that λQ(w) = 0.
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Lemma 13 (Non-triviality) λ0 = 1.

Proof. Suppose, to the contrary, that λ0 = 0. Then

λ′Q(z) = −
[
λX

Hα(z)

h(z)
+ λY (z)

]
h(z), v.e.

Hence,

λQ(w) =λQ(w)−
∫ w

w

[
λX

Hα(z)

h(z)
+ λY (z)

]
h(z)dz,

=λQ(w)−
∫ w

w

λY (z)h(z)dz.

Because λQ(w) = λQ(w) = 0, we have∫ w

w

λY (z)h(z)dz = 0.

Because λY is non-increasing, it must be that λY (w) ≥ 0 and λY (w) ≤ 0.

We argue that λX = 0. Suppose, to the contrary, that λX > 0. Then because Hαi(z)/h(z)

is strictly decreasing and λY (z) is non-increasing, λQ(H−1(·)) is strictly convex. Hence,

λQ(z) < 0 for all z ∈ (w,w), and therefore a(z) = 0 for all z ∈ (w,w). That is, Q is

constant. However, if Q is constant, X(w) = 0 > −C ′(α∗), a contradiction to that λX > 0.

Hence, λX = 0 and therefore

λQ(z) = −
∫ z

w

λY (ζ)h(ζ)dζ.

Suppose that λY (w) = λY (w) = 0, then λY (z) = 0 for all z ∈ (w,w). Hence, λQ(z) = 0

for all z ∈ (w,w) and ηY (w)− ηY (w) = −λY (w)/2 + λY (w)/2 = 0. Then

(λ0, λX(z), λY (z), λQ(z), ηY (w)− ηY (w)) = 0, ∀z,

which is a contradiction to (43). Hence, λY (w) > 0 and λY (w) < 0. Thus, λQ(z) < 0 for

all z ∈ (w,w) and therefore Q is constant. Hence, Y (z) > 0 for all z ∈ [w,w]. This, by

(57), implies that λY is constant on (w,w), which is a contradiction to the fact that that

λY (w) > 0 and λY (w) < 0. Hence, λ0 = 1.

This completes the proof of Corollary 3.

Before proceeding, we first introduce some notations and proves two technical lemmas

(Lemmas 14 and 16) that will be useful for later proof. For the ease of notation, we suppress
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the dependence of ϕλX , JλX , ϕλX and J
λX

on α∗. For each w ∈ W , define

mY (w) := −
∫ w

w

λY (z)h(z)dz.

It follows from (59) that for any z, z ∈ W and z < z, we have

λQ(z) =λQ(z)−
∫ z

z

[
z + λX

Hαi(z)

h(z)
+ λY (z)

]
h(z)dz,

=λQ(z)−
∫ z

z

[
ϕλX (H(z)) + λY (z)

]
h(z)dz.

If z = w,

λQ(z) = λQ(w)− JλX (H(z)) +mY (z). (64)

Hence, (63) can be rewritten as, for virtually all z ∈ (w,w),

a(z) =


= 0 if λQ(w) +mY (z) ≤ JλX (H(z)),

∈ [0, K] if λQ(w) +mY (z) = JλX (H(z)),

= K if λQ(w) +mY (z) ≥ JλX (H(z)).

Lemma 14 For all t ∈ [0, 1],

λQ(w) +mY (H−1(t)) ≥ J
λX

(t).

Proof. The proof of Lemma 14 uses the following lemma.

Lemma 15 (Reid) Suppose that λQ(w) +mY (H−1(t)) = JλX (t) for t ∈ {t, t}. Let a, b ∈ R
and l(t) = a+ bt. If JλX (t) ≥ l(t) for all t ∈ [t, t],

λQ(w) +mY (H−1(t)) ≥ l(t), ∀t ∈ [t, t̄].

Proof. Suppose, to the contrary, that λQ(w) +mY (H−1(t)) < l(t) for some t ∈ (t, t). Then

by continuity there exist ε > 0 and t1, t2 ∈ (t, t) such that t < t1 < t2 < t, λQ(w) +

mY (H−1(τ)) < l(τ)− ε for τ ∈ (t1, t2), and

λQ(w) +mY (H−1(t1)) = l(t1)− ε,

λQ(w) +mY (H−1(t2)) = l(t2)− ε.

On the one hand, this implies that λY ((H−1(·)) = −m′Y (H−1(·)) cannot be constant on

(t1, t2).
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On the other hand, λQ(w) + mY (H−1(τ)) < l(τ) − ε < JλX (τ) for τ ∈ (t1, t2). Hence,

a(H−1(τ)) = 0 for τ ∈ (t1, t2), which implies that Y (H−1(τ)) > 0 on the interval (t1, t2). To

see this, note that Y ′(z) = Q(z)−Hn−1(z) is strictly decreasing if Q is constant. Hence, Y is

strictly concave on (H−1(t1), H
−1(t2)). For any τ ∈ (t1, t2) there exists λ ∈ (0, 1) such that

H−1(τ) = λH−1(t1) + (1−λ)H−1(t2). By strict concavity, Y (H−1(τ)) > λY (H−1(t1)) + (1−
λ)Y (H−1(t2)) ≥ 0. By (60), Y (H−1(·)) > 0 on (t1, t2) implies that λY (H−1(·)) is constant

on (t1, t2), a contradiction.

By (64) and Lemma 12, λQ(w) +mY (H−1(0)) = 0 = JλX (0) and λQ(w) +mY (H−1(1)) =

JλX (1). Hence, by Lemma 15, Lemma 14 holds.

Lemma 16 If K > K := maxz∈W (n− 1)H(z)n−2h(z),

λX ≤ λX :=

[
min
z∈W

∂

∂z

[
−Hα(z)

h(z)

]]−1
.

Proof. The proof of Lemma 16 uses Lemmas 17 and 18.

Lemma 17 (interior solution) Suppose that a(z) ∈ (0, K) for z ∈ (z, z), then λY (z) =

−ϕλX (H(z)) for virtually every z ∈ (z, z).

Proof. If a(z) ∈ (0, K) for z ∈ (z, z), λQ(w) + mY (z) = JλX (H(z)) for virtually every

z ∈ (z, z). Differentiating this equality with respect to z yields for virtually every z ∈ (z, z):

−λY (z)h(z) = ϕλX (H(z))h(z),

Because h > 0, −λY (z) = ϕλX (H(z)) for virtually every z ∈ (z, z).

Lemma 18 (a(z)=K) Suppose that a(z) = K on (z, z) with z < z and let (z, z) be chosen

maximally. Then

λQ(z) = 0,

λQ(w) +mY (z) = JλX (H(z)),

for z = z if z > w, and z = z if z < w. Furthermore,

ϕλX (H(z)) + λY (z−) ≤ 0, if z > w,

ϕλX (H(z)) + λY (z+) ≥ 0, if z < w.

Proof. Because a(z) = K on (z, z),

λQ(w) +mY (z) ≥ JλX (H(z)), v.e. z ∈ (z, z).
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Suppose that z > w and let S− := {z < z|a(z) < K}. Because (z, z) is chosen maximally

and Q is absolutely continuous, there exists a sequence {zk} ∈ S− converging to z with

λQ(w) + mY (zk) ≤ JλX (H(zk)) for all k. By continuity, if z > w, λQ(w) + mY (z) =

JλX (H(z)), and therefore λQ(z) = λQ(w) + mY (z) − JλX (H(z)) = 0. A similar argument

proves that λQ(z) = 0 and λQ(w) +mY (z) = JλX (H(z)) if z < w.

If z > w, for virtually all z ∈ S−,

0 = λQ(z)

= λQ(z)−
∫ z

z

[
ϕλX (H(ζ)) + λY (ζ)

]
h(ζ)dζ

≤ −
∫ z

z

[
ϕλX (H(ζ)) + λY (ζ)

]
h(ζ)dζ.

Thus, there exists a sequence {zk} ∈ S− converging to z such that∫ z

zk

[
ϕλX (H(ζ)) + λY (ζ)

]
h(ζ)dζ ≤ 0, ∀k.

Hence,

ϕλX (H(z)) + λY (z−) ≤ 0, if z > w.

A similar argument proves that

ϕλX (H(z)) + λY (z+) ≥ 0, if z < w.

Suppose, to the contrary, that λX > λX . Then ϕλX (H(z)) is strictly decreasing. Suppose

that there exists an interval (z, z) such that a(z) ∈ (0, K) for z ∈ (z, z). Then, by Lemma

17, λY (z) = −ϕλX (H(z)) for virtually every z ∈ (z, z). Thus, λY is strictly increasing on

(z, z), which is a contradiction to the fact that λY is non-increasing. Because a is piecewise

continuous by assumption, a(z) ∈ {0, K} for almost every z ∈ W .

Suppose that there exists an interval (z, z) such that a(z) = K on (z, z) and let (z, z)

be chosen maximally. Then Y ′(z) = Q(z) − H(z)n−1 which is strictly increasing because

K > maxz∈W (n−1)H(z)n−2h(z), and therefore Y (z) is strictly convex on [z, z]. This implies

that Y (z) > 0 on [z, z] except at most one point. Suppose that Y (z) > 0 for all z ∈ (z, z).

Then λY is constant on (z, z), and λQ(H−1(t)) = λQ(z) −
∫ t
H(z)

[
ϕλX (τ) + λY (H−1(τ))

]
dτ

is strictly convex on (H(z), H(z)). By Lemma 18 and the fact that λQ(w) = λQ(w) = 0,

λQ(z) = λQ(z) = 0. Then the strict convexity of λQ(H−1(t)) implies that λQ(z) < 0 for all

z ∈ (z, z). However, a(z) = K on (z, z) implies that λQ(z) ≥ 0 for virtually every z ∈ (z, z),
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a contradiction. Hence, there exists a unique z0 ∈ (z, z) such that Y (z0) = 0, and therefore

Y (z) > 0 and Y (z) > 0. Because Y (w) = Y (w) = 0, we have w < z < z < w. Note that this

also implies that λY is constant in a neighborhood of and therefore continuous at z ∈ {z, z}.
By Lemma 18, we have

ϕλX (H(z)) + λY (z) ≤ 0,

ϕλX (H(z)) + λY (z) ≥ 0.

Hence,

λY (z) ≤ −ϕλX (H(z)) < −ϕλX (H(z)) ≤ λY (z),

where the second inequality holds because ϕλX is strictly decreasing and H is strictly in-

creasing. However, this is a contradiction to that λY is non-increasing. Hence, a(z) = 0 for

almost all z ∈ W .

Because Q is absolutely continuous, this implies that Q is constant on W . However, by

Lemma 2, X(w) = 0 > −C ′(α∗) when Q is constant on W , which implies that λX = 0, a

contradiction to the supposition that λX > λ̄X > 0. Hence, λX ≤ λ̄X .

A.2.3 Proof of Theorem 2

Let {Qν} be a sequence of optimal solutions of (PK-α∗) where K = Kν > K for each ν,

K is defined in Lemma 16, and Kν → ∞ as ν → ∞. After taking a subsequence, we can

assume that {Qν} converges pointwise. Let Q∞ denote the pointwise limit of this sequence.

By Lemma 10, Q∞ is an optimal solution of P ′-α∗. Denote the corresponding joint variables

associated with Qν by λν . By Lemma 16, {λνX} is bounded for ν sufficiently large. After

taking a subsequence, we can assume that {λνX} converges, and let λ∞X := limν→∞ λ
ν
X .

For brevity, let ϕν (or ϕ∞) denote ϕλ
ν
X (or ϕλ

∞
X ), Jν (or J∞) denote Jλ

ν
X (or Jλ

∞
X ), ϕν

(or ϕ∞) denote ϕλ
ν
X (or ϕλ

∞
X ), and J

ν
(or J

∞
) denote J

λνX (or J
λ∞X ).

Because Qν satisfies (IA′) with equality for all ν and Q∞ is the pointwise limit of {Qν},
Q∞ satisfies (IA′) with equality. By a similar argument, Y ∞(w) = 0. Lemmas 20 and 21

below show that Q∞ satisfies the two pooling properties when λX = λ∞X . Finally, Lemma 22

below proves that that λ∞X = λ∗X , where λ∗X > 0 is such that inequality (12) holds. By the

arguments in Section 3.2, this completes the proof Theorem 2.

Before introducing and proving Lemmas 20, 21 and 22, we first prove the following

technical lemma, which is used in the proofs of Lemmas 20 and 21.

Lemma 19 The following four statments are true.

1. The sequence {ϕν} is uniformly convergent with limit ϕ∞.
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2. The sequence {Jν} is uniformly convergent with limit J∞.

3. The sequence {ϕν′} is uniformly convergent with limit ϕ∞′.

4. The sequence {Jν} is uniformly convergent with limit J
∞

.

Proof. Let γ1 := maxz∈W |Hαi(z)/h(z)| > 0,

γ2 := max
z∈W

∣∣∣∣ ∂∂z
[
−Hαi(z)

h(z)

]∣∣∣∣ > 0,

and γ3 := maxz∈W 1/h(z) > 0. Here γ1, γ2 and γ3 are well define because H and h are twice

continuously differentiable and W is compact.

1.

|ϕν(t)− ϕ∞(t)| = |λνX − λ∞X |
∣∣∣∣Hαi(H

−1(t))

h(H−1(t))

∣∣∣∣ ≤ γ1 |λνX − λ∞X | → 0,

as ν →∞. Hence, the sequence {ϕν} is uniformly convergent with limit ϕ∞.

2.

|Jν(t)− J∞(t)| =
∫ t

0

|ϕν(τ)− ϕ∞(τ)| dτ

≤ tγ1 |λνX − λ∞X |

≤ γ1 |λνX − λ∞X | → 0,

as ν →∞. Hence, the sequence {Jν} is uniformly convergent with limit J∞.

3.

|ϕν′(t)− ϕ∞′(t)| = |λνX − λ∞X |
∣∣∣∣ ∂∂z

[
Hαi(H

−1(t))

h(H−1(t))

]
1

h(H−1(t))

∣∣∣∣ ≤ γ2γ3 |λνX − λ∞X | → 0,

as ν →∞. Hence, the sequence {ϕν′} is uniformly convergent with limit ϕ∞′.

4. Because the sequence {Jν} is uniformly convergent with limit J∞, for any ε > 0, there

exists ν > 0 such that for all ν > ν, |J∞(t)− Jν(t)| ≤ ε for all t ∈ [0, 1]. Fix t ∈ [0, 1].

Let t1, t2, β ∈ [0, 1] be such that βt1 + (1− β)t2 = t. Then for any ν > ν

J
∞

(t) ≤βJ∞(t1) + (1− β)J∞(t2)

≤βJν(t1) + (1− β)Jν(t2) + β|J∞(t1)− Jν(t1)|+ (1− β)|J∞(t2)− Jν(t2)|

≤βJν(t1) + (1− β)Jν(t2) + ε
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Hence,

J
∞

(t) ≤ min {βJν(t1) + (1− β)Jν(t2)|βt1 + (1− β)t2 = t}+ ε = J
ν
(t) + ε.

Similarly, we can show that J
ν
(t) ≤ J

∞
(t) + ε. Hence, |J∞(t) − Jν(t)| ≤ ε. Because

this inequality holds for any t ∈ [0, 1], the sequence {Jν} is uniformly convergent with

limit J
∞

.

Lemma 20 (the first pooling property) Suppose that J∞(H(z)) > J
∞

(H(z)) for z ∈
(z, z) with z < z and let (z, z) be chosen maximally. Then Q∞ is constant on (z, z).

Proof. For each 0 < δ < (z− z)/2, let ε(δ) := minz∈[z+δ,z−δ]{J∞(H(z))−J∞(H(z))}. Then

ε(δ) is non-increasing in δ and converges to zero as δ converges to zero. Fix 0 < δ0 < (z−z)/2.

Let ε0 := 1
4
ε(δ0) > 0. There exist 0 < δ1 < δ2 < δ0 such that ε(δ1) = ε0 and ε(δ2) = 2ε0. We

claim that there exists ν such that for all ν > ν,

Jν(H(z))− J̄ν(H(z)) ≥ 7ε0
2

if z ∈ [z + δ0, z − δ0], (65)

Jν(H(z))− J̄ν(H(z)) ≥ ε0
2

if z ∈ [z + δ1, z − δ1], (66)

Jν(H(z))− J̄ν(H(z)) ≤ 5ε0
2

if J∞(H(z))− J∞(H(z)) ≤ 2ε0. (67)

We begin by prove (66). Because the sequence {Jν} is uniformly convergent with limit

J∞, there exists ν such that for all ν > ν, |Jν(t) − J∞(t)| < ε0/8 for all t ∈ [0, 1]. Let

t ∈ [H(z + δ1), H(z − δ1)]. Then, by construction, J∞(t)− J∞(t) ≥ ε0. Hence, there exists

β, t1, t2 ∈ [0, 1] such that βt1 + (1− β)t2 = t and βJ∞(t1) + (1− β)J∞(t2) < J∞(t)− 3ε0/4.

Then

J̄ν(t) ≤βJν(t1) + (1− β)Jν(t2)

≤βJ∞(t1) + β|Jν(t1)− J∞(t1)|+ (1− β)J∞(t2) + (1− β)|Jν(t2)− J∞(t2)|

≤βJ∞(t1) + (1− β)J∞(t2) +
ε0
8

≤J∞(t)− 3ε0
4

+
ε0
8

≤Jν(t) + |Jν(t)− J∞(t)| − 5ε0
8

≤Jν(t) +
ε

8
− 5ε0

8

=Jν(t)− ε0
2
.
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Hence, Jν(H(z)) − J̄ν(H(z)) ≥ ε/2 for all z ∈ [z + δ1, z − δ1]. A similar argument proves

(65). To prove (67), let z be such that J∞(H(z))−J∞(H(z)) ≤ 2ε0. For any β, t1, t2 ∈ [0, 1]

such that βt1 + (1− β)t2 = t, where t = H(z), we have

βJν(t1) + (1− β)Jν(t2)

≥βJ∞(t1)− β|Jν(t1)− J∞(t1)|+ (1− β)J∞(t2)− (1− β)|Jν(t2)− J∞(t2)|

≥βJ∞(t1) + (1− β)J∞(t2)−
ε0
8

≥J∞(t)− ε0
8

=J∞(t)− [J∞(t)− J∞(t)]− ε0
8

≥J∞(t)− 2ε0 −
ε0
8
,

≥Jν(t)− |Jν(t)− J∞(t)| − 2ε0 −
ε0
8
,

≥Jν(t)− ε0
8
− 2ε0 −

ε0
8
,

≥Jν(t)− 5ε0
2
.

Hence,

J
ν
(t) := min{βJν(t1) + (1−β)Jν(t2)|β, t1, t2 ∈ [0, 1] and βt1 + (1−β)t2 = t} ≥ Jν(t)− 5ε0

2
.

We abuse notation a bit and let h denote the probability measure on W corresponding

to H(w). Because ε(δ1) = ε0 and ε(δ2) = 2ε0, by continuity,

hδ := min
{
h({z ∈ [z + δ1, z + δ2]|J∞(H(z))− J∞(H(z)) ≤ 2ε0}),

h({z ∈ [z − δ2, z − δ1]|J∞(H(z))− J∞(H(z)) ≤ 2ε0})
}
> 0.

Fix ν > ν such that Kν > 1/hδ. Suppose that there exists (b1, b2) ⊂ (z+ δ0, z− δ0) such that

aν(z) > 0 for z ∈ (b1, b2). Then λQ(b1), λQ(b2) ≥ 0. Because λνY is non-increasing, we have

λνY (b2) ≤ λνY (b1). By (66), J
ν

is linear and therefore ϕν is constant on [z+ δ1, z− δ1]. Hence,

we have either −λνY (b2) ≥ ϕν(H(z)) for all z ∈ [z + δ1, z − δ1], or −λνY (b1) ≤ ϕν(H(z)) for

all z ∈ [z + δ1, z − δ1]. Assume without loss of generality that −λνY (b2) ≥ ϕν(H(z)) for all

65



z ∈ [z + δ1, z − δ1]. For any z ∈ [z − δ2, z − δ1] with J∞(H(z))− J∞(H(z)) ≤ 2ε0, we have

λνQ(z) = λνQ(b2)−
∫ z

b2

[λνY (ζ) + ϕν(H(ζ))]h(ζ)dζ

≥
∫ z

b2

ϕν(H(ζ))h(ζ)dζ −
∫ z

b2

ϕν(H(ζ))h(ζ)dζ

= J
ν
(H(z))− Jν(H(b2))− Jν(H(z)) + Jν(H(b2))

= Jν(H(b2))− J
ν
(H(b2))−

[
Jν(H(z))− Jν(H(z))

]
≥ 7ε0

2
− 5ε0

2
= ε0 > 0,

where the first inequality holds because λνQ(b2) ≥ 0 and −λνY (ζ) ≥ −λνY (b2) ≥ ϕν(H(ζ)) for

all b2 ≤ ζ ≤ z. That is, aν(z) = Kν for almost every z ∈ [z − δ2, z − δ1] with J∞(H(z)) −
J
∞

(H(z)) ≤ 2ε0. However, this is a contradiction to that Kν > 1/hδ because 0 ≤ Q ≤ 1.

Hence, aν(z) = 0 for almost every z ∈ [z + δ0, z − δ0] for ν sufficiently large. Let ν

goes to infinity and we have Q∞ is constant on [z + δ0, z − δ0]. Because this is true for any

0 < δ0 < (z − z)/2, we have that Q∞ is constant on (z, z).

Lemma 21 (the second pooling property) Suppose that Y ∞(z) > 0 for all z ∈ (z, z)

with z < z and let (z, z) be chosen maximally. Then ϕ∞ is constant on (H(z), H(z)).

Proof. Suppose, to the contrary, that ϕ∞(H(z)−) > ϕ∞(H(z)). Because ϕ∞ is non-

decreasing and right-continuous, there exists δ > 0 such that ϕ∞(H(z− δ)) > ϕ∞(H(z+ δ))

for all δ ∈ (0, δ). Fix δ ∈ (0,min{δ/2, (z − z)/4}). Because J
∞

is convex and ϕ∞ is not

constant on (z + δ, z − δ), we have

J
∞

(H(z)) < J
∞

(H(z+δ))+[H(z)−H(z+δ)]
J
∞

(H(z − δ))− J∞(H(z + δ))

H(z − δ)−H(z + δ)
, ∀z ∈ (z+δ, z−δ).

Let

ε1 := min
z∈[z+2δ,z−2δ]

{
J
∞

(H(z + δ)) + [H(z)−H(z + δ)]
J
∞

(H(z − δ))− J∞(H(z + δ))

H(z − δ)−H(z + δ)
− J∞(H(z))

}
> 0,

ε2 := min
z∈[z+δ,z−δ]

Y ∞(z) > 0,

and

M1 := 2 max
z∈[z,z]

|ϕ∞(H(z))| > 0.

Because the sequence {Jν} is uniformly convergent with limit J
∞

, the sequence {Y ν} is

uniformly convergent with limit Y ∞, and the sequence {ϕν} is uniformly convergent with
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limit ϕ∞, there exists ν such that for ν > ν, |Y ν(z) − Y ∞(z)| < ε2/2 for all z ∈ W ,

|J∞(t)− Jν(t)| ≤ ε1/8 for all t ∈ [0, 1], and |ϕν(t)− ϕ∞| ≤ M1/2 for all t ∈ [0, 1]. Then for

all ν > ν and z ∈ [z + 2δ, z − 2δ] we have

J
ν
(H(z + δ)) + [H(z)−H(z + δ)]

J
ν
(H(z − δ))− Jν(H(z + δ))

H(z − δ)−H(z + δ)
− Jν(H(z))

≥J∞(H(z + δ))−
∣∣J∞(H(z + δ))− Jν(H(z + δ))

∣∣− J∞(H(z))−
∣∣J∞(H(z))− Jν(H(z))

∣∣
+

H(z)−H(z + δ)

H(z − δ)−H(z + δ)

[
J
∞

(H(z − δ))−
∣∣J∞(H(z − δ))− Jν(H(z − δ))

∣∣
−J∞(H(z + δ))−

∣∣J∞(H(z + δ))− Jν(H(z + δ))
∣∣]

≥J∞(H(z + δ)) + [H(z)−H(z + δ)]
J
∞

(H(z − δ))− J∞(H(z + δ))

H(z − δ)−H(z + δ)
− J∞(H(z))− ε1

2

≥ε1
2
. (68)

For all ν > ν and z ∈ [z + δ, z − δ], we have

Y ν(z) ≥ Y ∞(z)− |Y ν(z)− Y ∞(z)| ≥ ε2
2
> 0.

Because Y ν(z) > 0 on [z + δ, z − δ], λY is constant and therefore mν
Y (H−1(·)) is affine on

[H(z + δ), H(z − δ)]. By Lemmas 12 and 14, we have mν
Y (z) ≥ J

ν
(H(z)) for all z ∈ W .

In particular, mν
Y (z + δ) ≥ J

ν
(H(z + δ)) and mν

Y (z − δ) ≥ J
ν
(H(z − δ)). Hence, for all

z ∈ [z + δ, z − δ],

mν
Y (z) ≥ J

ν
(H(z + δ)) + [H(z)−H(z + δ)]

J
ν
(H(z − δ))− Jν(z + δ)

H(z − δ)−H(z + δ)
.

For all ν > ν and z ∈ [z + δ, z − δ], we have

ϕν(H(z)) ≤ ϕ∞(H(z)) + |ϕν(H(z))− ϕ∞(H(z))| ≤ M1

2
+
M1

2
= M1.

Finally, let M3 := minz∈[z,z] h(z) > 0 and

M2 :=

∣∣∣∣∣J
ν
(H(z − δ))− Jν(H(z + δ))

H(z − δ)−H(z + δ)

∣∣∣∣∣ > 0.

Fix ν > ν such that Kν > 1/min{z+2δ+ε1/8M1M3, z+2δ+ε1/8M2M3, z−δ}. Suppose that

Jν(H(z0)) = J
ν
(H(z0)) for some z0 ∈ [z+2δ, z−2δ]. Then Kν > 1/min{z0+ε1/8M1M3, z0+

ε1/8M2M3, z − δ}. For all z ∈ (z0, z − δ) such that H(z) −H(z0) ≤ min{ε1/8M1, ε2/8M2}
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we have

Jν(H(z))

=Jν(H(z0)) +

∫ H(z)

H(z0)

ϕν(τ)dτ

≤Jν(H(z0)) +M1(H(z)−H(z0))

≤Jν(H(z + δ)) + [H(z)−H(z + δ)−H(z) +H(z0)]
J
ν
(H(z − δ))− Jν(H(z + δ))

H(z − δ)−H(z + δ)
− ε1

2
+
ε1
8

≤mν
Y (z) + [H(z)−H(z0)]M2 −

ε1
2

+
ε1
8

≤mν
Y (z) +

ε1
8
− ε1

2
+
ε1
8

= mν
Y (z)− ε1

4
,

where the second inequality holds by (68). Hence, Jν(H(z)) < mν
Y (z) and therefore aν(z) =

Kν for all z ∈ (z0, z − δ). Because H(z) − H(z0) ≤ M3(z − z0), we have aν(z) = Kν for

all z ∈ (z0,min{z0 + ε1/8M1M3, z0 + ε1/8M2M3, z − δ}), a contradiction to the fact that

Kν > 1/min{z0 + ε1/8M1M3, z0 + ε1/8M2M3, z − δ} because 0 ≤ Q ≤ 1.

Hence, Jν(H(z)) > J
ν
(H(z)) for all z ∈ [z+ 2δ, z− 2δ]. This implies that ϕν is constant

on [H(z − 2δ), H(z + 2δ)]. Clearly, {ϕν} converges uniformly on [H(z − 2δ), H(z + 2δ)] and

limν→∞ ϕ
ν is constant on [H(z − 2δ), H(z + 2δ)]. Because, on [H(z − 2δ), H(z + 2δ)], {Jν}

converges uniformly to J
∞

, each J
ν

is differentiable with derivative ϕν , and {ϕν} converges

uniformly, we have J
∞

is differentiable on [H(z− 2δ), H(z+ 2δ)] and its derivative ϕ∞(t) =

limν→∞ ϕ
ν(t) for all t ∈ [H(z−2δ), H(z+2δ)]. Thus, ϕ∞ is constant on [H(z−2δ), H(z+2δ)]

and 2δ < δ, a contradiction to the supposition. Hence, ϕ∞ is constant on (H(z), H(z)).

The following corollary of Lemma 21 is used in the proof of Lemma 22.

Corollary 4 Suppose that ϕ∞(H(z)) is constant on (z, z) with z < z and let (z, z) be chosen

maximally. Then Y ∞(z) = Y ∞(z) = 0, i.e.,∫ z

z

[
H(ζ)n−1 −Q∞(ζ)

]
h(ζ)dζ = 0.

Proof. This is an immediate corollary of Lemma 21. Suppose, to the contrary, that Y ∞(z) >

0. Then by Lemma 21, ϕ∞(H(·)) is constant in a neighborhood of z, a contradiction to the

fact that (z, z) is chosen maximally. Hence, Y ∞(z) = 0. Similarly, Y ∞(z) = 0.

Lemma 22 λ∞X = λ∗X , where λ∗X > 0 is such that inequality (12) holds .

Proof. For any λX > 0, recall that Q+(·, λX) and Q−(·, λX) are defined as follows: If

JλX (H(w|α∗), α∗) > J
λX

(H(w|α∗), α∗) for w ∈ (w,w) and let (w,w) be chosen maximally,
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let

Q+(w, λX) :=
1
n
[H(w|α∗)n −H(w|α∗)n]

H(w|α∗)−H(w|α∗)
, ∀w ∈ (w,w).

Otherwise, let Q+(w, λX) := H(w|α∗)n−1. If ϕλX (H(·|α∗), α∗) is constant on (w,w) with

w < w and let (w,w) be chosen maximally, let

Q−(w, λX) :=
1
n
[H(w|α∗)n −H(w|α∗)n]

H(w|α∗)−H(w|α∗)
, ∀w ∈ (w,w).

Otherwise, let Q−(z, λX) := H(z|α∗)n−1. For the ease of notation, denote Q+(w, λ∞X ) (or

Q−(w, λ∞x )) by Q+(w) (or Q−(w)). Note that Q+, Q− and Q∞ are implementable and non-

decreasing, allocate the object with probability one, and satisfy the two pooling properties.

Hence, by the arguments in the derivation of inequality (11), for Q ∈ {Q+, Q−, Q∞},∫ w(1,α∗)

w(0,α∗)

[
z + λ∞X

Hαi(z)

h(z)

]
Q(z)h(z)dz + λ∞XC

′(α∗)

=

∫ w(1,α∗)

w(0,α∗)

ϕ∞(H(z))H(z)n−1dH(z) + λ∞XC
′(α∗). (69)

Next we show that Y + ≤ Y ∞ ≤ Y −. Let S+ := {z ∈ W |Y +(z) > 0}, S− := {z ∈
W |Y −(z) > 0} and S := {z ∈ W |Y ∞(z) > 0}. By construction,

S+ = ∪{(z, z)|J∞(H(z)) > J
∞

(H(z)) ∀z ∈ (z, z)},

and

S− = ∪{(z, z)|ϕ∞(H(·)) is constant on (z, z)}.

It follows from Lemma 20 and Lemma 21 that S+ ⊂ S ⊂ S−. If z /∈ S−, Y +(z) = Y ∞(z) =

Y −(z) = 0. If z ∈ S−\S, Y +(z) = Y ∞(z) = 0 < Y −(z). Consider z ∈ S ⊂ S−. There exists

an interval (z, z) with z < z < z such that ϕ∞(H(·)) is constant on (z, z). Let (z, z) be chosen

maximally, then by construction Y −(z) = Y −(z) = 0. By Corollary 4, Y ∞(z) = Y ∞(z) = 0.

For any z ∈ (z, z),

Y −(z)− Y ∞(z) =

∫ z

z

[
Q∞(ζ)−Q−(ζ)

]
dH(ζ).

Then for any t ∈ (H(z), H(z)),

[
Y −(H−1(t))− Y ∞(H−1(t))

]′
= Q−(H−1(t))−Q∞(H−1(t)),
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which is non-increasing on (H(z), H(z)) because Q∞ is non-decreasing and Q− is constant

on (z, z) by construction. Hence, Y −(H−1(t)) − Y ∞(H−1(t)) is concave on (H(z), H(z)).

Because Y −(z) − Y ∞(z) = 0 and Y −(z) − Y ∞(z) = 0, we have Y −(z) − Y ∞(z) ≥ 0 for

all z ∈ (z, z). Thus, Y −(z) − Y ∞(z) ≥ 0 for all z ∈ S. If z ∈ S\S+, Y −(z) ≥ Y ∞(z) ≥
0 = Y +(z). Finally, consider z ∈ S+ ⊂ S. It suffices to show that Y +(z) ≤ Y ∞(z). By

construction, there exists an interval (z, z) with z < z < z such that J
∞

(H(z)) < J∞(H(z))

for all z ∈ (z, z). Let (z, z) be chosen maximally, then by construction Y +(z) = Y +(z) = 0.

For any z ∈ (z, z)

Y +(z)− Y ∞(z) =

∫ z

z

[
Q∞(ζ)−Q−(ζ)

]
dH(ζ)− Y ∞(z).

Then for any t ∈ (H(z), H(z)),

[
Y +(H−1(t))− Y ∞(H−1(t))

]′
= Q+(H−1(t))−Q∞(H−1(t)),

which is constant on (H(z), H(z)) because Q∞ is constant on (z, z) by Lemma 20 and

Q+ is constant on (z, z) by construction. Hence, Y +(H−1(t)) − Y ∞(H−1(t)) is affine on

(H(z), H(z)). Because Y +(z) = 0 ≤ Y ∞(z) and Y +(z) = 0 ≤ Y ∞(z), we have Y +(z) −
Y ∞(z) ≤ 0 for all z ∈ (z, z). Thus, Y +(z)− Y ∞(z) ≤ 0 for all z ∈ S+.

Furthermore, for any implementable allocation rule Q, we have∫ w(1,α∗)

w(0,α∗)

zQ(z)dH(z)

=

∫ w(1,α∗)

w(0,α∗)

zY ′(z)dz +

∫ w(1,α∗)

w(0,α∗)

zH(z)n−1dH(z)

=

∫ w(1,α∗)

w(0,α∗)

zH(z)n−1dH(z)−
∫ w(1,α∗)

w(0,α∗)

Y (z)dz, (70)

where the second line holds by the definition of Y and the third line holds by integration by

parts. Hence,∫ w(1,α∗)

w(0,α∗)

zQ+(z)dH(z) ≥
∫ w(1,α∗)

w(0,α∗)

zQ∞(z)dH(z) ≥
∫ w(1,α∗)

w(0,α∗)

zQ−(z)dH(z).

Because λ∞X ≥ 0 and −
∫ w(1,α∗)
w(0,α∗)

Hα(z)Q∞(z)dz = C ′(α∗), combining this and (69) yields

∫ w(1,α∗)

w(0,α∗)

Hα(z)Q+(z)dz ≤ −C ′(α∗) ≤
∫ w(1,α∗)

w(0,α∗)

Hα(z)Q−(z)dz. (12)
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By Lemma 6, there exists an unique λX > 0 such that (12) holds. Hence, λ∞X = λ∗X .

The arguments in Lemma 22 also proves the following lemma:

Lemma 23 Let λX ≥ 0. For any non-decreasing implementable Q that allocates the object

with probability one and satisfies the two pooling properties, the following inequality holds:∫ w(1,α∗)

w(0,α∗)

zQ+(z, λX)dH(z) ≥
∫ w(1,α∗)

w(0,α∗)

zQ(z)dH(z) ≥
∫ w(1,α∗)

w(0,α∗)

zQ−(z, λX)dH(z).

A.2.4 Proof of Lemma 6

I break the proof into several lemmas. For each λX , recall that Q+(·, λX) is the “steepest”

allocation rule associated with λX , and Q−(·, λX) is the “least steep” allocation rule associ-

ated with λX . By Lemma 23, Q−(·, λX) gives agents’ lower marginal benefit from acquiring

information than Q+(·, λX) does:∫ w(1,α∗)

w(0,α∗)

−Hα(z)

h(z)
Q−(z, λX)h(z)dz ≤

∫ w(1,α∗)

w(0,α∗)

−Hα(z)

h(z)
Q+(z, λX)dz.

Let λ′X > λX . Lemma 24 below proves that if ϕλX is constant on (t, t) with t < t and let

(t, t) be chosen maximally, Jλ
′
X (t) > J

λ′X (t) for all t ∈ (t− δ, t+ δ) for some δ > 0. Let

S :=
{
t ∈ [0, 1]

∣∣∣Jλ′X (t) > J
λ′X (t)

}
. (71)

It follows from Lemma 24 and the construction of Q+ and Q− that, if t /∈ S, Q+(w, λ′X) =

Q−(w, λX) = H(w)n−1, where w = H−1(t). Let

I :=
{

(t, t)|Jλ′X (t) > J
λ′X (t) on (t, t) with t < t and let (t, t) be chosen maximally

}
.

Clearly, different intervals in I are disjoint. Then we have

S =
⊔

(t,t)∈I

(t, t).

For each (t, t) ∈ I, by construction, Q−(·, λX)− Q+(·, λ′x) is non-decreasing on [H(t), H(t)]

because Q+(·, λ′x) is constant on [H(t), H(t)], and
∫ H(t)

H(t)
[Q−(w, λX)−Q+(w, λ′x)]h(w)dw =

0. Furthermore, by Lemma 24, the set
{
w ∈ [H(t), H(t)] |Q+(w, λ′X) 6= Q−(w, λX)

}
has a
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positive measure. We prove in Lemma 26 below that these condition implies that∫ H(t)

H(t)

−Hα(w)

h(w)

[
Q−(w, λX)−Q+(w, λ′x)

]
h(w)dw > 0.18

Hence, Q−(·, λX) gives agents’ higher marginal benefit from acquiring information than

Q+(·, λ′X) does: ∫ w(1,α∗)

w(0,α∗)

−Hα(z)

h(z)

[
Q−(z, λX)−Q+(z, λ′X)

]
h(z)dz

=

∫
w=H(t),t∈S

−Hα(z)

h(z)

[
Q−(z, λX)−Q+(z, λ′X)

]
h(z)dz

+
∑
(t,t)∈I

∫ H(t)

H(t)

−Hα(z)

h(z)

[
Q−(z, λX)−Q+(z, λ′X)

]
h(z)dz > 0

Furthermore, if λX is sufficienly large, Q+(·, λX) is constant and
∫ w(1,α∗)
w(0,α∗)

−Hα(z)
h(z)

Q+(z, λX)h(z)dz =

0 < C ′(α∗); if λX = 0, Q−(·, λX) = Hn−1(·) and
∫ w(1,α∗)
w(0,α∗)

−Hα(z)
h(z)

Q−(z, λX)h(z)dz > C ′(α∗)

by assumption. Hence, there exists a unique λX > 0 such that inequality (12) holds.

Lemma 24 Let λ′X > λX . Suppose that ϕλX is constant on (t, t) with t < t and let (t, t) be

chosen maximally. Then there exists δ > 0 such that Jλ
′
X (t) > J

λ′X (t) for all t ∈ (t−δ, t+δ).

The proof of Lemma 24 uses the following technical lemma.

Lemma 25 Let t ∈ (0, 1). If JλX (t) = J
λX

(t), J
λX

is continuously differentiable at t with

derivative ϕλX (t) = ϕλX (t) and ϕλX ′(t) ≥ 0. Furthermore, JλX (t) = J
λX

(t) if and only if

JλX (τ) ≥ (τ − t)ϕλX (t) + JλX (t), ∀τ ∈ [0, 1]. (72)

Proof. For ease of notation, we suppress the dependence of J, J, ϕ and ϕ on λX . Let

t ∈ (0, 1). Suppose that J(t) = J(t). Suppose, to the contrary, that J is not continuously

differentiable at t, then ϕ(t−) < ϕ(t+). Then either ϕ(t) > ϕ(t−) or ϕ(t) < ϕ(t+). Assume

without loss of generality that ϕ(t) < ϕ(t+). Because ϕ is continuous and ϕ is non-decreasing,

there exists δ > 0 such that ϕ(τ) < ϕ(t+) ≤ ϕ(τ) for all τ ∈ (t, t+ δ). Then

J(t+ δ) = J(t) +

∫ t+δ

t

ϕ(τ)dτ < J(t) +

∫ t+δ

t

ϕ(τ)dτ = J(t+ δ),

18The weak inequality holds by Lemma 7, but we need the strict inequality for this proof to work.
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a contradiction. Hence, J is continuously differentiable at t. It follows from a similar

argument that ϕ(t) = ϕ(t) with ϕ′(t) ≥ 0. Furthermore, for all τ ∈ [0, 1],

J(τ) ≥ J(τ) ≥ (τ − t)ϕ(t) + J(t) = (τ − t)ϕ(t) + J(t),

where the second inequality holds because J is convex.

Suppose that (72) holds. Then τ :→ (τ − t)ϕ(t) + J(t) is a convex function below J .

Because J is the greatest convex function below J , we have

J(τ) ≥ (τ − t)ϕ(t) + J(t) ∀τ ∈ [0, 1].

If τ = t, then J(t) ≥ J(t). Hence, J(t) = J(t).

Proof of Lemma 24. First, we claim that J
λX

(t) = JλX (t) and J
λX

(t) = JλX (t). To

see that J
λX

(t) = JλX (t), suppose to the contrary that J
λX

(t) < JλX (t). Then ϕλX (t) is

constant in a neighborhood of t. A contradiction to that (t, t) is chosen maximally. A similar

argument proves that J
λX

(t) = JλX (t).

Consider t ∈ (t, t). Let β ∈ (0, 1) be such that βt + (1 − β)t = t. To show that

Jλ
′
X (t) > J

λ′X (t), it suffices to show that

Jλ
′
X (t) > βJλ

′
X (t) + (1− β)Jλ

′
X (t).

Because ϕλX is constant on (t, t), J
λX

(t) = JλX (t) and J
λX

(t) = JλX (t), we have

JλX (t) ≥ J
λX

(t)

= βJ
λX

(t) + (1− β)J
λX

(t)

= βJλX (t) + (1− β)JλX (t).

Hence,

0 ≤JλX (t)− βJλX (t)− (1− β)JλX (t)

=

∫ t

0

H−1(τ)dτ − β
∫ t

0

H−1(τ)dτ − (1− β)

∫ t

0

H−1(τ)dτ

+ λX

[∫ t

0

Hα(H−1(τ))

h(H−1(τ))
dτ − β

∫ t

0

Hα(H−1(τ))

h(H−1(τ))
dτ − (1− β)

∫ t

0

Hα(H−1(τ))

h(H−1(τ))
dτ

]
.
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Because H−1(·) is strictly increasing,
∫ t
0
H−1(τ)dτ is strictly convex in t and therefore

∫ t

0

H−1(τ)dτ − β
∫ t

0

H−1(τ)dτ − (1− β)

∫ t

0

H−1(τ)dτ < 0.

Hence, ∫ t

0

Hα(H−1(τ))

h(H−1(τ))
dτ − β

∫ t

0

Hα(H−1(τ))

h(H−1(τ))
dτ − (1− β)

∫ t

0

Hα(H−1(τ))

h(H−1(τ))
dτ > 0.

Then

Jλ
′
X (t)− βJλ′X (t)− (1− β)Jλ

′
X (t)

=

∫ t

0

H−1(τ)dτ − β
∫ t

0

H−1(τ)dτ − (1− β)

∫ t

0

H−1(τ)dτ

+ λ′X

[∫ t

0

Hα(H−1(τ))

h(H−1(τ))
dτ − β

∫ t

0

Hα(H−1(τ))

h(H−1(τ))
dτ − (1− β)

∫ t

0

Hα(H−1(τ))

h(H−1(τ))
dτ

]

>

∫ t

0

H−1(τ)dτ − β
∫ t

0

H−1(τ)dτ − (1− β)

∫ t

0

H−1(τ)dτ

+ λX

[∫ t

0

Hα(H−1(τ))

h(H−1(τ))
dτ − β

∫ t

0

Hα(H−1(τ))

h(H−1(τ))
dτ − (1− β)

∫ t

0

Hα(H−1(τ))

h(H−1(τ))
dτ

]
=JλX (t)− βJλX (t)− (1− β)JλX (t)

≥0.

Consider t. Since ϕλX is constant on (t, t) with JλX (t) = J
λX

(t) and JλX (t) = J
λX

(t),

by Lemma 25, we have

J
λX

(t) =JλX (t)

≥(t− t)ϕλX (t) + JλX (t)

=(t− t)ϕλX (t) + J
λX

(t) = J
λX

(t).

Hence, JλX (t) = (t− t)ϕλX (t) + JλX (t) or equivalently

∫ t

t

H−1(τ)dτ − (t− t)H−1(t) = λX

[
(t− t)Hα(H−1(t))

h(H−1(t))
−
∫ t

t

Hα(H−1(τ))

h(H−1(τ))

]
.

Since H−1(t) is strictly increasing, the left-hand side of the above equality is strictly positive.
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Hence for λ′X > λX > 0 we have

∫ t

t

H−1(τ)dτ − (t− t)H−1(t) < λ′X

[
(t− t)Hα(H−1(t))

h(H−1(t))
−
∫ t

t

Hα(H−1(τ))

h(H−1(τ))

]
,

i.e.,

Jλ
′
X (t) < (t− t)ϕλ′X (t) + Jλ

′
X (t).

By Lemma 25, Jλ
′
X (t) > J

λ′X (t).

A similar argument proves that Jλ
′
X (t) > J

λ′X (t). By continuity, there exists δ > 0 such

that Jλ
′
X (t) > J

λ′X (t) for all t ∈ (t− δ, t+ δ).

Lemma 26 Let [z, z] ⊂ W with z < z, and z0 ∈ (z, z). Suppose that Q : [θ, θ] → [0, 1] and

Q̂ : [θ, θ]→ [0, 1] satisfy the following two conditions:∫ z

z

Q(z)h(z)dz =

∫ z

z

Q̂(z)h(z)dz, (73)

and

Q(z) ≥ Q̂(z) if z > z0, and Q(z) ≤ Q̂(z) if z < z0. (74)

Then ∫ z

z

−Hαi(z)

h(z)
[Q(z)− Q̂(z)]h(z)dz ≥ 0, (75)

where the inequality holds strictly if the set {z ∈ [z, z]|Q(z) 6= Q̂(z)} has a positive measure.

Proof. Because −Hα(w)
h(w)

is strictly increasing in w, and Q and Q̂ satisfy (74), we have

∫ z

z

[
−Hαi(z)

h(z)
+
Hαi(z

0)

h(z0)

]
[Q(z)− Q̂(z)]h(z)dz ≥ 0,

where the inequality holds strictly if the set {z ∈ [z, z]|Q(z) 6= Q̂(z)} has a positive measure.

This implies inequality (75) by (73).

A.3 Sufficient conditions for the first-order approach

In this section we provide sufficient conditions for the first-order approach to be valid.

Let π(αi) denote an agent i’s payoff from choosing αi given mechanism (q, t) and αj = α∗

for all j 6= i. Then

π(αi) := U(w(0, αi)) +

∫ w(1,αi)

w(0,αi)

[1−H(wi|αi)]Q(wi)dwi − C(αi),
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where Q is defined by (2) for αj = α∗ for all j 6= i. Then

π′(αi) =U ′(w(0, αi))wαi(0, αi) + [1−H(w(1, αi)|αi)]Q(w(1, αi))wα(1, αi)

− [1−H(w(0, αi)|αi)]Q(w(0, αi))wαi(0, αi) +

∫ w(1,αi)

w(0,αi)

−Hαi(wi|αi)Q(wi)dwi − C ′(αi)

=

∫ w(1,αi)

w(0,αi)

−Hαi(wi|αi)Q(wi)dwi − C ′(αi),

where the second line holds becauseH(w(1, αi)|αi) = 1, H(w(0, αi)|αi) = 0, and U ′(w(0, αi)) =

Q(w(0, αi)) by the envelope condition. A sufficient condition for the first-order approach to

be valid is that π′(αi) is strictly decreasing for all non-decreasing implementable allocation

rule Q.

If the support of the conditional expectation [w(0, αi), w(1, αi)] is invariant, π′(αi) is

strictly decreasing if −Hαi(wi|αi) has the single-crossing property in (αi;wi) and C ′(αi) is

strictly decreasing.

In many important applications (e.g. the two leading examples in this paper), the support

of the conditional expectation [w(0, αi), w(1, αi)] is not invariant. In this case, we have

π′′(αi) =

∫ w(1,αi)

w(0,αi)

−∂
2H(wi|αi)
∂α2

i

Q(wi)dwi −Hαi(w(1, αi)|αi)wαi(1, αi)Q(w(1, αi))

+Hαi(w(0, αi)|αi)wαi(0, αi)Q(w(0, αi))− C ′′(αi),

≤
∫ w(1,αi)

w(0,αi)

−∂
2H(wi|αi)
∂α2

i

Q(wi)dwi −Hαi(w(1, αi)|αi)wαi(1, αi)Q(w(1, αi))− C ′′(αi),

where the inequality holds because Hαi(w(0, αi)|αi) ≥ 0 and wαi(0, αi) ≤ 0 when the in-

formation structures are supermodular ordered. The following proposition from Shi (2012)

gives sufficient conditions for π′′(αi) < 0 for the two leading examples.

Proposition 6 (Shi (2012)) The following conditions are sufficient for first order ap-

proach:

• In the linear experiments, if αiC
′′(αi) ≥ f

(
θ
)

(θ−µ)2 for all αi, then π′′(αi) < 0 when

either F (θ) is convex, or F (θ) = θb (b > 0) with support [0, 1].

• In the normal experiments, π′′(αi) < 0 if
√
β3/ [α3

i (αi + β)5] < 2
√

2πC ′′(αi) for all αi.

We conclude this section by proving the following lemma which is used in the proof of

Proposition 2.
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Lemma 27 If π′′(αi) < 0 for all αi and all non-decreasing implementable allocation rule Q,∫ w(1,αi)

w(0,αi)

−Hαi(wi|αi)H(wi|αi)n−1dwi − C ′(αi) is strictly decreasing in αi. (14)

Proof. In particular, π′′(αi) < 0 if Q(wi) = H(wi|αi)n−1 for all wi. Then

∂

∂αi

[∫ w(1,αi)

w(0,αi)

−Hαi(wi|αi)H(wi|αi)n−1dwi − C ′(αi)

]

=

∫ w(1,αi)

w(0,αi)

−∂
2H(wi|αi)
∂α2

i

Q(wi)dwi −Hαi(w(1, αi)|αi)wαi(1, αi)Q(w(1, αi))

+Hαi(w(0, αi)|αi)wαi(0, αi)Q(w(0, αi))− C ′′(αi) +

∫ w(1,αi)

w(0,αi)

−(n− 1)Hαi(wi|αi)2H(wi|αi)n−2dwi,

=π′′(αi) +

∫ w(1,αi)

w(0,αi)

−(n− 1)Hαi(wi|αi)2H(wi|αi)n−2dwi

<0,

where Q(wi) = H(wi|αi)n−1 for all wi.

B Efficient asymmetric mechanisms

B.1 Proof of Theorem 3

As in the proof of Theorem 1, we prove Theorem 3 by proving the following two lemmas.

Define

Y (w) := 1−
n∏
i=1

H(wi|α∗i )−
n∑
i=1

∫ w(1,α∗i )

wi

Qi(zi)dH(zi|α∗i ), ∀w ∈
n∏
i=1

[w(0, α∗i ), w(1, α∗i )].

Recall that 1 −
∏n

i=1H(wi|α∗i ) is the probability with which there exists an agent i whose

type is above wi; and
∑n

i=1

∫ w(1,α∗i )
wi

Qi(zi)dH(zi|α∗i ) is the probability with which an agent

whose type is above wi receives the object. Let w := (w(0, α∗1), . . . , w(0, α∗n)). Then Y (w)

is the difference between 1 and the probability with which some agent receives the object.

Clearly, (16) is violated if and only if Y (w) > 0.

Lemma 28 Suppose that the information structures are supermodular ordered and αi = α∗i

for all i. Let Q be any interim allocation rule satisfying (F′) (MON), (IA′) and Y (w) > 0.

Then, for any i, there exists Q̂ satisfying (F′), (MON) and (IA′) such that Q̂j = Qj for
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j 6= i and

Q̂i(wi) ≥ Qi(wi), ∀wi ∈ Wi, (76)

and the strict inequality holds for a set of wi with positive measure.

Proof. Fix i. Define Yi(wi) := infw−i Y (w) for all wi ∈ [w(0, α∗i ), w(1, α∗i )]. By Theorem 3

in Milgrom and Segal (2002), Yi is differentiable and Y ′i (wi) = −h(wi|α∗i )
∏

j 6=iH(w∗j |α∗j ) +

Qi(wi)h(wi|α∗i ), where w∗−i(wi) is such that Y (wi, w
∗
−i(wi)) = Yi(wi) for all wi ∈ (w(0, α∗i ), w(1, α∗i )).

Note that

Y (w(0, α∗i ), w−i) = 1−
∫ w(1,α∗i )

w(0,α∗i )

Qi(zi)dH(zi|α∗i )−
n∑
j 6=i

∫ w(1,α∗j )

wj

Qj(zj)dH(zj|α∗j ),

which is strictly increasing in wj for all j 6= i. Hence, Yi(w(0, α∗i )) = Y (w) > 0. Define

w[ := sup {wi |Yi(w′i) > 0 ∀w(0, α∗i ) ≤ w′i ≤ wi}. By the continuity of Yi, we have Yi(w
[) = 0

and w[ > w(0, α∗i ). There are four cases to consider.

Case I: Suppose that there exists w′i ∈ (w(0, α∗i ), w
[) such that Qi is discontinuous at

w′i.

Let Qi(w
′+
i ) denote the right-hand limit of Qi at w′i and Qi(w

′−
i ) the corresponding left-

hand limit. Let 0 < ε ≤ min
{

minw(0,α∗i )≤wi≤w′i
Yi(wi)

H(w′i|α∗i )
, Qi(w

′+
i )−Qi(w

′−
i )
}

. Define Q̂ as

follows. If wi ≤ w(0, α∗), let Q̂i(wi) := Qi(wi); otherwise let

Q̂i(wi) := Qi(wi) + εχ{wi≤w′i},

where χ{wi≤w′i} is the indicator function. Let Q̂j := Qj for all j 6= i. By construction,

Q̂i(w) ≥ Qi(w) for all wi ∈ Wi and the inequality holds strictly on a positive measure set.

By a similar argument to that in the proof of Lemma 3, Q̂i satisfies (MON) and (IA′). We now

verify that Q̂ satisfies (F′). If wi ≤ w′i, Ŷ (wi, w−i) = Y (wi, w−i)− ε[H(w′i|α∗)−H(wi|α∗)] ≥
Y (wi, w−i) − εH(w′i|α∗−i) ≥ 0 for all w−i. If wi > w′i, Ŷ (wi, w−i) = Y (wi, w−i) ≥ 0 for all

w−i. That is, Q̂ satisfies (F′).

Case II: Suppose that Qi is continuous on [w(0, α∗i ), w
[].

We first show that there exists w′i ∈ (w(0, α∗i ), w
[) such that Qi(w

′
i) < Qi(w

[). Suppose,

to the contrary, that Qi(wi) = Qi(w
[) for all wi ∈ (w(0, α∗i ), w

[). Let w∗−i be such that

Y (w[, w∗−i) = Yi(w
[) = 0. If Qi(w

[) ≥
∏

j 6=iH(w∗j |α∗j ),

Y (w(0, α∗i ), w
∗
−i) = Y (w[, w∗−i) +

∫ w[

w(0,α∗i )

[∏
j 6=i

H(w∗j |α∗j )−Qi(z)

]
h(z|α∗i )dz < 0,
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a contradiction. Hence, Qi(w
[) <

∏
j 6=iH(w∗j |α∗j ). Then, by the continuity of Qi and H,

there exists δ > 0 such that Qi(wi) <
∏

j 6=iH(w∗j |α∗j ) for all wi ∈ [w[, w[ + δ]. Moreover,

0 = Y (w[, w∗−i) =

∫ w[+δ

w[

[∏
j 6=i

H(w∗j |α∗j )−Q(z)

]
h(z|α∗i )dz+Y (w[+δ, w∗−i) > Y (w[+δ, w∗−i),

a contradiction. Hence, there exists w′i ∈ (w(0, α∗i ), w
[) such that Qi(w

′
i) < Qi(w

[).

By the continuity ofQi, there exists w′′i ∈ (w′i, w
[) such thatQi(w

′′
i ) = 1

2

(
Qi(w

′
i) +Qi(w

[)
)
.

Let 0 < ε ≤ min
{

minw(0,α∗i )≤wi≤w′′i
Yi(wi)

H(w′′i |α∗i )
, Qi(w

′′
i )−Qi(w

′
i)
}

. Let Q̂j := Qj for j 6= i and

Q̂i(wi) :=


max{Qi(w

′
i) + ε,Qi(wi)} if wi > w′i,

Qi(wi) + ε if w(0, α∗i ) < wi ≤ w′i,

Qi(wi) if wi ≤ w(0, α∗i ).

Note that if wi ≥ w′i
′, Qi(wi) ≥ Qi(w

′
i
′) ≥ Qi(w

′
i) + ε. Hence, Q̂i(wi) = Qi(wi) for wi ≥ w′i

′.

By construction, Q̂i(wi) ≥ Q(wi) for all wi ∈ Wi and the inequality holds strictly on a positive

measure set. By a similar argument to that in the proof of Lemma 3, Q̂i satisfies (MON)

and (IA′). We now verify that Q̂ satisfies (F′). If wi ≥ w′i
′, Ŷ (wi, w−i) = Y (wi, w−i) ≥ 0 for

all w−i. If wi < w′i
′, for all w−i,

Ŷ (wi, w−i) =Y (wi, w−i)−
∫ w′i

′

wi

[
Q̂i(z)−Qi(z)

]
hi(z|α∗i )dz,

≥Y (wi, w−i)− ε [H(w′i
′|α∗i )−H(wi|α∗i )] ,

≥Yi(wi)− εH(w′i
′|α∗) ≥ 0.

Hence, Q̂ satisfies (F′).

Case III: Let w∗−i be such that Y (w[, w∗−i) = Yi(w
[) = 0. Suppose that Qi is continuous

on [w(0, α∗i ), w
[) and Qi(w

[−) <
∏

j 6=iH(w∗j |α∗j ).
Define R(wi) := Yi(wi)/(H(w[|α∗i ) − H(wi|α∗i )) for wi < w[. Then, by Theorem 3 in

Milgrom and Segal (2002) and L’Hopital’s rule,

lim
wi→w[−

R(wi) =
∏
j 6=i

Hj(w
∗
j |α∗j )−Qi(w

[−) > 0.

Let 0 < ε ≤ min
{

infw(0,α∗i )≤wi<w[ R(wi), Qi(w
[+)−Qi(w

[−)
}

. Let Q̂j := Qj for all j 6= i. If

wi ≤ w(0, α∗i ), let Q̂i(wi) := Qi(wi); otherwise let Q̂i(wi) := Qi(wi) + εχ{wi<w[}.

By construction, Q̂i(wi) ≥ Qi(wi) for all wi ∈ Wi and the inequality holds strictly on
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a positive measure set. One can verify that Q̂i satisfies (MON) and (IA′) by an argument

similar to that in the proof of Lemma 3. Finally, if wi < w[, Ŷ (wi, w−i) = Y (wi, w−i) −
ε[H(w[|α∗i )−H(wi|α∗i )] ≥ Yi(wi)−R(wi)[H(w[|α∗)−H(wi|α∗)] = 0 for all w−i. If wi ≥ w[,

Ŷ (wi, w−i) = Y (wi, w−i) ≥ 0 for all w−i. Hence, Q̂ satisfies (F′).

Case IV: Let w∗−i be such that Y (w[, w∗−i) = Yi(w
[) = 0. Suppose that Qi is continuous

on [w(0, α∗i ), w
[) and Qi(w

[−) ≥
∏

j 6=iH(w∗j |α∗j ).
We first show that Qi(w

[−) =
∏

j 6=iH(w∗j |α∗j ). Suppose, to the contrary, that Qi(w
[−) >∏

j 6=iH(w∗j |α∗j ). Then, by the continuity of Qi and H on [w(0, α∗), w[), there exists δ > 0

such that Qi(wi) >
∏

j 6=iH(w∗j |α∗j ) for all wi ∈ (w[ − δ, w[). Then

Y (w[ − δ, w−i) =

∫ w[

w[−δ

[∏
j 6=i

H(w∗j |α∗j )−Qi(z)

]
h(z|α∗i )dz < 0,

a contradiction. Hence, Qi(w
[−) =

∏
j 6=iH(w∗j |α∗j ). Second, we show that there exists w′i ∈

(w(0, α∗i ), w
[) such that Qi(w

′
i) < Qi(w

[−). Suppose, to the contrary, that Qi(wi) = Qi(w
[−)

for all wi ∈ (w(0, α∗), w[). Then

Y (w(0, α∗), w∗−i) =

∫ w[

w(0,α∗)

[∏
j 6=i

H(w∗j |α∗j )−Qi(z)

]
h(z|α∗i )dz < 0,

a contradiction. Hence, there exists w′i ∈ (w(0, α∗i ), w
[) such that Qi(w

′
i) < Qi(w

[−). The

rest of the proof follows from that of Case II.

Lemma 29 Suppose that the information structures are supermodular ordered and αi = α∗i

for all i. Let Q and Q̂ be two implementable allocation rules satisfying (7). Let q be an

ex-post allocation rule that implements Q. Then there exists an ex-post allocation rule q̂ that

implements Q̂ and satisfies

Ew

[∑
i

(wi + γ
∑
j 6=i

wj)q̂i(w)

∣∣∣∣∣αi = α∗i ∀i

]
> Ew

[∑
i

(wi + γ
∑
j 6=i

wj)qi(w)

∣∣∣∣∣αi = α∗i ∀i

]
.

The proof of Lemma 29 relies on the following technical lemma. For each i, let hi denote

the probability measure on [w(0, α∗i ), w(1, α∗i )] corresponding to H(wi|α∗i ), then

Lemma 30 Let Q :
∏

iWi → [0, 1]n be an interim allocation rule and ρ :
∏

iWi → [0, 1]

be a measurable function. Then there exists an ex post allocation rule q that implements Q

and satisfies
∑

i qi(w) ≥ ρ(w) for almost all w ∈
∏

i[w(0, α∗i ), w(1, α∗i )] if and only if for

each measurable set A = (A1, . . . , An), where Ai ⊂ [w(0, α∗1), w(0, α∗i )] for all i, the following
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inequality holds:∫
A

ρ(w)dh1(w1) . . . dhn(wn) ≤
∑
i

∫
Ai

Q(wi)dhi(wi) ≤
∫
A

dh1(w1) . . . dhn(wn). (77)

The proof of Lemma 5 can be readily extended to prove Lemma 30 and is neglected here.

With Lemma 30 in hand, the proof of Lemma 4 can be readily extended to prove Lemma

29 and is also neglected here. Theorem 3 follows immediately from Lemmas 28 and 29.

B.2 Other omitted proofs

Proof of Proposition 4. As in Section 3, we solve (P ′) in two steps. First, for each

α∗ ∈ [α, α]n, we solve the following sub-problem, denoted by (P ′-α∗):

V (α∗) := max
Q

Ew

[∑
i

wiQi(wi)

∣∣∣∣∣α∗
]

subject to (F′), (MON) and (IA′) ,

Second, we solve maxα∈[α,α]n π
s(α) := (1− γ)V (α)−

∑
iC(αi).

Fix α∗. If the principal adopts the ex post efficient mechanism, the interim allocation

rule is given by Qi(wi) =
∏

j 6=iH(wi|α∗i ) for all wi and all i. Clearly, if α∗ is such that

Ewi

[
−Hαi(wi|α∗i )

h(wi|α∗i )
∏
j 6=i

H(wi|α∗j )

∣∣∣∣∣α∗
]
≤ C ′(α∗i ),∀i, (78)

the ex post efficient mechanism solves (P ′-α∗). Furthermore, Lemma 31 below proves that

if α∗ is chosen optimally, (78) (or equivalently (IA′) in this case) holds with equality for all

i and the expected social surplus is given by

πs(α∗) = (1− γ)

[
µ+

n∑
i=1

b(α∗i )C
′(α∗i )

]
−
∑
i

C(α∗i ). (18)

Suppose that α∗ is such that

Ewi

[
−Hαi(wi|α∗i )

h(wi|α∗i )
∏
j 6=i

H(wi|α∗j )

∣∣∣∣∣α∗
]
> C ′(α∗i ) for some i. (79)

Assume, without loss of generality, that (IA′) binds for the first k (0 < k ≤ n) agents.

Then we can ignore (IA′) for the last n− k agents. Let λi denote the Lagrangian multiplier

associated with (IA′) for agent i (i ≤ k). By a similar argument to that in Section 3.2, the
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optimal Lagrangian multipliers satisfy λi = b(α∗i ) for all i ≤ k. Then the Lagrangian of

(P ′-α∗) can be written as

L =
∑
i≤k

∫ w(1,α∗i )

w(0,α∗i )

[
wi + λi

H(wi|α∗i )
h(wi|α∗i )

]
Qi(wi)h(wi|α∗i )dwi

+
∑
i>k

∫ w(1,α∗i )

w(0,α∗i )

wiQi(wi)h(wi|α∗i )dwi +
∑
i≤k

λiC
′(α∗i )

=
∑
i≤k

∫ w(1,α∗i )

w(0,α∗i )

µQi(wi)h(wi|α∗i )dwi +
∑
i>k

∫ w(1,α∗i )

w(0,α∗i )

wiQi(wi)h(wi|α∗i )dwi +
∑
i≤k

b(α∗i )C
′(α∗i )

=

∫ w(1,α∗1)

w(0,α∗1)

· · ·
∫ w(1,α∗n)

w(0,α∗n)

(∑
i≤k

µqi(w) +
∑
i>k

wiqi(w)

)
n∏
i=1

h(wi|α∗i )dw1 . . . dwn +
∑
i≤k

b(α∗i )C
′(α∗i ).

Suppose that k < n, then a pointwise virtual surplus maximizer must satisfy for all w,

∑
i≤k

qi(w) =

{
1 if maxj>k{wj} < µ

0 if maxj>k{wj} > µ

and

qi(w) =

{
1 if wi > µ and wi > maxj>k{wj}
0 if wi < µ or wi < maxj>k{wj}

, ∀i > k.

Therefore, for all i > k, the optimal interim allocation rule is given byQi(wi) =
∏

j>k,j 6=iH(wi|α∗j )
if wi > µ and Qi(wi) = 0 if wi < µ. Hence,

V (α∗) = µ
∏
i>k

H(µ|α∗i ) +
∑
i>k

∫ w(1,α∗i )

µ

wi
∏

j>k,j 6=i

H(wi|α∗j )h(wi|α∗i )dwi +
∑
i≤k

b(α∗i )C
′(α∗i ).

Finally, (IA′) holds for i > k if and only if∫ w(1,α∗i )

µ

−Hαi(wi|α∗i )
∏

j>k,j 6=i

H(wi|α∗j )dwi ≤ C ′(α∗i ). (80)

Consider an agent i (i > k). We argue that if α∗ is chosen optimally, (80) holds with equality.

Suppose, to the contrary, that (80) holds with strict inequality, then

∂πs(α∗)

∂αi
= −(1− γ)

∫ w(1,α∗i )

µ

Hαi(wi|α∗i )
∏

j>k,j 6=i

H(wi|α∗j )dwi − C ′(α∗i ) < −γC ′(α∗i ) ≤ 0,

a contradiction to the optimality of α∗i . Hence, (80) holds with equality for all i > k.
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Furthermore, because the information structures are uniformly supermodular ordered, we

have ∫ w(1,α∗i )

µ

wi
∏

j>k,j 6=i

H(wi|α∗j )dwi = C ′(α∗i )b(α
∗
i ) +

∫ w(1,α∗i )

µ

µ
∏

j>k,j 6=i

H(wi|α∗j )dwi.

Substituting this into the expression of V (α∗) yields

V (α∗) =µ
∏
i>k

H(µ|α∗i ) +
∑
i>k

∫ w(1,α∗i )

µ

µ
∏

j>k,j 6=i

H(wi|α∗j )h(wi|α∗i )dwi +
n∑
i=1

b(α∗i )C
′(α∗i )

=µ
∏
i>k

H(µ|α∗i ) + µ

∫ θ

µ

d
∏
j>k

H(w|α∗j ) +
n∑
i=1

b(α∗i )C
′(α∗i )

=µ
∏
i>k

H(µ|α∗i ) + µ

[
1−

∏
i>k

H(µ|α∗i )

]
+

n∑
i=1

b(α∗i )C
′(α∗i ) = µ+

n∑
i=1

b(α∗i )C
′(α∗i ).

Hence,

πs(α∗) = (1− γ)

[
µ+

n∑
i=1

b(α∗i )C
′(α∗i )

]
−
∑
i

C(α∗i ). (18)

Suppose that k = n, then a pointwise virtual surplus maximizer must satisfy
∑

i qi(w) = 1

for all w. Hence, (18) still holds in this case.

Lemma 31 Suppose that the second-order condition of the agents’ optimization problem is

satisfied and the information structures are uniformly supermodular ordered. Let α∗ be a

socially optimal information choice. Suppose, in addition, that (78) holds. Then (78) holds

with equality for all i. Furthermore,

πs(α∗) = (1− γ)

[
µ+

n∑
i=1

b(α∗i )C
′(α∗i )

]
−
∑
i

C(α∗i ). (18)

Proof. Let α∗ be a socially optimal information choice. Suppose, to the contrary, that α∗
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is such that (78) holds with strictly inequality for some i. Note that

V (α∗) =
n∑
i=1

∫ w(1,α∗i )

w(0,α∗i )

w
∏
j 6=i

H(w|α∗j )h(w|α∗i )dw

=

∫ θ

θ

wd
∏
i

H(w|α∗i )

= θ −
∫ θ

θ

∏
i

H(w|α∗i )dw,

where the last line holds by integration by parts. Hence,

∂

∂αi
πs(α∗) = (1− γ)

∂

∂αi
V (α∗)− C ′(α∗i )

= (1− γ)

∫ θ

θ

−Hαi(w|α∗i )
∏
j 6=i

H(w|α∗j )dw − C ′(α∗i ),

which is strictly decreasing in αi when the second-order condition of the agents’ optimization

problem is satisfied. Because α∗ is such that (78) holds with strictly inequality for i,

∂

∂αi
πs(α∗) < −γC ′(α∗i ) ≤ 0.

Hence, α∗ is not optimal, a contradiction. Hence, if α∗ is chosen optimally, then (IA′) holds

with equality for all i.

Let α∗ be such that (78) holds. Because the information structures are uniformly super-

modular ordered, and (IA′) holds with equality, we have∫ w(1,α∗i )

w(0,α∗i )

w − µ
b(αi)

∏
j 6=i

H(w|α∗j )h(w|α∗i )dw = C ′(α∗i ).
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Hence,

V (α∗) =
n∑
i=1

∫ w(1,α∗)

w(0,α∗)

w
∏
j 6=i

H(w|α∗j )h(w|α∗i )dw

=
n∑
i=1

b(α∗i )C
′(α∗i ) + µ

n∑
i=1

∫ w(1,α∗)

w(0,α∗)

∏
j 6=i

H(w|α∗j )h(w|α∗i )dw

=
n∑
i=1

b(α∗i )C
′(α∗i ) + µ

∫ θ

θ

d
∏
i

H(w|αi)

=
n∑
i=1

b(α∗i )C
′(α∗i ) + µ.

Hence,

πs(α∗) = (1− γ)

[
µ+

n∑
i=1

b(α∗i )C
′(α∗i )

]
−
∑
i

C(α∗i ). (18)

This completes the proof.
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