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Abstract
A principal wishes to distribute an indivisible good to a population of budget-constrained

agents. Both valuation and budget are an agent’s private information. The principal can in-
spect an agent’s budget through a costly verification process and punish an agent who makes a
false statement. I characterize the direct surplus-maximizing mechanism. This direct mecha-
nism can be implemented by a two-stage mechanism in which agents only report their budgets.
Specifically, all agents report their budgets in the first stage. The principal then provides budget-
dependent cash subsidies to agents and assigns the goods randomly (with uniform probability)
at budget-dependent prices. In the second stage, a resale market opens, but is regulated with
budget-dependent sales taxes. Agents who report low budgets receive more subsidies in their
initial purchases (the first stage), face higher taxes in the resale market (the second stage) and
are inspected randomly. This implementation exhibits some of the features of some welfare
programs, such as Singapore’s housing and development board.
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1 Introduction

Governments around the world allocate a variety of valuable resources to agents who are fi-

nancially constrained. In Singapore, for example, 80% of the population’s housing needs are met

by the Housing and Development Board (HDB), a government agency founded in 1960 to provide

affordable housing.1 In the United States, Medicaid has provided health care to individuals and

families with low income and limited resources since 1965. Medicaid currently accounts for 16.1%

of the state general funds2 and provides health coverage to 80 million low-income people.3 Similar

public housing and social health care programs prevail in many other countries.45 In China, sev-

eral cities limit the supply of vehicle licenses to curb the growth in private vehicles, and different

cities have implemented different mechanisms. For example, Shanghai allocates vehicle licenses

through an auction-like mechanism, while Beijing uses a vehicle license lottery (see Rong et al.

2015). The evaluation of existing mechanisms has attracted attention from researchers and poli-

cymakers. In comparison to lotteries, an auction-like mechanism is considered more efficient but

favors high-income families more.

One justification for this role of a government is that a competitive market outcome will not

maximize social surplus if agents are financially constrained. Financial constraints mean that in a

competitive market some agents with high valuations will not obtain goods, while agents with low

valuations but access to cash will. The natural question arises as to what the surplus-maximizing

(or optimal) mechanism is in these circumstances when both valuations and financial constraints

are the agents’ private information.

Themechanism design literature concerning this question has focused onmechanisms with only

monetary transfers and has ignored the possibility of the principal verifying the agents’ reported

information about their abilities to pay. Indeed, in many instances, the principal relies on agents’

1http://www.hdb.gov.sg/fi10/fi10320p.nsf/w/AboutUsPublicHousing?OpenDocument
2http://ccf.georgetown.edu/wp-content/uploads/2012/03/Medicaid-state-budgets-2005.pdf
3http://www.cbpp.org/research/health/policy-basics-introduction-to-medicaid?fa=view&

id=2223
4https://en.wikipedia.org/wiki/Public_housing
5https://en.wikipedia.org/wiki/Universal_health_coverage_by_country
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reports of their ability to pay, and the principal can verify this information and punish an agent who

makes a false statement. For example, applicants for HDB flats in Singapore and Medicaid in the

United States are subject to a set of eligibility conditions on age, family nucleus, monthly income,

and so on. The verification process can be costly, though. First, in some developing countries,

verifiable records on household income or wealth are rarely available, and governments lack the

administrative capacity to process this information. In such cases, alternative verification methods

such as a visit to the household to inspect the visible living conditions are not uncommon but are

often costly (see Coady et al. 2004). Second, certain types of income such as tips, side-jobs and cash

receipts are costly to verify. Similarly, governments have few ways to verify the income reports by

individuals who are self-employed or run small business without performing a costly investigation.

Third, agents may be financially constrained due to limited access to the financial market or high

expenditures, such as medical expenses or education costs. This information is often costly for

governments to verify. Last but not least, even when the verification cost for one individual is low,

the total cost can be substantial for a large population.

Hence, it is important to explore how the option of costly verification affects the optimal mech-

anism. Verification allows the principal to better target low-budget agents and potentially improve

their welfare. However, verification is costly and reduces the amount of money available for subsi-

dies. The principal must now trade allocative efficiency for verification cost. The cost of verification

also influences whether the principal chooses to use cash subsidies or in-kind subsidies (the provi-

sion of goods at discounted prices). The latter is less efficient because it often involves rationing,

but saves verification cost because it only benefits low-budget agents with high valuations. Finally,

introducing costly verification also complicates the analysis because it is no longer sufficient to con-

sider “local” incentive compatibility (IC) constraints. Because the IC constraints between distant

types can also bind, one cannot anticipate a priori the set of binding IC constraints.

To study these questions, I consider a mechanism design problem in which there is a unit mass

of a continuum of agents and a limited supply of indivisible goods. Each agent has two-dimensional

private information — his valuation of the good v ∈ [v, v] and his exogenous budget constraint b.
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The budget constraint is a hard one in the sense that agents cannot be compelled to pay more than

their budgets. For simplicity, I assume there are only two possible types of budgets, b2 > b1. The

principal can inspect an agent at a cost, perfectly revealing his budget, and impose a penalty on

detected misreporting. The principal is also subject to a budget balance constraint which requires

that the revenue from selling the good must exceed the inspection cost. This constraint rules out the

possibility that the principal can inject money and relieve all budget constraints. I focus on direct

mechanisms in which each agent reports private information directly and is punished if and only if

found to have lied about the budget. Given the report, the mechanism specifies for each agent his

probability of getting the good, his payment and his probability of being inspected.

I characterize the optimal direct mechanism which maximizes utilitarian efficiency among all

mechanisms that are incentive compatible and individually rational, and that satisfy the resource

constraint, agents’ budget constraints and the principal’s budget balance constraint.

Let u(v, b) denote the utility of an agent with the lowest valuation v and budget b, which is

also the amount of cash subsidies received by agents with budget b. There exist three cutoffs v∗1 ≤

v∗2 ≤ v∗∗2 . Firstly, low-budget agents whose valuations are below v∗1 and high-budget agents whose

valuations are below v∗2 only receive only cash subsidies. Not surprisingly, these low-budget agents

receive higher cash subsidies and are inspected with probability proportional to the difference in

cash subsidies u(v, b1) − u(v, b2). Secondly, low-budget agents whose valuations exceed v∗1 receive

the good with probability a∗ ≤ 1 and make a payment of a∗v∗1 − u(v, b1). They receive both cash

and in-kind subsidies. High-budget agents whose valuations lie in [v∗2, v
∗∗
2 ] are pooled with low-

budget agents whose valuations are above v∗1. They also receive the good with probability a∗, but

they make a payment of a∗v∗2 − u(v, b2). The difference in in-kind subsidies is given by a
∗(v∗2 − v

∗
1),

and these low-budget agents are inspected with probability proportional to the sum of differences

in cash and in-kind subsidies u(v, b1) − u(v, b2) + a∗(v∗2 − v
∗
1). Finally, high-budget agents receive

the good for sure and make a payment of v∗∗2 − u(v, b2) if their valuations exceed v
∗∗
2 .

If budgets are common knowledge, then the principal can without cost target low-budget agents

and provides cash subsidies and in-kind subsidies only to low-budget agents. If budgets are agents’
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private information and cannot be verified, then high-budget agents whose valuations are below v∗2

have incentives to misreport as low-budget types to receive cash subsidies; and high-budget agents

whose valuations are slightly above v∗2 have incentives to misreport as low-budget types to receive

the good at a lower payment. As a result, in this case, agents with both budgets receive the same

amount of cash subsidies (u(v, b1) = u(v, b2)) and in-kind subsidies (v∗1 = v
∗
2).

The optimal direct mechanism can be implemented by a simple two-stage mechanism. Specif-

ically, all agents are asked to report their budgets in the first stage. The principal then provides

budget-dependent cash subsidies to agents and assigns the goods randomly (with uniform proba-

bility) at budget-dependent prices. Agents who report low budgets receive higher cash subsidies

and lower prices. In the second stage, a resale market opens, but is regulated with budget-dependent

sales taxes. Agents who report low budgets are subject to higher sales taxes. Only agents who re-

port low budgets are inspected randomly. Unlike the case without inspection, in which all agents

are subsidized and regulated equally regardless of their budgets, the two-stage mechanism provides

more subsidies to low-budget agents in their initial purchases (the first stage) and imposes more re-

strictions on them in the resale market (the second stage). Although in my analysis the principal’s

objective is to maximize social surplus, I conjecture that these features would continue to apply

when the principal wants to benefit only low-budget agents.

This implementation exhibits some features of the public housing program in Singapore, as

shown in Table 1. In Singapore, buyers of resale HDB flats can apply for additional housing grants.

If these flats are purchased with housing grants, these buyers are required to reside in their flats

for at least 5 years before they could resell or sublet. In contrast, flats purchased without housing

grants are subject to no requirement or a shorter one.

It is interesting to see how verification cost, the supply of goods and other parameters affect the

optimal mechanism and welfare. I provide analytic results of comparative statics for extreme cases,

such as when verification cost is sufficiently large and the supply of goods is sufficiently large or

small, and I explore the intermediate case numerically.

Verification allows the principal to better target low-budget agents and improves their welfare.
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Table 1: Minimum occupation periods (MOP) of housing and development board (HDB) flats

Types of HDB flats MOP
Sell Sublet

Resale flats w/ Grants 5–7 years 5–7 years
Resale flats w/o Grants 0–5 years 3 years

Sources. — Sell: http://www.hdb.gov.sg/cs/infoweb/residential/selling-a-flat/eligibility; and Sublet: http://www.
hdb.gov.sg/cs/infoweb/residential/renting-out-a-flat-bedroom/renting-out-your-flat/eligibility.

Intuitively, as verification becomes costly, the principal tends to provide relatively smaller subsidies

to low-budget agents and inspect them less frequently. More interestingly, the optimal mechanism

makes use of both cash and in-kind subsidies, and the change in verification cost affects that mech-

anism’s reliance on each of them. If verification is cheap, then the principal achieves efficiency

mainly by offering more cash subsidies to low-budget agents. As verification becomes costly, the

difference in cash subsidies declines but the difference in in-kind subsidies increases. This is be-

cause in-kind subsidies are attractive only to high-valuation agents, which is cheaper in terms of

verification cost. Eventually, the difference in in-kind subsidies also declines as verification be-

comes sufficiently costly. Though reducing verification cost improves the welfare of low-budget

agents, it may hurt high-budget agents as more subsidies are diverted to low-budget agents.

Another interesting observation is that although an increase in the supply of goods improves

the total welfare, its impact on the welfare of each budget type is not monotonic. This is because an

increase in the supply has two opposite effects. On the one hand, the principal becomes less budget

constrained, and can direct more subsidies to low-budget agents and inspect them more frequently.

On the other hand, low-budget agents also become less budget constrained, which reduces the needs

to subsidize and inspect them. As a result, the differences in cash and in-kind subsidies and the

inspection probability are hump-shaped. Initially, the welfare of both budget types increases as the

supply increases. When the supply is large enough that the principal can afford to provide more

subsidies to low-budget agents, the welfare of high-budget agents begins to decrease. Eventually,

the need to subsidize low-budget agents decreases as the supply increases while the welfare of

low-budget agents begins to decrease and that of high-budget agents begins to increase, until they
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coincide.

Technically, this paper develops a novel method that can potentially be used in solving other

mechanism design problems with multidimensional types. If each agent has only one-dimensional

private information, i.e., valuation, then it is sufficient to consider adjacent IC constraints; if each

agent has two-dimensional private information but the principal cannot inspect budgets, then it is

sufficient to consider two one-dimensional deviations. These, however, no longer apply in the case

that each agent has two dimensional private information and the principal can inspect budget at a

cost. In this case, in addition to downward adjacent IC constraints of misreporting values, one must

consider deviations in which an agent can misreport both dimensions of his private information.

As a result, the local approach commonly used does not work here.

To overcome this difficulty, I first restrict attention to a class of allocation rules that have enough

structures to help me keep track of binding IC constraints, and that are also rich enough to approxi-

mate any general allocation rule well. Specifically, I approximate the allocation rule of each budget

type using step functions. When restricting attention to step functions, binding IC constraints cor-

responding to the under-reporting of budgets are between different budget types whose values are

the jump discontinuity points of their allocation rules. This structure allows me to write the optimal

inspection rule as a function of the possible values and jump discontinuity points of the allocation

rule. I then solve a modification of the principal’s problem in which the allocation rule of low-

budget types are restricted to take at most M distinct values. Because for M sufficiently large

step-functions can approximate the optimal allocation rule arbitrarily well, I can obtain a charac-

terization of the optimal mechanism in the limit.

The rest of the paper is organized as follows. Section 1.1 discusses related work. Section 2

presents the model. Section 3 characterizes the direct optimal mechanism when all agents’ budget

constraints are common knowledge. Section 4 characterizes the direct optimal mechanism when

an agent’s budget is his private information. Section 5 provides a simple implementation. Section

6 studies the properties of the optimal mechanism. Section 7 considers various extensions of the

model. Section 8 concludes. All the proofs are relegated to the appendix.
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1.1 Related Literature

This paper is related to two branches of literature. First, it contributes to the literature study-

ing mechanism design problems when agents are financially constrained by incorporating costly

verification. Prior work analyzes the revenue or efficiency of a given mechanism or the design of

an optimal mechanism when either budgets are common knowledge, or budgets are agents’ pri-

vate information but cannot be verified. See Che and Gale (1998, 2006, 2000), Laffont and Robert

(1996), Maskin (2000), Benoit and Krishna (2001), Brusco and Lopomo (2008), Malakhov and

Vohra (2008) and Pai and Vohra (2014).

In this first branch of literature, the two closest papers to the current paper are Che et al. (2013)

and Richter (2015). In Che et al. (2013) and Richter (2015), like in this paper, there is a unit mass

of a continuum of agents and a limited supply of goods. In Richter (2015) agents have linear prefer-

ences for an unlimited supply of the goods. He finds that both the revenue-maximizing mechanism

and surplus-maximizing mechanism feature a linear price for the good. In addition, the surplus-

maximizing mechanism has a uniform cash subsidy. In both Che et al. (2013) and this paper, each

agent has a unit demand for an indivisible good, and the surplus-maximizing mechanism can be

implemented via a random assignment with a regulated resale and cash subsidy scheme. However,

Che et al. (2013) does not consider the possibility that the principal can verify an agent’s budget

at a cost. This feature also distinguishes the current paper from all the other papers on mechanism

design with financially constrained agents. Che et al. (2013) first compare three different methods

of assigning the goods when agents have a continuum of possible valuations and a continuum of

possible budgets, and then characterize the optimal mechanism in a simple 2×2 model, in which

each agent has two possible valuations of the good and two possible budgets. In the presence of

costly verification, unlike Che et al. (2013), in which all agents are subsidized and regulated equally

regardless of their budgets in an optimal mechanism, I show that an optimal mechanism provides

more subsidies to low-budget agents in their initial purchases and imposes more restrictions on

them in the resale market.

Second, this paper is related to the costly state verification literature. The first significant contri-
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bution to this series is from Townsend (1979), who studies a model of a principal and a single agent.

In Townsend (1979) verification is deterministic. Border and Sobel (1987) and Mookherjee and

Png (1989) generalize it by allowing random inspection. Gale and Hellwig (1985) consider the ef-

fects of costly verification in the context of credit markets. Recently, Ben-Porath et al. (2014) study

the allocation problem in the costly state verification framework when there are multiple agents and

monetary transfer is not possible. Li (2016) extends Ben-Porath et al. (2014) to environments in

which the principal’s ability to punish an agent is limited. These models differ from what I consider

here in that in their models each agent has only one-dimensional private information.

This paper is also somewhat related to the literature on costless or ex-post verification. Glazer

and Rubinstein (2004) can be interpreted as a model of a principal and one agent with limited

but costless verification and no monetary transfers. Mylovanov and Zapechelnyuk (2014) study

a model of multiple agents with costless verification but limited punishments. This paper differs

from these earlier studies in that each agent has two-dimensional private information, verification

is costly and there are monetary transfers.

In the literature discussed above, one can anticipate a priori the set of binding IC constraints,

which is no longer true here. Instead, I use new techniques for keeping track of binding IC con-

straints.

2 Model

There is a unit mass of a continuum of agents. There is a mass S ∈ (0, 1) of indivisible goods.6

Each agent has a private valuation of the good v ∈ V ∶= [v, v] ⊂ ℝ+, and a privately known budget

b ∈ B ∶= {b1, b2}. I assume that b1 > v and b2 > v.7 Thus, a high-budget agent is never budget

constrained in an individually rational mechanism. The type of an agent is a pair consisting of his

valuation and his budget: t ∶= (v, b); and the type space is T ∶= V × B.

6The model is also applicable to divisible goods when an agent’s per-unit value for the good is constant up to an
upper bound.

7All the results can be easily extended to any b1 ≥ 0. In the paper, I assume b1 > v to make the statement more
concise.
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I assume v and b are independent. Each agent has a high budget with probability � and a low

budget with probability 1 − �. The valuation v is distributed with cumulative distribution function

F and strictly positive density f .

The principal can inspect an agent’s budget at a cost k ≥ 0, and can impose a penalty c > 0.

Inspection perfectly reveals an agent’s budget.8 I assume that the penalty c is large enough that an

agent never find it optimal to misreport his budget if he is certain he will be inspected. For the main

body of the paper, I assume that the penalty is not transferable. In Section 7.2, I study the case in

which penalty is transferable and show that all results hold in that case. For later use, let � ∶= k∕c.

As it will become clear, � measures the “effective” inspection cost to the principal. The cost to an

agent to have his report verified is zero. This assumption is reasonable if the goods are valuable to

agents and disclosure costs are negligible. In Section 7.3, I discuss what happens if it is also costly

for an agent to have his report verified.

The usual version of the revelation principle (see, e.g., Myerson 1979 and Harris and Townsend

1981) does not apply to models with verification. However, it is not hard to extend the argument to

this type of environment.9 Specifically, I show in Appendix A that it is without loss of generality

to restrict attention to direct mechanisms. Furthermore, I assume that the principal can only punish

an agent who is inspected and found to have lied about his budget. This assumption, however,

is not without loss of generality. I discuss what happens if the principal is allowed to punish an

agent without verifying his budget or to punish an agent who is found to have reported his budget

truthfully in Section 7.4.

A direct mechanism is a triple (a, p, q), where a ∶ T → [0, 1] denotes the probability an agent

obtains the good, p ∶ T → ℝ denotes the payment an agent must make and q ∶ T → [0, 1]

denotes the probability of inspection. In this definition, I implicitly assume that payment rules are

deterministic. I discuss random payment rules at the end of this section and show that it is without

loss of generality to focus on deterministic payment rules.

8The paper’s results will not change if the principal cannot detect a lie with some probability.
9See Townsend (1988) and Ben-Porath et al. (2014) for more discussion and extension of the revelation principle

to various verification models, not including the environment considered in this paper.
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The utility of an agent who has type t ∶= (v, b) and reports t̂ is

u(t̂, t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a(t̂)v − p(t̂) if b̂ = b and p(t̂) ≤ b,

a(t̂)v − q(t̂)c − p(t̂) if b̂ ≠ b and p(t̂) ≤ b,

−∞ if p(t̂) > b.

An agent has a standard quasi-linear utility up to his budget constraint, and cannot pay more than

his budget.

The welfare criterion I use is utilitarian efficiency. For why utilitarian efficiency is a reasonable

welfare criterion, see Vickrey (1945) and Harsanyi (1955). Given quasi-linear preferences, the total

value realized minus total inspection cost is an equivalent criterion.10 The principal’s problem is11

max
a,p,q

Et [a(t)v − q(t)k] , ()

subject to

u(t) ≡ u(t, t) ≥ 0, ∀t ∈ T , (IR)

u(t) ≥ u(t̂, t), ∀t ∈ T , t̂ ∈
{

t̂ ∈ T |

|

p(t̂) ≤ b
}

, (IC)

p(t) ≤ b, ∀t ∈ T , (BC)

Et [p(t) − q(t)k] ≥ 0, (BB)

Et [a(t)] ≤ S. (S)

The individual rationality (IR) constraint requires that each agent gets a non-negative expected

10To see this, consider a feasible mechanism (a, p, q). Note that if (a, p, q) maximizes welfare, then (BB) must hold
with equality. Otherwise the principal can improve welfare through lump-sum transfers. Then the principal’s objective
function becomes

E[u(t)] = E[va(t) − p(t)] = E[va(t) − q(t)k],

where the last equality holds since (BB) holds with equality.
11There are some subtle issues with a continuum of random variables. See Judd (1985). However, if we interpret

the continuum model as an approximation of a large economy, then Al-Najjar (2004) makes the limiting argument
rigorous.
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payoff from participating in the mechanism. The incentive compatibility (IC) constraint requires

that it is weakly better for an agent to report his true type than any other type whose transfers he can

afford. The budget constraint (BC) states that an agent cannot be ask to make a payment larger than

his budget b. To be clear, note that (BC) follows from (IR). This budget constraint is the same as

that found in Che and Gale (2000) and Pai and Vohra (2014), but different from Che et al. (2013),

who use a per unit price constraint.12 I discuss the differences of the two frameworks in Section

7.1. The principal’s budget balance (BB) constraint requires that the revenue raised from selling the

goods must exceed the inspection cost. (BB) rules out the possibility that the principal can inject

money and relieve all budget constraints. Finally, the limited supply (S) constraint, which requires

that the amount of good assigned cannot exceed the supply. We say a mechanism (a, p, q) is feasible

if it satisfies constraints (IR), (IC), (BC), (BB) and (S).

Throughout the paper, I assume thatS < 1−F (b1) since otherwise the first-best can be achieved

via a competitive market. I also impose the following two assumptions throughout the paper.

Assumption 1 1−F
f

is non-increasing.

Assumption 2 f is non-increasing.

Assumption 1 is the standard monotone hazard rate condition, which is often adopted in the

mechanism design literature. This assumption ensures that allocating more good to agents with

higher valuations from those with lower valuations generates higher revenues for the principal.

Assumption 2 says that agents are less likely to have higher valuations than to have lower valua-

tions. These two assumptions are also imposed in Richter (2015) and Pai and Vohra (2014). These

two assumptions are satisfied by some commonly used distributions such as uniform distributions,

exponential distributions and left truncation of a normal distribution.

I conclude this section with a discussion of random payment rules.

12This constraint is called ex-post budget constraint in Che et al. (2013).
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2.1 Random Payment Rules

When defining a direct mechanism, I implicitly assume that the payment rule is deterministic.

I argue that this is without loss of generality. Consider a random payment rule p̃ ∶ T → Δ(ℝ). Let

supp(p̃(t)) denote the supremum of payments in the support of p̃(t). The utility of an agent who has

type t and report t̂ is

u(t̂, t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a(t̂)v − E[p̃(t̂)] if b̂ = b and supp(p̃(t̂)) ≤ b,

a(t̂)v − q(t̂)c − E[p̃(t̂)] if b̂ ≠ b and supp(p̃(t̂)) ≤ b,

−∞ if supp(p̃(t̂)) > b.

In other words, an agent suffers an unbounded dis-utility if his budget constraint is violated with a

positive probability. The IC constraints become

u(t) ≥ u(t̂, t), ∀t ∈ T , t̂ ∈
{

t̂ ∈ T |

|

supp(p̃(t̂)) ≤ b
}

, (IC)

The principal’s objective function and all the other constraints remain intact.

By a similar argument to that used in Pai and Vohra (2014), for any feasible mechanism (a, p̃, q),

one can construct another feasible mechanism (a, p̃, q) by setting

p̂(t) =

⎧

⎪

⎨

⎪

⎩

E[p̃(t)] − � with propability b−E[p̃(t)]
b−E[p̃(t)]+�

,

b with propability �
b−E[p̃(t)]+�

,

for some � > 0 sufficiently small. Furthermore, both mechanisms have the same welfare. Observe

that, under this construction, IC constraints corresponding to over reporting of budget are satisfied

“for free”. Given these observations, it is not hard to see that one can solve the principal’s problem

(allowing for random payment rules) by restricting attention to deterministic payment rules but

relaxing IC constraints corresponding to the over reporting of budget. As I will show later, in the

optimal mechanism of  no low-budget agent has any incentive to over report his budget. Hence,
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it is without loss of generality to focus on deterministic payment rules.

3 Common Knowledge Budgets

As a benchmark, I first analyze the case in which all agents’ budget constraints are common

knowledge. This case can be viewed as the situation in which the principal can inspect an agent’s

budget for free (i.e., � = k∕c = 0).

Since budgets are common knowledge, the IC constraints hold as long as for each b ∈ B, no

agent has incentive to misreport his value:

a(v, b)v − p(v, b) ≤ a(v̂, b)v − p(v̂, b), ∀v, v̂. (IC-v)

The principal’s problem becomes

max
a,p,q

Et [a(t)v] , (CB)

subject to (IR), (IC-v), (BC), (S) and

Et[p(t)] ≥ 0,∀t ∈ T . (BB)

By the standard argument, (IC-v) holds if and only if for all b ∈ B, a(v, b) is non-decreasing in v

and p(v, b) = a(v, b)v − ∫ v
v a(�, b)d� − u(v, b). Since a(v, b) is non-decreasing in v, the payment

p(v, b) is also non-decreasing in v. Hence, (BC) holds if and only if p(v, b) ≤ b for all b.

Let� denote the characteristic function. The following theorem characterizes the optimalmech-

anism.

Theorem 1 Suppose Assumption 2 holds, and budgets are common knowledge. There exist v∗1(0),
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v∗2(0), u
∗
1(0) and u

∗
2(0) such that an optimal mechanism of CB is given by

a(v, b1) = �{v≥v∗1(0)}a
∗(0), p(v, b1) = �{v≥v∗1(0)}(u

∗
1(0) + b1) − u

∗
1(0),

a(v, b2) = �{v≥v∗2(0)}1, p(v, b2) = �{v≥v∗2}v
∗
2(0),

where a∗(0) =
[

u∗1(0) + b1
]

∕v∗1(0), b1 < v
∗
1(0) ≤ v∗2(0) < v and 0 = u

∗
2(0) < u

∗
1(0) ≤ v∗1(0) − b1.

In notations a∗(0), v∗i (0) and u
∗
i (0) (i = 1, 2) , subscript i indicates the corresponding budget bi

and argument 0 indicates that this can be viewed as an optimal mechanism when � = 0.

As expected, when budgets are common knowledge, the two budget group can be treated sep-

arately. Only low-budget agents receive positive cash subsidies aiming to relax their budget con-

straints: u(v, b1) = u∗1(0) > 0 = u∗2(0) = u(v, b2). There are two cutoffs: v∗1(0) ≤ v∗2(0). All

high-budget agents whose valuations are above v∗2(0) receive the good with probability one. This

allocation can be implemented by posting a price v∗2(0) for high-budget agents, which is the efficient

mechanism when agents are not financially constrained. All low-budget agents whose valuations

are above v∗1(0) receive the good with positive probability but are possibly rationed. The intuition

for rationing is familiar from the literature. Increasing allocations to low value agents reduces the

payment of high value agents and therefore “relaxes" their budget constraints.

Clearly, a high-budget agent whose value is below v∗1(0) has a strict incentive to misreport as a

low-budget agent since u(v, b1) > 0 = u(v, b2). A high-budget agent whose value is slightly above

v∗1(0) also has strict incentives to misreport as a low-budget agent:

v
(

u(v, b1) + b1
)

v∗1(0)
− b1 >

(

v − v∗1(0)
)

b1
v∗1(0)

≥ max
{

v − v∗2(0), 0
}

.

The last inequality holds for v > v∗1(0) sufficiently close to v∗1(0). As it will become clear in Section

4.1, when budgets are agents’ private information and the principal does not inspect, to discourage

agents from under reporting their budgets, it must be that u(v, b1) = u(v, b2) and a high-budget

agent must receive the good with a probability no less than that of a low-budget agent who has the

15



same valuation.

4 Privately Known Budgets

In this section, I analyze the case in which an agent’s budget is his private information. In this

case, IC constraints can be separated into two categories:

Misreport value: a(v, b)v − p(v, b) ≥ a(v̂, b)v − p(v̂, b), ∀v, v̂, b, (IC-v)

Misreport both: a(v, b)v − p(v, b) ≥ �{p(v̂,b̂)≤b}
(

a(v̂, b̂)v − q(v̂, b̂)c − p(v̂, b̂)
)

, ∀v, v̂, b, b̂. (1)

As I stated in the previous section, (IC-v) holds if and only if for all b ∈ B, a(v, b) is non-decreasing

in v and p(v, b) = va(v, b) − ∫ v
v a(�, b)d� − u(v, b). The difficulty arises from (1). In what follows,

I first consider a relaxed problem by replacing (1) with the following constraint:

a(v, b2)v − p(v, b2) ≥ a(v̂, b1)v − q(v̂, b1)c − p(v̂, b1), ∀v, v̂. (IC-b)

This relaxation formalizes the intuition that the principal’s main concern is to prevent high-budget

agents from falsely claiming to be low-budget agents. Later, I verify that an optimal mechanism

of the relaxed problem automatically satisfies IC constraints corresponding to over-reporting of

budgets. In other words, it also solves the original problem.

To summarize, the principal’s relaxed problem is

max
a,p,a

Et[a(t)v − q(t)k], ( ′)

subject to (IR), (IC-v), (IC-b), (BC), (BB) and (S).
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4.1 No Verification

In this section, I consider the case in which the principal does not inspect agents, i.e., q ≡ 0.

In this case, as will become clear in the discussion below, it is sufficient to consider two one-

dimensional deviations, which greatly simplifies the analysis. Although some of the results may

be familiar, it highlights the differences in my approach. Denote the principal’s problem in this

case by NI and the corresponding relaxed problem by  ′
NI . As will become clear in Section 6,

if the inspection cost, k, is sufficiently high relative to the punishment, c, then it is optimal for the

principal not to use inspection. In particular, this is the case when the principal’s inspection cost is

infinity (i.e., � = k∕c = ∞).

Observe first that in this case (IC-b) holds if and only if (IC-v) holds and

a(v, b2)v − p(v, b2) ≥ a(v, b1)v − p(v, b1), ∀v. (2)

To see this, note that if (2) holds, then

a(v, b2)v − p(v, b2) ≥ a(v, b1)v − p(v, b1)

≥ a(v̂, b1)v − p(v̂, b1),

where the second inequality follows from (IC-v). Thus, it is sufficient to consider the two one-

dimensional deviations: only misreport value and only misreport budget. The above inequality

says that if a type (v, b2) agent has no incentive to misreport (v, b1), then he has no incentive to

misreport (v̂, b1). This argument is not true when there is verification because it is possible that

types (v, b1) and (v̂, b1) are inspected with different probabilities. Instead, one must identify for

each type (v̂, b1) the high-budget type who benefits most from misreporting (v̂, b1) in the absence

of inspection, which determines the set of binding (IC-b) constraints.
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Using the envelope condition, (2) can be rewritten as

u(v, b2) + ∫

v

v
a(�, b2)d� ≥ u(v, b1) + ∫

v

v
a(�, b1)d�, ∀v. (3)

If v = v, then (3) implies that u(v, b2) ≥ u(v, b1). If u(v, b2) > u(v, b1), then one can construct

another feasible mechanism by reducing cash subsidies to high-budget agents while increasing their

probabilities of receiving the goods, which generates the same welfare. Hence, it is without loss of

generality to assume that u(v, b1) = u(v, b2). This result is summarized in Lemma 1, and a complete

proof can be found in the appendix.13

Lemma 1 Suppose Assumption 2 holds, and the principal does not inspect agents. In an optimal

mechanism of  ′
NI , it is without loss of generality to assume that u(v, b1) = u(v, b2).

One implication of Lemma 1 is that in an optimal mechanism agents receive positive cash sub-

sidies regardless of their budgets. This result contrasts the case of common knowledge budgets in

which only low-budget agents receive positive cash subsidies.

Next, I show that, for any given v, an optimal mechanism on average allocates weakly more

resources to high-budget agents whose valuations are below v than to low-budget agents whose

valuations are below v.

Lemma 2 Suppose Assumptions 1 and 2 hold, and the principal does not inspect agents. In an

optimal mechanism of  ′
NI , the allocation rule satisfies

∫

v

v
a(�, b2)f (�)d� ≥ ∫

v

v
a(�, b1)f (�)d�, ∀v. (4)

Given Lemma 1, (4) follows immediately from (3) if v is uniformly distributed. Lemma 2 shows

that the result holds more generally for any distribution with non-increasing density. Using Lemmas

1 and 2, one can prove the following theorem, which characterizes the optimal direct mechanism.

13It is immediate that u(v, b1) = u(v, b2) if one also requires that a low-budget agent has no incentive to misreport
as a high-budget agent.
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Theorem 2 Suppose Assumptions 1 and 2 hold, and the principal does not inspect agents. There

exist v∗1(∞), v
∗
2(∞), v

∗∗
2 (∞), u

∗
1(∞) and u

∗
2(∞) such that an optimal mechanism of NI with no

inspection satisfies

a(v, b1) = �{v≥v∗(∞)}a∗(∞), p(v, b1) = �{v≥v∗1(∞)}(u
∗
1(∞) + b1) − u

∗
1(∞),

a(v, b2) = �{v≥v∗2(∞)}a
∗(∞) + �{v≥v∗∗2 (∞)} (1 − a

∗(∞)) ,

p(v, b2) = �{v≥v∗2(∞)}(u
∗
2(∞) + b1) + �{v≥v∗∗2 (∞)} (1 − a

∗(∞)) v∗∗2 (∞) − u
∗
2(∞),

where

a∗(∞) =
u∗1(∞) + b1
v∗1(∞)

,

b1 < v∗1(∞) = v
∗
2(∞) ≤ v∗∗2 (∞) ≤ v and 0 < u∗1(∞) = u

∗
2(∞) ≤ v∗1(∞) − b1.

In notations a∗(∞), v∗i (∞), v
∗∗
2 (∞) and u

∗
i (∞) (i = 1, 2) , subscript i indicates the corresponding

budget bi and argument∞ indicates that this can be viewed as an optimal mechanism when � = ∞.

Not surprisingly the optimal allocation rule obtained here shares similar features with the one

found in Pai and Vohra (2014).There are three cutoffs: v∗1(∞) = v
∗
2(∞) < v

∗∗
2 (∞). All high-budget

agents whose valuations are above v∗∗2 (∞) receive the good with probability one. All low-budget

agents whose valuations are above v∗1(∞) receive the good with positive probability but may be

rationed. In addition, high-budget agents whose valuations are in [v∗2(∞), v
∗∗
2 (∞)] are pooled with

low-budget agents whose valuations are at least v∗1(∞)(= v∗2(∞)). To understand this pooling,

consider two agents with the same valuation v, but different budgets b2 > b1. Then (IC-b) implies

that as long as agent (v, b2)’s payment is less than b1, he must receive the good with the same

probability as (v, b1) does.

The proof of Theorem 2 follows a weight-shifting argument similar to that of Lemma 1 in

Richter (2015). Consider a feasible mechanism (a, p, 0) whose allocation rule is indicated by the

two thick dotted curves in Figure 1. One can construct another feasible mechanism (a∗, p∗, 0),

whose allocation rule is indicated by the thick solid lines, in the following way. Find a v∗1 and shift

the allocation mass of low-budget agents from the region to the left of v∗1 to the region to the right
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Figure 1: Proof sketch of Theorem 2

of v∗1. The choice of v∗1 is uniquely determined so that the supply to low-budget agents remains

unchanged. Let v̂ denote the minimum valuation of high-budget agents who receive the good with

a probability of at least a(v, b1) = a∗(v, b1). Find v∗2 and v
∗∗
2 such that v∗2 ≤ v̂ ≤ v∗∗2 . Shift the

allocation mass of high-budget agents from the region to the left of v∗2 to [v
∗
2, v̂] and from [v̂, v∗∗2 ] to

the region to the right of v∗∗2 . The choice of v
∗
2 (and v

∗∗
2 , respectively) is uniquely determined so that

the supply to high-budget agents whose valuations are in [v, v̂] (and [v̂, v], respectively) remains

unchanged. Finally, define the new payment rule using the envelope condition. If f is “regular”,

i.e., satisfies Assumptions 1 and 2, then the new mechanism improves welfare and revenue while

remaining affordable. Lemma 2 guarantees that v∗2 ≤ v∗1. Thus, no high-budget agent has incentive

to misreport his budget. It is easy to see that one can further improve welfare by increasing v∗2 and

reducing v∗1. Hence, in an optimal mechanism v∗1(∞) = v
∗
2(∞).

4.2 The General Case

I now turn to the general problem of the principal. Using the envelope condition, (IC-b) becomes

the following: For all v and v̂,

u(v, b2) + ∫

v

v
a(�, b2)d� ≥ u(v, b1) + a(v̂, b1)(v − v̂) − q(v̂, b1)c + ∫

v̂

v
a(�, b1)d�. (IC-b)
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Figure 2: The set of binding (IC-b) constraints

First, for each v̂, I identify the type of high-budget agents whose gains from falsely claiming to be a

type (v̂, b1) agent are the largest. (IC-b) holds if and only if for each v̂ ∈ V , q(v̂, b1)c ≥ supvΔ(v, v̂),

where

Δ(v, v̂) ≡ u(v, b1) − u(v, b2) − ∫

v

v
a(�, b2)d� + a(v̂, b1)(v − v̂) + ∫

v̂

v
a(�, b1)d�.

Since )Δ(v, v̂)∕)v = −a(v, b2)+a(v̂, b1) is non-increasing in v,Δ(v, v̂) is concave in v and achieves

its maximum at v = vd(v̂), where

vd(v̂) ≡ inf
{

v|a(v, b2) ≥ a(v̂, b1)
}

. (5)

Suppose the allocation rules for both budget types are continuous in value v. Then the high-budget

agents who benefit most from falsely claiming to be (v̂, b1) are those who get the goods with the

same probability as type (v̂, b1) agents do. This point is illustrated by Figure 2, which plots an

allocation rule for high-budget agents, a(⋅, b2), and an allocation rule for low-budget agents, a(⋅, b1),

as a function of their valuations v.

Since the principal’s objective function is strictly decreasing in q, the optimal inspection rule

21



satisfies

q(v̂, b1) =
1
c
max

{

0,Δ(vd(v̂))
}

. (6)

Note that vd(⋅) is defined using the allocation rule. As a result, one cannot anticipate, a priori,

which (IC-b) constraint binds. Furthermore, (IC-b) constraints are frequently binding not only

among local types. These difficulties are inherent in all multidimensional problems, and as a result

the existing approaches in the mechanism literature do not apply to this problem.14

In order to keep track of the binding (IC-b) constraints, we solve the principal’s problem by

approximating the allocation rule using step functions. Fix M ≥ 2. Let v = v01 < v11 < ⋯ <

vM1 = v and 0 = a0 ≤ a1 < a2 < ⋯ < aM ≤ aM+1 = 1. Suppose the allocation rule for type b1

agents takesM distinct values: a(v, b1) = am if v ∈ (vm−11 , vm1 ) for m = 1,… ,M . The next lemma

shows that the optimal allocation rule for type b2 agents can take at most M + 2 distinct values:

a0, a1,… , aM+1.

Lemma 3 Suppose Assumptions 1 and 2 hold. Suppose a(v, b1) = am if v ∈ (vm−11 , vm1 ) for m =

1,… ,M . Then there exists v ≤ v02 ≤ v12 ≤ ⋯ ≤ vM2 ≤ v such that an optimal allocation rule for

b2 satisfies a(v, b2) = am if v ∈ (vm−12 , vm2 ) for m = 1,… ,M , a(v, b2) = 0 if v < v02 and a(v, b2) = 1

if v > vM2 .

The proof of Lemma 3 is similar to that of Theorem 2 and illustrated by Figure 3, where the al-

location rule for low-budget agents (the solid red line) takes three distinctive values: a1 < a2 < a3.

Consider a feasible allocation rule for high-budget agents indicated by the dotted blue curve. Sup-

pose there exist a payment rule and an inspection to be used in conjunction with the allocation rule

so that the resulting mechanism is feasible. For ease of exposition, suppose a(⋅, b2) is continuous

and let v̂m2 be such that a(v̂m2 , b2) = am for m = 1, 2, 3. For each m = 1, 2, 3, find vm2 and move

the allocation mass of high-budget agents from [v̂m2 , v
m
2 ] to [v

m
2 , v̂

m+1
2 ], where v̂42 = v. The choice

of vm2 is uniquely determined so that the supply to high-budget agents whose value is in [v̂m2 , v̂
m+1
2 ]

remains unchanged. Redefine the payment rule using the envelope condition and let the inspection

14See Rochet and Stole (2003) for a survey on multidimensional mechanism design problem.
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Figure 3: Proof Sketch of Lemma 3

rule remain the same. One can verify that the new mechanism is feasible and clearly improves

welfare.

We say an allocation rule a is an M-step allocation rule if there exist v = v01 < v11 < ⋯ <

vM1 = v, v ≤ v02 ≤ v12 ≤ ⋯ ≤ vM2 ≤ v and 0 = a0 ≤ a1 < a2 < ⋯ < aM ≤ aM+1 = 1 for

some M ≥ 2 such that a(v, b1) = am if v ∈ (vm−11 , vm1 ) for m = 1,… ,M and a(v, b2) = am if

v ∈ (vm−12 , vm2 ) for m = 0, 1,… ,M +1. Lemma 3 shows that it is without loss of generality to focus

onM-step-allocation rules among all step allocation rules.

Consider a mechanism using aM-step allocation rule. It is easy to see that for v ∈ (vm−11 , vm1 ),

the type b2 agents who benefit most from falsely claiming to be type (v, b1) have valuations vd(v) =

vm−12 . Hence, we can keep track of the binding (IC-b) constraints by keeping track of the jump

points of the allocation rule. In this case, the optimal inspection rule satisfies q(v, b1) = qm for all

v ∈ (vm−11 , vm1 ) and

qm = 1
c
max

{

0, u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 )

}

(7)

for m = 1,… ,M .

Consider the principal’s problem ( ′) with two modifications:

max
a,p,q

Et[a(t)v − q(t)k], ( ′(M,d))
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subject to (IR), (IC-v), (IC-b), (BC), (S),

a is aM ′-step allocation rule for someM ′ ≤M,

E[p(t) − q(t)k] ≥ −d. (BB-d)

The second modification is to relax the government’s budget balance constraint by d ≥ 0. As it

will become clear later, any feasible mechanism of  ′ can be approximated arbitrarily well by a

feasible mechanism of  ′(M,d) forM sufficiently large and d sufficiently small.

Next, I show that in an optimal mechanism of  ′(M,d), in the absence of verification, either

no high-budget agent has incentives to misreport as low budget, or all high-budget agents weakly

prefer to misreport as low budget.

Lemma 4 Suppose Assumptions 1 and 2 hold. An optimal mechanism of  ′(M,d) satisfies one of

the following two conditions:

(C1) For all m = 1,… ,M ,

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) ≥ 0. (8)

(C2) For all m = 1,… ,M ,

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) ≤ 0. (9)

The basic intuition underlying Lemma 4 is as follows: As long as a mechanism satisfies neither

(C1) nor (C2), one can strictly improve welfare by adjusting the allocation rule in regions in which

high-budget agents find it strictly optimal to report their budgets truthfully. I provide only a proof

sketch of Lemma 4 here. The full proof can be found in the appendix.

Proof Sketch. The proof is by contradiction. Let (a, p, q) be a feasible mechanism, where a is aM-

step allocation rule. Suppose (a, p, q) satisfies neither (C1) nor (C2). I show that one can construct
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another feasible mechanism (a∗, p∗, q∗), which strictly improves welfare and satisfies one of the two

conditions. Furthermore, a∗ is aM ′-step function for someM ′ ≤ M . I break the proof into two

steps.

Step 1. I show that it is without loss of generality to assume that (8) holds for m = 1. Suppose, on

the contrary, that u(v, b1) − u(v, b2) + a1v02 < 0. Then there exists m > 1 such that v
m′−1
2 − vm′−11 ≤ 0

for all m′ < m and vm−12 − vm−11 > 0. One can construct another feasible mechanism by redirecting

cash subsidies from high-budget agents to low-budget agents, and shifting the allocation mass from

low-budget agents in [vm−11 , ṽm−11 ] to high-budget agents in [ṽm−12 , vm−12 ] for some vm−11 ≤ ṽm−11 ≤

ṽm−12 ≤ vm−12 .

Step 2. Suppose u(v, b1)−u(v, b2)+a1v02 ≥ 0. There existsm > 1 such that (8) holds for allm
′ < m

and

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) < 0.

It must be the case that vm−12 < vm−11 . For ease of exposition, assume that vm2 > vm−12 .15 One

can construct another feasible mechanism by either shifting the allocation mass from high-budget

agents in [vm−12 , v̂] to high-budget agents in [v̂, vm2 ] for some vm−12 < v̂ < vm2 , or shifting the allocation

mass from high-budget agents in [vm−12 , ṽm−12 ] to low-budget agents in [ṽm−11 , vm−11 ] for some vm−12 ≤

ṽm−12 ≤ ṽm−11 ≤ vm−11 .

If (C2) holds, then the optimal inspection rule is q ≡ 0. The optimal mechanism of  ′ in this

case, which is characterized in Section 4.1, is a feasible mechanism of  ′(M,d) and satisfies (C1)

with equality. Thus, I can conclude that an optimal mechanism of  ′(M,d) satisfies (C1).

Corollary 1 Suppose Assumptions 1 and 2 hold. An optimal mechanism of ′(M,d) satisfies (C1).

Hence, an optimal inspection rule satisfies q(v, b1) = qm for all v ∈ (vm−11 , vm1 ), where

qm = 1
c

[

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 )

]

(10)

15In the appendix, I break the proof in three steps. I consider the case in which vm−12 < vM2 in Step 2 and the case
vm−12 = vM2 in Step 3.
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for m = 1,… ,M . Now the principal’s problem  ′(M,d) can be written as follows, where the

Greek letters in parentheses denote the corresponding Lagrangian multipliers.

max
u(v,b1),u(v,b2),

{am}Mm=1,{v
m
1 }

M−1
m=1 ,{v

m
2 }

M
m=0

�
M+1
∑

m=1
∫

vm2

vm−12

amvf (v)dv + (1 − �)
M
∑

m=1
∫

vm1

vm−11

amvf (v)dv

−(1 − �)k
c

M
∑

m=1
∫

vm1

vm−11

[

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 )

]

f (v)dv,

subject to

�
M+1
∑

m=1
am[F (vm2 ) − F (v

m−1
2 )] + (1 − �)

M
∑

m=1
am[F (vm1 ) − F (v

m−1
1 )] ≤ S, (�)

aMvM−1
1 −

M−1
∑

j=1
aj(vj1 − v

j−1
1 ) − u(v, b1) ≤ b1, (�)

− (1 − �)u(v, b1) + (1 − �)
M
∑

m=1
∫

vm1

vm−11

am
[

v −
1 − F (v)
f (v)

]

f (v)dv

− (1 − �)k
c

M
∑

m=1
∫

vm1

vm−11

[

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 )

]

f (v)dv

− �u(v, b2) + �
M+1
∑

m=1
∫

vm2

vm−12

am
[

v −
1 − F (v)
f (v)

]

f (v)dv ≥ −d, (�)

u(v, b1) ≥ 0, u(v, b2) ≥ 0, (�1, �2)

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) ≥ 0, m = 1,… ,M, (�m)

0 = a0 ≤ a1 ≤ a2 ≤ ⋯ ≤ aM ≤ aM+1 = 1, (�1,… , �M+1)

v = v01 ≤ v11 ≤⋯ ≤ vM1 = v, (
11 ,… , 
M1 )

v ≤ v02 ≤ v12 ≤⋯ ≤ vM2 ≤ v. (
02 ,… , 
M+1
2 )

To solve this problem, I first show that in an optimal mechanism of  ′(M,d), the inspection

probability is non-decreasing in a low-budget agent’s reported value:

Lemma 5 Suppose Assumptions 1 and 2 hold. In an optimal mechanism of  ′(M,d), v12−v
1
1 ≥ 0.
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Suppose in addition that V (M,d) > V (M − 1, d) forM ≥ 3, then

vM−1
2 − vM−1

1 >⋯ > v12 − v
1
1 ≥ 0.

As a result, the inspection probability in an optimal mechanism of  ′(M,d) is non-decreasing in

reported value, i.e., qM ≥⋯ ≥ q1 ≥ 0.

To understand the intuition behind the monotonicity of inspection probability, consider a low-

budget agent and a high-budget agent both receiving the good with probability am. Let pm1 and

pm2 denote their payments respectively. The difference in their payments, to which the inspection

probability is proportional, is

pm2 − p
m
1 = u(v, b1) − u(v, b2) +

m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ).

Clearly, this difference is non-decreasing inm since vm−12 −vm−11 ≥ 0. Suppose, on the contrary, that

qm−1 > qm. Then the principal can shift allocation from low-budget agents in [vm−21 , vm−11 ] to low-

budget agents in [vm−11 , vm1 ], which clearly improves allocation efficiency and revenue. This shift

also strictly reduces inspection cost because more low-budget agents are inspected with probability

qm rather than qm−1 and qm−1 > qm.

The inequality constraints corresponding to �m’s in  ′(M,d) are non-negativity constraints

on inspection probabilities. As shown in Lemma 5, in an optimal mechanism of  ′(M,d), the

inspection probability is non-decreasing in a low-budget agent’s reported value. As a result, it is

sufficient to consider the inequality constraint corresponding to �1:

u(v, b1) − u(v, b2) + a1(v02 − v
0
1) ≥ 0.

Note that for fixed jump discontinuity points vmi ’s, the principal’s problem  ′(M,d) is linear in

u(v, b1), u(v, b2) and am’s. Hence, an optimal solution can be obtained at an extreme point of the

feasible region. The monotonicity of inspection probability implies that in addition to the mono-
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tonicity constraints on am’s there are only finitely many other constraints binding. As a result, for an

M sufficiently large, there are finitely many distinct am’s in an optimal mechanism. More formally,

let V (M,d) denote the value of  ′(M,d). Then V (M,d) = V (M −1, d) forM sufficiently large.

This result still holds if I replace (BC) with a per-unit price constraint, as shown in Section 7.1. If I

impose only (BC), then I can further prove that in an optimal mechanism of ′(M,d) the allocation

rule is a 2-step allocation rule, i.e., V (M,d) = V (M − 1, d) forM ≥ 3.

Lemma 6 Suppose Assumptions 1 and 2 hold. Then V (M,d) = V (2, d) for allM ≥ 2 and d ≥ 0.

Furthermore, for allM ≥ 2, in an optimal mechanism of  ′(M,d) the allocation rule is a 2-step

allocation rule.

Proof Sketch. I provide a proof sketch of Lemma 6. Assume, for ease of exposition, that

u(v, b1) − u(v, b2) + a1(v02 − v
0
1) > 0, (�1)

v = v01 < v
1
1 <⋯ < vM1 = v, (
11 ,… , 
M1 )

0 ≤ v02 < v
1
2 <⋯ < vM2 < v. (
02 ,… , 
M+1

2 )

Then �1 = ⋯ = �M = 0, 
11 = ⋯ = 
M1 = 0 and 
12 = ⋯ = 
M+1
2 = 0. The first-order conditions

for vm1 and vm2 (m = 1,… ,M − 1) are

(1 − �)
[

(� − vm1 − �'(v
m
1 ))f (v

m
1 ) + (1 + �)�[1 − F (v

m
1 )] + (1 + �)�(v

m
2 − v

m
1 )f (v

m
1 )
]

− � = 0,

�(� − vm2 − �'(v
m
2 ))f (v

m
2 ) − (1 − �)(1 + �)�[1 − F (v

m
1 )] = 0,

where '(v) ∶= v− [1−F (v)]∕f (v) denotes the virtual value function. I show in the appendix that

If f is “regular”, which is to say that it satisfies Assumptions 1 and 2, then the above system of

equations has at most one solution. This result is illustrated by Example 1. Hence, I can conclude

that V (M,d) = V (2, d).

Example 1 Let v be uniformly distributed on [0, 1] and � < �+
√

�
1−�

. Then the first-order conditions
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for vm1 and vm2 (m = 1,… ,M − 1)

(1 − �)
[

� + � + (1 + �)� − (1 + 2� + 2(1 + �)�)vm1 + (1 + �)�v
m
2

]

− � = 0, (11)

�(� + �) − (1 − �)(1 + �)� + (1 − �)(1 + �)�vm1 − �(1 + 2�)v
m
2 = 0. (12)

Given �, � and �, (11) and (12) define vm2 as functions of vm1 , denoted by g1 and g2, respectively.

Then

g′1(v
m
1 ) = 2 +

1 + 2�
�(1 + �)

>
(1 − �)(1 + �)�
�(1 + 2�)

= g′2(v
m
1 ).

This inequality implies that g1 can cross g2 at most once from below. Hence, (11) and (12) have at

most one solution.

The main result of this section is Theorem 3, which characterizes an optimal mechanism of the

original problem  . In particular, I show that an optimal mechanism of  ′(2, 0) is also an optimal

mechanism of  . In other words, in an optimal mechanism of  , the allocation rule is a 2-step

allocation rule.

Let V denote the value of  ′. We prove Theorem 3 by first showing that for any d > 0 there

existsM(d) > 0 such that for allM > M(d)

V − V (M,d) ≤ (1 − �) (1 + �) E[v]
M

.

The proof is by construction. Fix d > 0 and an integer M > M(d). I can construct a feasible

mechanism of  ′(M,d) that possibly violates (BB) by at most d and generates welfare which

is at least V − (1 − �) (1 + �)E[v]∕M . By Lemma 5, V − V (M,d) = V − V (2, d) ≤ (1 −

�)(1 + k∕c)E[v]∕M for all d > 0 andM > M(d). Fixing d > 0 and takingM to infinity yields

V ≤ V (2, d) for all d > 0. By definition, V ≥ V (2, 0). Hence, V = V (2, 0) by the continuity

of V (2, ⋅). Thus, an optimal mechanism of  ′ also solves  ′. It is easy to verify that an optimal

solution to  ′(2, 0) satisfies (IC) constraints corresponding to agents over reporting their budgets
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and therefore solves  . Finally, I show that v02 = v and a2 = 0 in an optimal mechanism. Let

a∗(�) = a2, v∗1(�) = v11, v
∗
2(�) = v12, v

∗∗
2 (�) = v22, u

∗
1(�) = u(v, b1) and u∗2(�) = u(v, b2), then an

optimal mechanism is characterized by the following Theorem 3.

Theorem 3 Suppose Assumptions 1 and 2 hold. There exist a∗(�), v∗1(�), v
∗
2(�), v

∗∗
2 (�), u

∗
1(�) and

u∗2(�) such that an optimal mechanism of  is given by

a(v, b1) = �{v≥v∗1(�)}a
∗(�), p(v, b1) = �{v≥v∗1(�)}a

∗(�)v∗1(�) − u
∗
1(�),

q(v, b1) =
1
c

[

�{v≥v∗1(�)}a
∗(�)

(

v∗2(�) − v
∗
1(�)

)

+ u∗1(�) − u
∗
2(�)

]

,

a(v, b2) = �{v≥v∗2(�)}a
∗(�) + �{v≥v∗∗2 (�)} (1 − a

∗(�)) ,

p(v, b2) = �{v≥v∗2(�)}a
∗(�)v∗2(�) + �{v≥v∗∗2 (�)} (1 − a

∗(�)) v∗∗2 (�) − u
∗
2(�),

q(v, b2) = 0,

where a∗(�) =
[

u∗1(�) + b1
]

∕v∗1(�), v < v∗1(�) ≤ v∗2(�) ≤ v∗∗2 (�) ≤ v, 0 < a∗(�) ≤ 1 and u∗1(�) ≥

u∗2(�).

In notations a∗(�), v∗i (�), v
∗∗
2 (�) and u

∗
i (�) (i = 1, 2), subscript i indicates the corresponding bud-

get bi and argument � indicates their dependence on �. In an optimal mechanism, low-budget agents

receive more cash subsidies (as in the case of common knowledge budgets), but high-budget agents

may also receive strictly positive cash subsidies (as in the case of private budgets without inspec-

tion). There are three cutoffs: v∗1(�) ≤ v∗2(�) ≤ v∗∗2 (�). All high-budget agents whose valuations are

above v∗∗2 (�) receive the good with probability 1. All low-budget agents whose valuations are above

v∗1(�) receive the good with positive probability but may be rationed. Similar to the case of private

budgets without inspection, some high-budget agents (whose valuations are in [v∗2(�), v
∗∗
2 (�)]) are

pooled with low-budget agents. However, v∗1(�) ≤ v∗2(�). This difference between v
∗
1(�) and v

∗
2(�),

together with budget dependent cash subsidies, creates an incentive for high-budget agents to under

report their budgets. All agents who report low budgets are inspected with non-negative probability

and those who receive the goods are more likely to be inspected.
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I note here that if � = 0, then u∗2(0) = 0 and v∗2(0) = v∗∗2 (0), which is the case in Theorem 1.

If � = ∞, then u∗1(∞) = u∗2(∞) and v
∗
1(∞) = v∗2(∞), which is the case in Theorem 2. To simplify

notation, in what follows, I suppress the dependence of u∗1, u
∗
2, v

∗
1, v

∗
2, v

∗∗
2 and a∗ on � whenever it

is clear.

Theorem 3 also greatly simplifies the analysis. Now the principal’s problem can be reduced to:

max
u(v,b1),u(v,b2),
a2,v11,v

1
2,v

2
2

�

[

∫

v22

v12

a2vf (v)dv + ∫

v

v22

vf (v)dv

]

+ (1 − �)∫

v

v11

a2vf (v)dv

−(1 − �)k
c
[

u(v, b1) − u(v, b2)
]

F (v11) − (1 − �)
k
c ∫

v

v11

[

u(v, b1) − u(v, b2) + a2(v12 − v
1
1)
]

f (v)dv,

subject to

�a2
[

F (v22) − F (v
1
2)
]

+ �
[

1 − F (v22)
]

+ (1 − �)a2[1 − F (v11)] ≤ S, (�)

a2v11 − u(v, b1) ≤ b1, (�)

− (1 − �)u(v, b1) + (1 − �)∫

v21

v11

a2
[

v −
1 − F (v)
f (v)

]

f (v)dv

− (1 − �)k
c
[

u(v, b1) − u(v, b2)
]

F (v11) − (1 − �)
k
c ∫

v

v11

[

u(v, b1) − u(v, b2) + a2(v12 − v
1
1)
]

f (v)dv

− �u(v, b2) + � ∫

v22

v12

a2
[

v −
1 − F (v)
f (v)

]

f (v)dv + � ∫

v

v22

[

v −
1 − F (v)
f (v)

]

f (v)dv ≥ 0, (�)

u(v, b1) ≥ 0, u(v, b2) ≥ 0, (�1, �2)

u(v, b1) − u(v, b2) ≥ 0, (�1)

u(v, b1) − u(v, b2) + a2(v12 − v
1
1) ≥ 0, (�2)

0 ≤ a2 ≤ a3 = 1, (�2, �3)

v ≤ v11 ≤ v, (
11 , 

2
1 )

v ≤ v12 ≤ v22 ≤ v. (
12 , 

2
2 , 


3
2 )

Furthermore, the optimal mechanism is unique. Suppose, on the contrary, that there are two
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optimal mechanism. Since  ′ is linear in (a, p, q),16 the convex combination of these two optimal

mechanisms is also optimal. However, the convex combination of two 2-step allocation rules is not

a 2-step allocation rule in general, which cannot be optimal by Lemma 3. Hence, there exists a

unique optimal mechanism.

Corollary 2 Suppose Assumptions 1 and 2 hold. There exists a unique optimal mechanism of  .

Furthermore, u∗1, u
∗
2, v

∗
1, v

∗
2, v

∗∗
2 and a∗ are continuous in k, c, �, b1 and S.

4.3 Subsidies in cash and in kind

I complete this section by a discussing subsidies in cash and in kind. In the optimal mechanism,

compared with the high-budget agents who do not receive the goods, high-budget agents whose

valuations exceed v∗∗2 receive the good with probability 1 by making an additional payment a∗v∗2 +

(1−a∗)v∗∗2 . All high-budget agents whose valuations lie in [v
∗
2, v

∗∗
2 ] receive the goodwith probability

a∗ by making an additional payment a∗v∗2, which is an in-kind subsidy. In the literature, the value

of an in-kind subsidy is often measured by its market value. In this paper, I do not model the

private market explicitly, so I use the additional payment, a∗v∗2 + (1 − a
∗)v∗∗2 , made by high-budget

high-value agents as a measure of “price". Then the amount of in-kind subsidies offered to a high-

budget agent is a∗
[

a∗v∗2 + (1 − a
∗)v∗∗2

]

− a∗v∗2. Note that high-budget agents do not receive any

in-kind subsidies if v∗2 = v∗∗2 , as in the case when budgets are common knowledge. Similarly, the

amount of in-kind subsidies offered to a low-budget agent is a∗
[

a∗v∗2 + (1 − a
∗)v∗∗2

]

− a∗v∗1. The

difference in in-kind subsidies offered to the two budget types is a∗(v∗2 − v
∗
1).

In-kind subsidies are widespread around the world. The conventional wisdom rationalizing

the prevalence of in-kind subsidies is paternalism. A more recent justification is based on the

idea that agents have private information about their financial constraints, and governments cannot

accurately identify low-budget agents in need of help. As a result, in-kind subsidies will be part

of a surplus-maximizing mechanism as it is less susceptible to mimicking by high-budget agents.

One difficulty with this justification is that, in many transfer programs, governments first “verify
16 ′(2, 0) is not linear in u(v, b1), u(v, b2), a2, v11, v

1
2 and v

2
2.
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income, and then give benefits in kind, which would seem to rule out self-targeting as the primary

reason for supplying benefits in-kind”.17 Moreover, governments “generally expend considerable

resources determining eligibility”.18 In this paper, I formalize the idea that governments can verify

agents’ private information about their financial constraints via a costly procedure, and show that

in such an environment the optimal mechanism still makes use of both cash and in-kind subsidies.

5 Implementation

In this section, I provide one simple implementation of the direct optimal mechanism charac-

terized in Section 4. This implementation exhibits some of the features of Singapore’s housing and

development board (HDB).

Consider the following random assignment with regulated resale and cash subsidy (RwRRC)

scheme, which consists of two stages.

1. In the first stage, each agent reports his budget. Agents who report low budget are inspected

with a probability of (u∗1 − u
∗
2)∕c. The principal offers cash subsidies u

∗
1 to low-budget agents

and u∗2 to high-budget agents. The principal also offers low-budget agents the choice of par-

ticipating in a lottery at price p∗1 ∶= a
∗v∗1 and high budget agents the choice of participating

in the same lottery at price p∗2 ∶= a∗v∗2. The principal distributes the goods randomly with

uniform probability among all participants of the lottery. Each participant receives one unit

of good with a probability no more than a∗.

2. In the second stage, the resale market opens, in which agents can purchase goods from each

other and the principal if not all the goods are distributed in the first stage. The per-unit sales

taxes are �∗1 ∶= v∗∗2 − v∗1 for low-budget sellers and �
∗
2 ∶= v∗∗2 − v∗2 for high-budget sellers.

Agents who report low budget in the first stage and choose not to sell the good in the second

stage are inspected with probability (v∗2 − v
∗
1)∕c.

17Currie and Gahvari (2008)
18Currie and Gahvari (2008)
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Let a denote a lottery participant’s expected probability of receiving the good in the first stage,

and ps denote the expected price a buyer pays in the second stage. Assumewithout loss of generality

that ps > b1 so that a low-budget agent cannot afford it. Consider a low-budget agent whose type is

(v, b1) and who reports his budget truthfully. Then his payoff is u∗1 if he does not enter the lottery.

If he buys the lottery, there are two possibilities. If he keeps the good when he receives it in the

first stage, then his payoff is u∗1 + av − a
∗v∗1; otherwise his payoff is

u∗1 − a
∗v∗1 + a(p

s − v∗∗2 + v
∗
1).

Clearly, in the second stage, it is optimal for him to keep the good if and only if v ≥ ps − v∗∗2 + v
∗
1.

In the first stage, it is optimal for him to purchase the lottery if and only if

amax
{

v, ps − v∗∗2 + v
∗
1

}

≥ a∗v∗1.

Similarly, consider a high-budget agent whose type is (v, b2) and who reports his budget truthfully.

It is easy to see that if it is optimal for an agent not to buy the lottery in the first stage, then it is

also optimal for him not to buy the good in the second stage. If it is optimal for an agent to sell the

good he receives in the first stage, then it is optimal for him not to buy the good in the second stage

when he does not receive it in the first stage. Then his payoff is u∗2 if he does not buy the lottery.

If he buys the lottery, there are three possibilities. If he buys the lottery, keeps the good when he

receives it and buys it when he does not receive it, his payoff is

u∗2 − a
∗v∗2 + av + (1 − a)(v − p

s);

if he buys the lottery, keeps the good when he receives it and does not buy when he does not receive

it, his payoff is u∗1 + a
∗(v − v∗1); if he buys the lottery and sells the good when he receives it, then

his payoff is

u∗2 − a
∗v∗2 + a(p

s − v∗∗2 + v
∗
2).
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Clearly, in the second stage, it is optimal for him to keep the good if and only if v ≥ ps − v∗∗2 + v
∗
2

and buy the good if and only if v ≥ ps. In the first stage, it is optimal for him to purchase the lottery

if and only if

amax
{

v, ps − v∗∗2 + v
∗
2

}

≥ a∗v∗2.

Hence, in the second stage, the demand of the goods is �(1 − a) [1 − F (ps)] and the supply of the

goods is

S−a(1−�)
[

1 − F
(

max
{

ps − v∗∗2 + v
∗
1,
a∗v∗1
a

})]

−a�
[

1 − F
(

max
{

ps − v∗∗2 + v
∗
2,
a∗v∗2
a

})]

.

It is not hard to verify that a = a∗ and ps = v∗∗2 is the unique equilibrium.19 Note that in this

equilibrium, an agent is indifferent between not buying the lottery, and buying the lottery but selling

the good when he receives it. All low-budget agents whose valuations are above v∗1 strictly prefer to

participate in the lottery and keep the good they receive. All high-budget agents whose valuations

are above v∗2 strictly prefer to participate in the lottery and keep the goods they receive. In addition,

all high-budget agents whose valuations are above v∗∗2 will buy the goods in the second stage if they

do not receive any in the first stage. These arguments prove the following result.

Proposition 1 Suppose Assumptions 1 and 2 hold. The optimal mechanism is implemented by

RwRRC with v ≤ v∗1 ≤ v∗2 ≤ v∗∗2 ≤ v, u∗1 ≥ u∗2 and 0 ≤ a∗ ≤ 1 given by Theorem 3.

If inspection is sufficiently costly or the principal cannot inspect agents, then in the RwRRC

scheme agents receive the same amount of cash subsidies u∗1 = u
∗
2 and the same price p∗1 = p

∗
2 in the

first stage and face the same sales taxes �∗1 = �
∗
2 in the second stage regardless of their budgets. This

is consistent with the findings in Che et al. (2013). If inspection is not too costly, then the principal

provides financial aids to low-budget agents (u∗1 ≤ u∗2, p
∗
1 ≥ p∗2) in the first stage and discourages

them from reselling by imposing a higher sales tax in the second stage.
19Clearly, for each a, there is a unique ps such that demand is equal to supply in the second stage. By construction,

a ≤ a∗. Suppose a < a∗, then the market clearing condition in the second stage implies that ps < v∗∗2 . This implies
that a low-budget agent buys the lottery only if v > v∗1 and a high-budget agent buys the lottery only if v > v∗2, which
in turn implies that a = a∗, a contradiction. Hence, a = a∗ and ps = v∗∗2 .
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Table 1: Minimum occupation periods (MOP) of housing and development board (HDB) flats

Types of HDB flats MOP
Sell Sublet

Resale flats w/ Grants 5–7 years 5–7 years
Resale flats w/o Grants 0–5 years 3 years

Sources. — Sell: http://www.hdb.gov.sg/cs/infoweb/residential/selling-a-flat/eligibility; and Sublet: http://www.
hdb.gov.sg/cs/infoweb/residential/renting-out-a-flat-bedroom/renting-out-your-flat/eligibility.

This implementation exhibits some of the features of Singapore’s HDB. HDB develops new

flats and sells them to eligible buyers.20 Buyers can purchase new flats directly from HDB or resale

flats from existing owners in the open market. Buyers must have resided in their flats for a period

of time, referred to as the minimum occupation period (MOP), before they are eligible to resell or

sublet their flats. Buyers of resale HDB flats can apply for a CPF housing grant, which is a housing

subsidy to help eligible households. HDB flats purchased with CPF housing grants are subject to

longer MOPs as illustrated by Table 1.

6 Properties of the Optimal Mechanism

Having derived the optimal mechanism, I would like to investigate the following questions.

Is it optimal for the principal to limit the supply of goods? When can the first-best outcome be

achieved? What is the effect of a decrease in verification cost as, for example, a government’s bu-

reaucratic efficiency improves? What is the effect of an increase in the supply as, for example, a

government builds more houses? What if agents become less budget-constrained? This loosen-

ing of constraints could happen as more agents are admitted into the formal financial system (�

increases) or if their wealth increases as the economy grows (b1 increases). What if the principal

becomes less budget-constrained as a government increases expenditures on transfer programs? In

what follows, I investigate each of these questions in turn.

Firstly, I show that it is not optimal for the principal to limit the supply of goods.

2090% of HDB flats are owned by their residents. The remainder are rental flats for people who cannot afford to
purchase the cheapest form of HDB flats despite financial aid.
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Proposition 2 Suppose Assumptions 1 and 2 hold. In an optimal mechanism, (S) holds with equal-

ity.

This result is straightforward if agents are unconstrained. However, it is not immediate from

the principal’s concern for efficiency if agents are budget-constrained. Recall that the principal also

has a budget constraint, and this constraint may cause her to restrict supply. To see why, consider

the extreme case in which low-budget agents have no money, i.e., b1 = 0. In this case, the principal

needs to raise all money from selling to high-budget agents. On the one hand, as she increases the

amount of goods sold to high-budget agents, the revenue will start declining at some point. On

the other hand, increasing the amount of goods allocated to low-budget agents raises the inspection

cost. Thus, it is not obvious that in an optimal mechanism all the goods are distributed to agents.

In the proof of Proposition 2, I show that if not all the goods are distributed to agents yet, then

the principal can increase the amount of goods allocated to high-budget and low-budget agents

simultaneously. For an appropriately chosen allocation rule, the resulting mechanism is feasible

and strictly improves welfare.21

Secondly, I give a necessary and sufficient condition under which the first-best is achieved.

Proposition 3 Suppose Assumptions 1 and 2 hold. The first-best is achieved if and only if S ≥

Ŝ(b1), where Ŝ(b1) is the solution to

b1 − v∗F (v∗) = 0

with v∗ = F −1(1 − S). Furthermore, Ŝ(b1) is strictly decreasing in b1.

Intuitively, the first-best is achieved if the supply of the good is abundant or agents have ample

budgets. Note that the condition given in Proposition 3 is independent of inspection cost k, punish-

ment c and the percentage of high-budget agents �. This is because when the first-best is achieved,

agents of both budget types receive the same amount of cash subsidies and the same allocation rule,

21I thank Michael Richter for suggesting this proof.
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and the inspection probability is zero. For the rest of this section, I assume that the first-best cannot

be achieved, i.e., S < Ŝ(b1).

Thirdly, I study the impact of changes in effective inspection cost (� = k∕c), supply (S), budget

(b1) and the percentage of high-budget agents (�) on the optimal mechanism as well as welfare.

The optimal mechanism is characterized by u∗1, u
∗
2, v

∗
1, v

∗
2, v

∗∗
2 and a∗, which (together with the

corresponding Lagrangian multipliers) are solutions to a system of non-linear equations. As a

result, it is hard to perform all comparative statics analysis analytically. In what follows, I give

some analytic results for extreme cases such as when effective inspection cost is sufficiently large

and explore the intermediate case numerically.

Effective Verification Cost (�). Intuitively, as verification becomes more costly (� increases), the

principal tends to inspect agents less frequently in the optimal mechanism. To maintain incentive

compatibility, the principal needs to reduce the differences in cash and in-kind subsidies offered

to agents with different budgets. Proposition 4 shows that, for a large �, agents of both budget

types receive the same amount of cash subsidies. Eventually, for � sufficiently large, verification

is never used. The two lower bounds given in Proposition 4 are not tight, as illustrated in the

numerical example in Figure 4. If v is uniformly distributed, then one can further prove that, for

fixed punishment c, the verification probability is non-increasing in verification cost k. However,

the change in total verification cost may not be monotonic as illustrated by Figure 4c.

Proposition 4 Suppose Assumptions 1 and 2 hold.

1. If � ≥ �
1−�

, then agents of both budget types receive the same amount of cash subsidies, i.e.,

u∗1 = u
∗
2.

2. There exists � ≤ �
S(1−�)

such that the verification probability in an optimal mechanism is zero,

i.e., q(v, b) = 0 for all v and b, if and only if � ≥ �. Furthermore, the total welfare is strictly

decreasing in � over [0, �] and constant in � over [�,∞).

3. If v is uniformly distributed, then the verification probability is non-increasing in k.
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Figure 4: The impact of an increase in effective inspection cost (�) on cash subsidies, allocation,
inspection and welfare. In this numerical example, v is uniformly distributed on [0, 1], S = 0.4,
b1 = 0.2, � = 0.5 and � ∈ [0, 0.2].
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Figure 5: The impact of an increase in effective inspection cost (�) on the differences in cash and
in-kind subsidies. In this numerical example, v is uniformly distributed on [0, 1], S = 0.4, b1 = 0.2,
� = 0.5 and � ∈ [0, 0.2].

Figure 4 plots the impact of an increase in effective verification cost (�) on cash subsidies,

allocation, verification and welfare in a numerical example. It is straightforward that an increase

in � reduces the total welfare but its impacts on different budget types are different. Verification

allows the principal to more accurately target low-budget agents and improves their welfare. As a

result, as � increases, the welfare of low-budget agents declines while that of high-budget agents

rises, as seen in Figure 4d.

More interestingly, the optimal mechanism makes use of both cash and in-kind subsidies, and

the change in verification cost affects that mechanism’s reliance on each of them as shown in Figure

5. If � is sufficiently small, then the principal helps low-budget agents mainly by offering themmore

cash subsidies. As � increases, the difference in cash subsidies declines but the difference in in-kind

subsidies increases. This is because even though cash subsidy is more efficient in the sense that it

does not introduce any distortion in allocation, it is more expensive in terms of verification cost.

Cash subsidy is attractive to everyone regardless of their valuations. In contrast, in-kind subsidy

is attractive only to agents whose valuations are high enough. Eventually, the difference in in-kind

subsidies also declines as verification becomes sufficiently costly.
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Figure 6: The impact of an increase in the supply (S) on cash subsidies, allocation, verification and
welfare. In this numerical example, v is uniformly distributed on [0, 1], � = 0.08, b1 = 0.2, � = 0.5
and S ∈ [0, 0.6].
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Figure 7: The impact of an increase in the supply (S) on the differences in cash and in-kind sub-
sidies, allocation and payment. In the right panel, the red line (p1) denotes the payment by a low-
budget agent who receives the good with probability a∗, the blue line (p21) denotes the payment
by a high-budget agent who receives the good with probability a∗, and the red line (p22) denotes
the payment by a high-budget agent who receives the good with probability one. In this numerical
example, v is uniformly distributed on [0, 1], � = 0.08, b1 = 0.2, � = 0.5 and S ∈ [0, 0.6].

Supply (S). The impact of an increase in the supply (S) on the optimalmechanism is complicated.

On the one hand, the principal becomes less budget constrained, and can direct more subsidies to

low-budget agents and inspect them more frequently. On the other hand, low-budget agents also

become less budget constrained as S increases,22 which reduces the needs to subsidize and inspect

them. As shown in Propositions 4 and 5, for sufficiently large and small S, agents of both budget

types receive the same amount of cash subsidies.

Proposition 5 Suppose Assumptions 1 and 2 hold. If S is sufficiently small, then agents of both

budget types receive the same amount of cash subsidies, i.e., u∗1 = u
∗
2.

These effects can also be seen in Figures 6 and 7, which plot the impact of an increase in the sup-

ply (S) on cash subsidies, allocation, verification and welfare in a numerical example. Specifically,

22As in Section 4.3, I use the additional payment a∗v∗2 + (1 − a
∗)v∗∗2 made by a high-budget high-valuation agent

a measure of “price”. Then this price generally declines as S increases and low-budget agents become less budget
constrained in the sense that the gap between this price and their budgets shrinks.
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Figure 7a plots the differences in cash and in-kind subsidies between high-budget and low-budget

agents. If S is sufficiently small, then agents receive the same amount of subsidies regardless of

their budgets. As S increases, the principal raises first the difference in in-kind subsidies and then

that in cash subsidies. This order occurs because it is less expensive to target only low-budget high-

valuation agents than all low-budget agents. Eventually, the differences in both cash and in-kind

subsidies decline as the need to subsidize low-budget agents declines. As a result, the verification

probability is hump-shaped as shown in Figure 6c.

Intuitively, the total welfare is strictly increasing in S. More interestingly, the welfare of each

type is not monotonic in S. Figure 6d plots the total welfare and the average utility of each budget

type as a function of S. Initially, the average utilities of both budget types increase as S increases.

When S is large enough that the principal begins to divert more cash subsidies and goods to low-

budget agents, the average utility of high-budget agents begins to decrease as S increases. Even-

tually, the need to subsidize low-budget agents decreases as S increases, and the average utility

of low-budget agents begins to decrease while that of high-budget agents begins to increase, until

they coincide. Specifically, low-valuation agents of both budget types can get worse off as they

receive less cash subsidies. Interestingly, high-budget high-valuation agents can also get worse off

because their payments can increase as S increases (see Figure 7b). These increases in payments

occur because disproportionately more goods will be allocated to low-budget agents and there will

be less pooling when S increases.

Percentage of high-budget agents (�). Proposition 4 also proves that for small �, agents of both

budget types receive the same amount of cash subsidies. Eventually, for � sufficiently small, ver-

ification is never used. This result is intuitive because a smaller � means a larger population of

low-budget agents and therefore higher total verification cost given the same mechanism. Hence,

the principal tends to inspect agents less frequently as � decreases. However, this change in verifi-

cation probability is not monotonic in �, because an increase in � not only makes verification less

costly but also makes the economy wealthier. If � is sufficiently large, then the principal becomes
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Figure 8: The impact of an increase in the percentage of high-budget agents (�) on cash subsidies,
allocation, verification and welfare. In this numerical example, v is uniformly distributed on [0, 1],
� = 0.08, b1 = 0.2, S = 0.4 and � ∈ [0, 1].
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less budget-constrained and can afford to maintain incentive compatibility by subsidizing high-

budget agents directly rather than inspect low-budget agents. This is illustrated by the numerical

example in Figure 8.

The total welfare as well as the welfare of low-budget agents are strictly increasing in �, but the

welfare of high-budget agents is not monotonic in �. Initially, as � increases, the welfare of high-

budget agents declines as the principal provides more subsidies to low-budget agents. Eventually,

the welfare of high-budget agents rises as the principal subsidizes high-budget agents rather than

inspecting low-budget agents.

Budget (b1) Low-budget agents become less budget constrained as b1 increases. This change

reduces the need for subsidies, which leads to a decline in verification probability. Proposition 6

proves that for large b1, agents of both budget types receive the same amount of cash subsidies. Fig-

ure 9 plots the impact of an increase in b1 on cash subsidies, allocation, verification and welfare in

a numerical example. In this numerical example, the total verification probability is non-increasing

in b1 and zero for b1 sufficiently large.

Proposition 6 Suppose Assumptions 1 and 2 hold. If b1 is sufficiently large, then agents of both

budget types receive the same amount of cash subsidies, i.e., u∗1 = u
∗
2.

The total welfare, as well as, the welfare of high-budget agents is strictly increasing in b1, but the

welfare of low-budget agents is not monotonic in b1. On the one hand, low-budget agents become

less budget-constrained as b1 increases. On the other hand, the principal provides lower cash and

in-kind subsidies to low-budget agents as b1 increases. As shown in Figure 9d, either effect can

dominate the other. Hence, the welfare of low-budget agents may either increase or decrease as b1

increases.

Lastly, I study the impact of relaxing the principal’s budget-balanced constraint on the optimal

mechanism and welfare. Specifically, I reformulate the principal’s budget constraint as follows:

Et [p(t) − q(t)k] ≥ −d. (BB)
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Figure 9: The impact of relaxing low-budget agents’ budget constraint (b1) on cash subsidies, al-
location, verification and welfare. In this numerical example, v is uniformly distributed on [0, 1],
� = 0.08, S = 0.4, � = 0.5 and b1 ∈ [0, 0.6].
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In the main part of the paper, I assume d = 0. But it is easy to see that all the results in Sections 3

and 4 extend to the case of d ≥ 0.

Figure 10 plots the impact of an increase in the principal’s budget (d) on cash subsidies, alloca-

tion, verification and welfare in a numerical example. Note that an increase in d leads to an increase

in the total cash subsidies by more than one-hundred percent. This is easy to see when there is no

verification. An increase in d raises cash subsidies to low-budget agents, which relax their budget

constraints and improve allocation efficiency. Under Assumption 1, this in turn improves the prin-

cipal’s revenue and allows her to further raise cash subsidies. The numerical example suggests this

is still true when verification is possible.

7 Extensions and Discussions

In this section, I discuss several issues. Section 7.1 shows that some of the analysis extends

if I replace the budget constraint by a more stringent per-unit price constraint. Section 7.2 shows

that the analysis extends to the case where punishment is transferable. Sections 7.3 and 7.4 dis-

cuss the robustness of my analysis to weakening the assumptions on verification and punishment,

respectively. Section 7.5 discusses why it is necessary to explicitly model budget constraints.

7.1 Per-unit Price Constraint

In the optimal direct mechanism, agents make payments to the principal regardless of whether

they receive the goods,23 which some may consider unrealistic. The question, then, is whether

this direct mechanism can be implemented by a mechanism in which agents pay if and only if

they receive the goods and their payments are within their budgets. Such an implementation is

impossible if a∗ < 1. I can guarantee that such an implementation always exists if I replace (BC)

23For a finite number of agents, this is similar to an all-pay auction.
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Figure 10: The impact of an increase in the principal’s budget (d) on cash subsidies, allocation,
verification and welfare. In this numerical example, v is uniformly distributed on [0, 1], � = 0.04,
b1 = 0.2, S = 0.4, � = 0.5 and d ∈ [0.0.2].
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by the following per-unit price constraint:

p(t) ≤ a(t)b, ∀t = (v, b). (PC)

(BC) is the same as that found in Che and Gale (2000) and Pai and Vohra (2014), but different from

Che et al. (2013), which uses (PC).

Nevertheless, I assume (BC) in the main body of the paper for the following reasons. First, as

will become clear, the optimal mechanisms in these two settings share qualitatively similar features.

Second, for some parameter values (e.g., verification cost is low, resources are relatively abundant or

the percentage of budget constrained agents is small), there is no rationing in the optimalmechanism

(a∗(�) = 1). Third, rationing is realistic if b1 is close to zero. For example, families with very low

income may receive free coverage from Medicaid.

In the rest of this subsection, I consider the principal’s problem in which (BC) is replaced by

(PC), denoted by PC . I first make the observation that if (PC) holds for v′ then it holds for all

v < v′. This is trivial if a(v, b) = 0. If a(v, b) > 0, then by the envelope condition we have

p(v′, b)
a(v′, b)

−
p(v, b)
a(v, b)

=∫

v′

v

(

1 −
a(�, b)
a(v′, b)

)

d� − ∫

v

v

(

a(�, b)
a(v′, b)

−
a(�, b)
a(v, b)

)

d� −
u(v, b)
a(v′, b)

+
u(v, b)
a(v, b)

≥0,

where the last inequality holds since a(v, b) is non-decreasing in v. Hence, (PC) holds if and only

if p(v, b) ≤ a(v, b)b for all b.

Given this observation, it is straightforward to extend the results of Theorems 1 and 2 to the

current setting. Theorem 4 characterizes an optimal mechanism of PC when budgets are common

knowledge (� = 0). Theorem 5 characterizes an optimal mechanism of PC when budget is an

agent’s private information and the principal cannot verify this information (� = ∞). The latter

theorem extends the results in Section 3 of Che et al. (2013) to the setting of a continuum of values

under the regularity conditions.
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Theorem 4 Suppose Assumption 2 holds, and budgets are common knowledge. There exists v∗1(0),

v∗2(0), u
∗
1(0) and u

∗
2(0) such that an optimal mechanism of PC,CB is given by

a(v, b1) = �{v≥v∗1(0)}a
∗(0), p(v, b1) = �{v≥v∗1(0)}

(

u∗1(0) + a
∗(0)b1

)

− u∗(0),

a(v, b2) = �{v≥v∗2(0)}, p(v, b2) = �{v≥v∗2(0)}v
∗
2(0),

where a∗(0) = u∗1(0)∕
[

v∗1(0) − b1
]

, b1 < v∗1(0) ≤ v∗2(0) < v and 0 = u
∗
2(0) < u

∗
1(0) ≤ v∗1(0) − b1.

Theorem 5 Suppose Assumptions 1 and 2 hold, and the principal does not inspect agents. There

exists v∗1(∞), v
∗
2(∞), v

∗∗
2 (∞), u

∗
1(∞) and u

∗
2(∞)such that an optimal mechanism of PC,NI with no

verification satisfies

a(v, b1) = �{v≥v∗1(∞)}a
∗(∞), p(v, b1) = �{v≥v∗1(∞)}a

∗(∞)v∗1(∞) − u
∗
1(∞),

a(v, b2) = �{v≥v∗1(∞)}a
∗(∞) + �{v≥v∗∗2 (∞)} (1 − a

∗(∞)) ,

p(v, b2) = �{v≥v∗2(∞)}a
∗(∞)v∗2(∞) + �{v≥v∗∗2 } (1 − a

∗(∞)) v∗∗2 (∞) − u
∗
2(∞),

where a∗(∞) = u∗1(∞)∕
[

v∗1(∞) − b1
]

, b1 < v∗1(∞) = v∗2(∞) ≤ v∗∗2 (∞) ≤ v and 0 < u∗1(∞) =

u∗2(∞) ≤ v∗1(∞) − b1.

The analysis is more complex if budget is an agent’s private information and the principal can

verify this information at a cost. As before, I first consider the principal’s relaxed problem  ′
PC in

which I relax (IC) corresponding to over-reporting of budgets. One can show that Lemmas 3 and 4

and Corollary 1 still hold. Next, I consider the principal’s relaxed problem with two modifications:

(i) The allocation rule is anM ′-step allocation rule for some integerM ′ ≤M andM ≥ 2 is a fixed

integer; and (ii) the principal’s budget balance constraint is relaxed by a constant d ≥ 0. Denote

this problem by  ′
PC(M,d) and its value by VPC(M,d). Then  ′

PC(M,d) is identical to  ′(M,d)

if I replace (BC) by the following (PC) constraint:

aMvM−1
1 −

M−1
∑

j=1
aj(vj1 − v

j−1
1 ) − u(v, b1) ≤ b1a

M . (�)
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One can readily extend the results of Lemma 5 to the current setting, which says that, in an optimal

mechanism of  ′
PC(M,d), the verification probability is non-decreasing in a low-budget agent’s

reported value. Using the monotonicity of verification probability and the linearity of  ′
PC(M,d)

in u(v, b1), u(v, b2) and am’s, we have VPC(M,d) = VPC(M − 1, d) for M sufficiently large. By

a similar approximation argument to that in the proof of Theorem 3, one can prove the following

theorem, which characterizes an optimal mechanism of PC .

Theorem 6 Suppose Assumptions 1 and 2 hold. There exists an integer 2 ≤ M ≤ 5, v < v11 <

⋯ < vM−1
1 < v, v ≤ v02 ≤ v12 < ⋯ < vM−1

2 ≤ vM2 < v and 0 ≤ a1 < a2 < … aM ≤ 1 such that an

optimal mechanism of PC is given by

a(v, b1) =
M
∑

m=1
�{vm−11 <v≤vm1 }

am,

p(v, b1) =
M−1
∑

m=1
�{v≥vm1 }

(

am+1 − am
)

vm1 − u(v, b1),

q(v, b1) =
1
c

[

u(v, b1) − u(v, b2) + a1
(

v02 − v
)

+
M−1
∑

m=1
�{v≥vm1 }

(

am+1 − am
) (

vm2 − v
m
1

)

]

a(v, b2) =
M
∑

m=1
�{vm−12 <v≤vm2 }

am + �{v≥vM2 },

p(v, b2) =
M−1
∑

m=0
�{v≥vm2 }

(

am+1 − am
)

vm2 + �{v≥vM2 }
(

1 − aM
)

− u(v, b2).

However, it is hard to further improve this result, as in Section 4.2 when we require only the

weaker (BC) constraint. In particular, the proof of Lemma 6 does not apply here. It holds if we

also make the following assumption.

Assumption 3 a(v, b) = 0 for all v < b1.

Assumption 3 requires that an agent whose valuation is too low (lower than b1) receives the

good with probability zero. Note that optimal mechanisms in Theorem 4 and Theorem 5 satisfy

this condition. I conjecture this condition also holds in the general case, although I cannot prove it.

Under this additional assumption, we have
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Lemma 7 Suppose Assumptions 1, 2 and 3 hold. Then VPC(M,d) = VPC(2, d) for allM ≥ 2 and

d ≥ 0.

Given Lemma 7, it is easy to extend the result of Theorem 3 to this setting.

Theorem 7 Suppose Assumptions 1, 2 and 3 hold. There exist a∗(�), v∗1(�), v
∗
2(�), v

∗∗
2 (�), u

∗
1(�) and

u∗2(�) such that an optimal mechanism of PC is given by

a(v, b1) = �{v≥v∗1(�)}a
∗(�), p(v, b1) = �{v≥v∗1(�)}a

∗(�)v∗1(�) − u
∗
1(�),

q(v, b1) =
1
c

[

�{v≥v∗1(�)}a
∗(�)

(

v∗2(�) − v
∗
1(�)

)

+ u∗1(�) − u
∗
2(�)

]

,

a(v, b2) = �{v≥v∗2(�)}a
∗(�) + �{v≥v∗∗2 (�)} (1 − a

∗(�)) ,

p(v, b2) = �{v≥v∗2(�)}a
∗(�)v∗2(�) + �{v≥v∗∗2 (�)} (1 − a

∗(�)) v∗∗2 (�) − u
∗
2(�),

q(v, b2) = 0,

where a∗(�) = u∗1(�)∕
[

v∗1(�) − b1
]

, v ≤ v∗1(�) ≤ v∗2(�) ≤ v∗∗2 (�) ≤ v, 0 < a∗(�) ≤ 1 and u∗1(�) ≥

u∗2(�).

7.2 Monetary Penalty

In this subsection, I discuss what happens if penalty is transferable. Specifically, the principal

can inspect an agent’s budget at a cost k > 0, and can impose a monetary penalty of up to c ≥ 0. I

also allow the principal to punish an innocent agent and an agent without verification. Nonetheless,

as I will show later, it is optimal for the principal to punish an agent if and only if he is found to have

lied about his budget. Using this result, the principal’s problem can be reduced to the one stated in

Section 2, when penalty is not transferable. Hence, all results in previous sections also hold in the

case of monetary penalty.

I also relax the assumption that an agent is punished if and only if he is found to have lied.

In this case, a direct mechanism is a quadruple (a, p, q, �), where a, p and q are defined as before

and � ∶ T × {b1, b2, n} → [0, c] denotes the penalty imposed on an agent. In particular, �(t̂, n) ∈
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[0, c] denotes the penalty imposed on an agent who reports t̂ and is not inspected, and �(t̂, b) ∈

[0, c] denotes the penalty imposed on an agent who reports t̂ and is inspected, and whose budget is

revealed to be b. The utility of an agent who has type t ∶= (v, b) and reports t̂ is

u(t̂, t) =

⎧

⎪

⎨

⎪

⎩

a(t̂)v − p(t̂) − (1 − q(t̂))�(t̂, n) − q(t̂)�(t̂, b) if p(t̂) + �(t̂, b) ≤ b and p(t̂) + �(t̂, n) ≤ b,

−∞ otherwise.

The principal’s problem is

max
a,p,q,�

Et [a(t)v − q(t)k] , ()

subject to

u(t) ≡ u(t, t) ≥ 0, ∀t ∈ T , (IR)

u(t) ≥ u(t̂, t), ∀t ∈ T , t̂ ∈
{

t̂ ∈ T |

|

p(t̂) + max{�(t̂, n), �(t̂, b)} ≤ b
}

, (IC)

p(t) + max{�(t, n), �(t, b)} ≤ b, ∀t ∈ T , (BC)

Et [p(t) + (1 − q(t))�(t, n) + q(t)�(t, b) − q(t)k] ≥ 0, (BB)

Et [a(t)] ≤ S. (S)

Note that (BC) requires that an agent must be able to afford the payment and the punishment. I

show that it is without loss of generality to focus on mechanisms in which an agent is penalized if

and only if he is found to have lied about his budget, and whenever he is found to have lied he has

the maximum possible monetary penalty c imposed upon him.

Lemma 8 It is without loss of generality to focus on mechanisms in which �(t̂, n) = 0, �(t̂, b) = 0

if b̂ = b and �(t̂, b) = c if b̂ ≠ b.

Using Lemma 8, the principal’s problem can be reduced to the one stated in Section 2 when

penalty is not transferable. Hence, all results in previous sections also hold in the case of monetary

penalty.
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7.3 Costly Disclosure

In this subsection, I study what happens if it is also costly for an agent to have his report verified.

For example, agents may bear some costs of providing documentation. Assume that an agent incurs

a non-monetary cost only when his report is verified. Let cT ≥ 0 denote the cost incurred by an

agent from being verified by the principal if he reported his type truthfully, and let cF ≥ cT be

his cost if he lied.24 As I will show below, disclosure costs have three effects. Firstly, similar to

monetary transfers, disclosure costs can also be used to screen agents with different valuations and

help relax agents’ budget constraints. Secondly, it is more costly for an agent to lie about his budget

because cF ≥ cT . Finally, disclosure costs make verification more costly for the principal whose

concern is welfare. Even though it is difficult to solve the optimal mechanism, I show that if the

difference between cF and cT is sufficiently large, then the first two effects dominate and introducing

disclosure costs improves welfare.

The utility of an agent who has type t = (v, b) and reports t̂ is

u(t̂, t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a(t̂)v − p(t̂) − q(t̂)cT if b̂ = b and p(t̂) ≤ b,

a(t̂)v − p(t̂) − q(t̂)
(

cF + c
)

if b̂ ≠ b and p(t̂) ≤ b,

−∞ if p(t̂) > b.

The principal’s problem is

max
a,p,q

Et
[

a(t)v − q(t)k − q(t)cT
]

, (DC)

subject to (IR), (IC), (BC), (BB) and (S). Note that if cT = 0, then (DC) is equivalent to the original

problem () in which the punishment is cF + c.

Consider the more general case in which cT ≥ 0. Define pe(t) ∶= p(t) + q(t)cT , ke ∶= k + cT

and ce ∶= c + cF − cT . As in Section 4, I separate (IC) into two categories and ignore those

corresponding to over-reporting of budgets. Then the principal’s relaxed problem can be written

24The analysis goes through as long as cF + c ≥ cT .
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as:

max
a,p,q

Et [a(t)v − q(t)ke] , ( ′
DC)

subject to

a(t)v − pe(t) ≥ 0, ∀t ∈ T , (IR)

a(v, b)v − pe(v, b) ≥ a(v̂, b)v − pe(v̂, b), ∀v, v̂, b, (IC-v)

a(v, b2)v − pe(v, b2) ≥ a(v̂, b1)v − q(v̂, b1)ce − pe(v̂, b1), ∀v, v̂. (IC-b)

pe(t) ≤ b + q(t)cT , ∀t ∈ T , (BC)

Et [pe(t) − q(t)ke] ≥ 0, , (BB)

Et [a(t)] ≤ S. (S)

Compare  ′
DC with  ′. It is easy to see that the two problems are identical except for the (BC)

constraint. In  ′
DC , a low-budget agent faces a less stringent budget constraint if he expects to be

inspected with a non-zero probability. This is because in the presence of disclosure cost the effective

payment made by an agent who reports his type truthfully is pe(t) = p(t) + q(t)cT . In addition to

the monetary transfer p(t), disclosure cost q(t)cT can also be used to screen agents with different

valuations. Intuitively, an agent with a higher valuation is also willing to bear a higher disclosure

cost. Though disclosure cost can be used to relax an agent’s budget constraint, it reduces an agent’s

utility which makes verification more costly from the principal’s perspective, i.e., ke = k+ cT ≥ k.

As a result, the total welfare effect of introducing cT is ambiguous.

The effective punishment perceived by an agent is now c + cF − cT , the original punishment

plus the additional disclosure cost one must incur when lying about his budget. Hence, an increase

in cF is always welfare-enhancing, as it discourages agents from misreporting their budgets.

Though solving DC is beyond the scope of this paper, Proposition 7 provides a sufficient con-

dition under which introducing disclosure costs cT and cF improve the total welfare. Let V (k, c, b1)

denote the value of the principal’s original problem, in which verification cost is k, punishment is
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c and low-budget agent’s budget is b1; and let VDC(k, c, b1, cT , cF ) denote the value of the princi-

pal’s problem in which verification cost is k, punishment is c, low-budget agent’s budget is b1 and

disclosure costs are cT and cF . Then

Proposition 7 Suppose Assumptions 1 and 2 hold. If k∕c ≥ cT∕(cF−cT ), thenVDC(k, c, b1, cF , cT ) ≥

V (k, c, b1). Furthermore, if q(v, b1) > 0 in the optimal mechanism of (k + cT , c + cF − cT , b1),

then VDC(k, c, b1, cF , cT ) > V (k, c, b1).

7.4 Punishing the Innocent or without Verification

In Appendix A, I show that it is without loss of generality to focus on a direct mechanism

(a, p, q, �), where a ∶ T → [0, 1] denotes the probability an agent obtains the good, p ∶ T → ℝ

denotes the payment an agent must make, q ∶ T → [0, 1] denotes the probability of inspecting and

� ∶ T × {b1, b2, n} → [0, 1] denotes the probability of punishment. In particular, �(t̂, n) ∈ [0, 1]

denotes the probability of punishing an agent who reports t̂ and is not inspected, and �(t̂, b) ∈ [0, 1]

denotes the probability of punishing an agent who reports t̂ and is inspected and whose budget is

revealed to be b. In the main part of the paper, I assume that �((v, b), n) = �((v, b), b) = 0. In other

words, the principal is not allowed to punish an agent without verifying his budget or an agent who

is found to have reported his budget truthfully. This assumption is not without loss of generality.

In this case, the utility of an agent who has type t = (v, b) and reports t̂ = (v̂, b̂) is

u(t̂, t) =

⎧

⎪

⎨

⎪

⎩

a(t̂)v − p(t̂) − (1 − q(t̂))�(t̂, n)c − q(t̂)�(t̂, b)c if p(t̂) ≤ b

−∞ if p(t̂) > b

Then the principal’s problem is

max
a,p,q,�

Et [a(t)v − q(t)k − (1 − q(t))�(t, n)c − q(t)�(t, b)c] , (PI )

subject to (IR), (IC), (BC), (BB) and (S). Lemma 9 shows that the principal finds it optimal to
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always punish an agent who is found to have lied about his budget and never punish an agent who

is found to have reported his budget truthfully.

Lemma 9 An optimalmechanism ofPI satisfies that (i) �((v̂, b̂), b) = 1 if b̂ ≠ b and (ii) �((v, b), b) =

0 for almost all (v, b).

Define pe(t) ∶= p(t) + (1 − q(t))�(t, n)c, which is the effective payment made by an agent who

reports his type truthfully. As in Section 4, I separate (IC) constraints into two categories and ignore

those corresponding to over-reporting of budgets. Using Lemma 9, the principal’s problem can be

written as:

max
a,p,q,�

Et [a(t)v − q(t)k − (1 − q(t))�(t, n)c] , ( ′
PI )

subject to

a(t)v − pe(t) ≥ 0, ∀t ∈ T , (IR)

a(v, b)v − pe(v, b) ≥ a(v̂, b)v − pe(v̂, b), ∀v, v̂, b, (IC-v)

a(v, b2)v − pe(v, b2) ≥ a(v̂, b1)v − q(v̂, b1)c − pe(v̂, b1), ∀v, v̂. (IC-b)

pe(t) ≤ b + (1 − q(t))�(t, n)c, ∀t ∈ T , (BC)

Et [pe(t) − q(t)k − (1 − q(t))�(t, n)c] ≥ 0, (BB)

Et [a(t)] ≤ S. (S)

Compare  ′
PI with 

′. Note that by punishing an agent without verifying his budget, the principal

relaxes the agent’s budget constraint. However, it is costly, as reflected in the principal’s objective

function and (BB). Hence, in general, it is unclear whether it is optimal for the principal to do so.

7.5 Modified Type

In the standard environment, when agents are not budget-constrained, an agent’s valuation is

defined as the maximum amount of money he is willing to pay for the good. When agents are budget
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constrained, the natural analogue is the minimum of an agent’s valuation v and budget b. I follow

Pai and Vohra (2014) and redefine t ∶= min{v, b} as an agent’s modified type. In this subsection,

I show why it is necessary to explicitly model budget constraint rather than accommodate budgets

in the above way.

Let G denote the distribution of the modified type. Then

G(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

F (t) if t < b1,

�F (b1) + 1 − � if t = b1,

�F (t) if t > b1.

The principal’s ability to inspect an agent’s budget implies that she can perfectly learn a low-budget

agent’s modified type if his valuation exceeds his budget. I first solve the principal’s problem by

assuming common-knowledge budgets and then verify that no agent has any incentive to misreport

his modified type. In other words, there is no inspection in the optimal mechanism. Denote the

principal’s problem by MT .

Proposition 8 Suppose an agent’s budget is common knowledge. (i) If �
[

1 − F (b1)
]

≤ S < 1 −

F (b1), then the optimal mechanism of MT is given by

a(t) = �{t=b1}
S − �

[

1 − F (b1)
]

1 − �
+ �{t>b1}, p(t) = �{t=b1}

S − �
[

1 − F (b1)
]

1 − �
b1 + �{t≥b1}b1.

(ii) If S < �
[

1 − F (b1)
]

, then the optimal mechanism is given by

a(t) = �{t>t∗}, p(t) = �{t≥b1}t
∗,

where t∗ is such that � [1 − F (t∗)] = S.

The following corollary is a straightforward corollary of Proposition 8.

Corollary 3 Suppose an agent’s budget is his private information. The mechanism given in Propo-

sition 8 is incentive compatible and therefore optimal in MT .
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Compared with Theorem 3, the mechanism given in Proposition 8 is sub-optimal because (i)

it allocates too many resources to high-budget agents; and (ii) it has “too little” rationing for high-

budget agents but “too much” rationing for low-budget agents.

What went wrong here? First, consider a low-budget agent with modified type t = b1 and a high-

budget agent with modified type t = b1 + � for some � > 0. Then the low-budget agent’s expected

valuation is higher than the high-budget agent’s valuation, i.e., E[v|t = b1, b = b1] > b1 + �, for

� > 0 sufficiently small. This implies that the low-budget agent should receive the good with higher

probability as in Theorem 3, i.e., v∗1 ≤ v∗2. However, in the current mechanism it is the high-budget

agent who receives the good with higher probability. Second, consider two low-budget agents

with valuations v = b1 and v′ = b1 + � for � > 0 sufficiently small, respectively. In the current

mechanism, they are pooled. However, their payments are p(b1) < b1, which suggests that they

should be separated as in Theorem 3, i.e., v∗1 > b1. The second observation is also made in Pai and

Vohra (2014) in which the principal’s objective is maximizing revenue.

8 Conclusion

In this paper, I study the problem of a principal who wishes to distribute an indivisible good to a

population of budget-constrained agents. Both valuation and budget are an agent’s private informa-

tion. The principal can inspect an agent’s budget through a costly verification process and punish

an agent who makes a false statement. I characterize the direct surplus-maximizing mechanism.

This direct mechanism can be implemented by a two-stage mechanism that exhibits some of the

features of Singapore’s housing and development board.

Throughout the paper, I impose two regularity assumptions on the distribution of an agent’s

valuation: monotone hazard rate condition and decreasing density condition. These two assump-

tions are commonly used in the literature studying mechanism design problem with financially

constrained agents. Their primary role is to rule out complicated pooling regions in an optimal

mechanism, which greatly simplifies analysis. Several of the paper’s results (Lemmas 3, 4 and 5)
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still hold if I replace these two assumptions by weaker conditions. However, Lemma 6 may not

hold anymore as an optimal mechanism is expected to involve more complicated pooling regions.

Another simplifying assumption I make in the paper is that valuation and budget are indepen-

dent. In some environments, this assumption is reasonable. For example, an individual’s valuation

of health insurance is largely affected by his or her health risk, which is relatively independent of

his or her wealth. In general, an individual’s valuation and budget can be either positively or nega-

tively correlated, depending on whether the goods are considered normal goods or inferior goods.

The independence assumption is much harder to relax. As Pai and Vohra (2014) show, if valuation

and budget are correlated, an optimal mechanism may involve more complicated pooling regions.
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A The Revelation Principle

Consider a general mechanism that consists of a message spaceℳ and a quadruplet (a, p, q, �),

where a ∶ℳ → [0, 1] denotes the probability an agent obtains the good, p ∶ℳ → [0, 1] denotes

the payment an agent must make, q ∶ ℳ → [0, 1] denotes the probability of inspecting and � ∶

ℳ×{n, b1, b2}→ [0, 1] denotes the probability an agent is penalized. In particular, �(m, n) denotes

the probability an agent is penalized if he is not inspected and �(m, b) denotes the probability an

agent is penalized if he is inspected and his budget is revealed to be b.

Given a mechanism, an agent of type t = (v, b) choosesm ∈ℳ to maximize

a(m)v − p(m) − (1 − q(m))�(m, n)c − q(m)�(m, b)c

subject to the constraint that p(m) ≤ b. Letm∗(t) denote the solution to the agent’s problem. For

simplicity, I assumem∗(t) is deterministic, but it is easy to accommodate mixed strategies. If the

agent’s problem has multiple solutions, then some deterministic selection rule is used. Consider a

new mechanism with message space T . Let a∗(t) = a(m∗(t)), p∗(t) = p(m∗(t)), q∗(t) = a(m∗(t))

and �∗(t, ⋅) = �(m∗(t), ⋅). Then the new mechanism is incentive compatible. Clearly, an agent has

no incentive to report t̂ such that p∗(t̂) > b. For t̂ such that p∗(t̂) ≤ b, we have

a(m∗(t))v − p(m∗(t)) − (1 − q(m∗(t)))�(m∗(t), n)c − q(m∗(t))�(m∗(t), b)c

≥a(m∗(t̂))v − p(m∗(t̂)) − (1 − q(m∗(t̂)))�(m∗(t̂), n)c − q(m∗(t̂))�(m∗(t̂), b)c.

The inequality simply follows from the fact thatm∗(t) is the solution to a type t agent’s problem in

the original mechanism. Clearly, the principal’s payoff in the truthtelling equilibrium is as same as

that in the original mechanism.
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B Common Knowledge Budgets

Proof of Theorem 1. Let (a, p) be a feasible mechanism. For each b ∈ B, a(⋅, b) is non-decreasing

and p(v, b) = va(v, b)− ∫ v
v a(�, b)d�− u(v, b). Consider another mechanism (a∗, p∗). Let a∗(⋅, b) be

defined by

a∗(v, b) =

⎧

⎪

⎨

⎪

⎩

a(v, b) if v ≥ v∗b

0 otherwise
,

where v∗b is such that

∫

v

v
a(v, b)f (v)dv = a(v, b)(1 − F (v∗b)). (13)

Let p∗(v, b) = va∗(v, b)−∫ v
v a

∗(�, b)d�−u(v, b). Clearly, (a∗, p∗) satisfies constraints (IR), (IC) and

(S) and improves welfare. The revenue obtained by (a∗, p∗) is

Et[p∗(t)] = −(1 − �)u(v, b1) − �u(v, b2) + ∫

v

v

[

v −
1 − F (v)
f (v)

]

[

(1 − �)a∗(v, b1) + �a∗(v, b2)
]

dv.

By Assumption 1, v− [1 − F (v)]∕f (v) is strictly increasing. Thus, (a∗, p∗) also improves revenue,

and therefore satisfies the (BB) constraint. Finally, we show that the (BC) constraint holds:

p∗(v, b) =va(v, b) − ∫

v

v
a∗(v, b)dv − u(v, b)

≤va(v, b) − ∫

v

v
a(v, b)dv − u(v, b) ≤ b.

The inequality holds if and only if

∫

v

v
[a∗(v, b) − a(v, b)]dv ≥ 0,

⟺∫

v

v∗b

[a∗(v, b) − a(v, b)]dv ≥ ∫

v∗b

v
[a(v, b) − a∗(v, b)]dv.

A2



The inequality holds since

∫

v

v∗b

[a∗(v, b) − a(v, b)]dv = ∫

v

v∗b

[a∗(v, b) − a(v, b)]f (v) 1
f (v)

dv

≥ ∫

v

v∗b

[a∗(v, b) − a(v, b)]f (v) 1
f (v∗b)

dv

= ∫

v∗b

v
[a(v, b) − a∗(v, b)]f (v) 1

f (v∗b)
dv

≥ ∫

v∗b

v
[a(v, b) − a∗(v, b)]f (v) 1

f (v)
dv

= ∫

v∗b

v
[a(v, b) − a∗(v, b)]dv,

where the second and fourth line holds since f is non-increasing by Assumption 2 and the third

line holds by (13). Hence there exists v∗1 and v∗2 such that the optimal allocation rule satisfies

a(v, b1) = �{v≥v∗1}(v) min
{

u(v,b1)+b1
v∗1

, 1
}

and a(v, b2) = �{v≥v∗2}(v).

C Privately Known Budgets

C.1 No Verification

Proof of Lemma 1. If v = v, (3) reduces to u(v, b2) ≥ u(v, b1). Suppose u(v, b2) > u(v, b1). Let

u∗(v, b1) = u∗(v, b2) = (1 − �)u(v, b1) + �u(v, b2).

Let v∗ be such that

v∗ ∶= sup

⎧

⎪

⎨

⎪

⎩

v

|

|

|

|

|

|

|

∫ v
v a(�, b1)d� + u(v, b1) − ∫ v

v min{a(�, b1), a(�, b2)}d�

−(1 − �)u(v, b1) − �u(v, b2) ≤ 0

⎫

⎪

⎬

⎪

⎭

.

Let v− ∶= sup{v ≤ v∗|a(v, b2) ≥ a(v, b1)} and v+ ∶= inf{v ≥ v∗|a(v, b2) ≥ a(v, b1)}. Note that

if v∗ = v, then v+ = v∗ = v. Note also that if a(v∗, b2) ≥ a(v∗, b1), then v+ = v− = v∗. Clearly,
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a(v, b1) > a(v, b2) for all v ∈ (v−, v+). There exists � ∈ (0, 1) such that

∫

v+

v
a(�, b1)d� + u(v, b1) − ∫

v−

v
min{a(�, b1), a(�, b2)}d�

− ∫

v+

v−
[�a(�, b1) + (1 − �)a(�, b2)]d� − (1 − �)u(v, b1) − �u(v, b2) = 0.

Assume without loss of generality that a(v−, b1) = a(v−, b2) and a(v+, b1) = a(v+, b2). Let

a∗(v, b1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min{a(v, b1), a(v, b2)} if v < v−

�a(v, b1) + (1 − �)a(v, b2) if v− < v < v+

a(v, b1) if v > v+

,

and

a∗(v, b2) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1−�)[a(v,b1)−min{a(v,b1),a(v,b2)}]
�

+ a(v, b2) if v < v−

(1−�)[a(v,b1)−�a(v,b1)−(1−�)a(v,b2)]
�

+ a(v, b2) if v− < v < v+

a(v, b2) if v > v+

.

Clearly, a∗(v, b) is feasible and non-decreasing in v. By construction, we have (1 − �)u(v, b1) +

�u(v, b2) = (1 − �)u∗(v, b1) + �u∗(v, b2), (1 − �)a(v, b1) + �a(v, b2) = (1 − �)a∗(v, b1) + �a∗(v, b2)

for all v, and

u(v, b1) + ∫

v+

v
a(v, b1)dv = u∗(v, b1) + ∫

v+

v
a∗(v, b1)dv. (14)

Hence

u(v, b2) + ∫

v+

v
a(v, b2)dv = u∗(v, b2) + ∫

v+

v
a∗(v, b2)dv. (15)
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Let p∗(v, b) = va∗(v, b) − ∫ v
v a(�, b)d� − u

∗(v, b). Then

p∗(v, b1) = va∗(v, b1) − ∫

v

v
a∗(v, b1)dv − u∗(v, b1)

= va(v, b1) − ∫

v+

v
a∗(v, b1)dv − ∫

v

v+
a(v, b1)dv − u∗(v, b1)

= va(v, b1) − ∫

v+

0
a(v, b1)dv − ∫

v

v+
a(v, b1)dv − u(v, b1) ≤ b1,

where the third line follows from (14). Hence the (BC) constraint holds. For v < v−, we have

a∗(v, b2) ≥ a∗(v, b1) and u∗(v, b1) = u∗(v, b2). Hence (3) holds. For v > v+, we have

u∗(v, b1) + ∫

v

v
a∗(�, b1)d� = u(v, b1) + ∫

v

v
a(�, b1)d�

≤ u(v, b2) + ∫

v

v
a(�, b2)d�

= u∗(v, b2) + ∫

v

v
a∗(�, b2)d�,

where the first line follows from (14) and the third line follows from (15). Finally, consider v ∈

[v−, v+]. Suppose � ≤ 1 − �, then a∗(v, b1) ≤ a∗(v, b2) for v ∈ (v−, v+) and we have

u∗(v, b1) + ∫

v

v
a∗(�, b1)d� = u∗(v, b1) + ∫

v−

v
a∗(�, b1)d� + ∫

v

v−
a∗(�, b1)d�

≤ u∗(v, b2) + ∫

v−

v
a∗(�, b2)d� + ∫

v

v−
a∗(�, b2)d�

= u∗(v, b2) + ∫

v

v
a∗(�, b2)d�.
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Suppose � > �, then a∗(v, b1) > a∗(v, b2) for v ∈ [v−, v+] and we have

u∗(v, b1) + ∫

v

v
a∗(�, b1)d� = u∗(v, b1) + ∫

v+

v
a∗(�, b1)d� − ∫

v+

v
a∗(�, b1)d�

≤ u∗(v, b2) + ∫

v+

v
a∗(�, b2)d� − ∫

v+

v
a∗(�, b2)d�

= u∗(v, b2) + ∫

v

v
a∗(�, b2)d�.

Hence the (IC-b) constraint holds. Clearly, (a∗, p∗) also satisfies constraints (IR), (IC-v), (S) and

(BB), and does not change welfare.

Proof of Lemma 2. Given Lemma 1, (3) becomes

∫

v

v
a(�, b2)d� ≥ ∫

v

v
a(�, b1)d�, ∀v. (16)

For each b ∈ B, we have

∫

v

v
a(�, b)f (�)d� = ∫

v

v
f (�)d∫

�

v
a(�′, b)d�′

= f (v)∫

v

v
a(�′, b)d�′ − ∫

v

v

[

∫

�

v
a(�′, b)d�′

]

f ′(�)d�.

Since f ≥ 0 and −f ′ ≥ 0, (4) follows from (16).

Proof of Theorem 2. We first solve the optimal mechanism of  ′ and then verify that the optimal

mechanism also satisfies the (IC) constraint of low-budget agents. Let (a, p) be a feasible mech-

anism. For each b ∈ B, a(⋅, b) is non-decreasing and p(v, b) = va(v, b) − ∫ v
v a(�, b)d� − u(v, b).

Consider another mechanism (a∗, p∗).

Let v̂ ∶= inf{v|a(v, b2) ≥ a(v, b1)}. Note that v̂ = v if a(v, b1) > a(v, b2) and v̂ = v if
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a(v, b1) ≤ a(v, b2). Let a∗ be defined by

a∗(v, b1) =

⎧

⎪

⎨

⎪

⎩

a(v, b1) if v ≥ v∗1,

0 otherwise,

where v∗1 satisfies a(v, b1)[1 − F (v
∗
1)] = ∫ v

v a(v, b1)f (v)dv, and

a∗(v, b2) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if v ≥ v∗∗2 ,

a(v, b1) if v∗2 ≤ v < v∗∗2 ,

0 otherwise,

where v∗2 ≤ v̂ satisfies a(v, b1)[F (v̂)−F (v∗2)] = ∫ v̂
v a(v, b2)f (v)dv and v

∗∗
2 ≥ v̂ satisfies 1−F (v∗∗2 )+

a(v, b1)[F (v∗∗2 ) − F (v̂)] = ∫ v
v̂ a(v, b2)f (v)dv. Let p

∗(v, b) = va∗(v, b) − ∫ v
v a

∗(�, b)d� − u(v, b).

We show that v∗1 ≥ v∗2. If v
∗
1 ≥ v̂, then v∗1 ≥ v∗2. If v

∗
1 < v̂, then

a(v, b1)[F (v̂) − F (v∗1)] = ∫

v̂

v
a(v, b1)f (v)dv + ∫

v

v̂
[a(v, b1) − a(v, b1)]f (v)dv

≤ ∫

v̂

v
a(v, b1)f (v)dv

≤ ∫

v̂

v
a(v, b2)f (v)dv

= a(v, b1)[F (v̂) − F (v∗2)],

where the third line holds by Lemma 2. In this case, it must be that a(v, b1) > 0 since otherwise

a(v, b1) = 0 ≤ a(0, b2), which implies v̂ = v ≤ v∗1. Hence, v∗2 ≤ v∗1. Thus, (a∗, p∗) satisfies the

(IC-b) constraint.

Clearly, (a∗, p∗) also satisfies constraints (BC), (IR), (IC-v), (S) and (BB) and strictly improves

welfare. Suppose v∗2 < v
∗
1, then it is welfare improving to increase v∗2 and reduce v

∗
1 without affecting

any constraint. Hence, it is optimal to set v∗1 = v
∗
2 = v

∗. Let u∗ = u(v, b1) = u(v, b2). Then the opti-
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mal allocation rule satisfies a(v, b1) = �{v≥v∗}min
{

u∗+b1
v∗
, 1
}

and a(v, b2) = �{v≥v∗}min
{

u∗+b1
v∗
, 1
}

+

�{v≥v∗∗2 }
(

1 − min
{

u∗+b1
v∗
, 1
})

.

Clearly, if u∗+b1 > v∗, we can reduce u∗ such that u∗+b1 = v∗without affecting any constraint or

the principal’s objective function. This completes the characterization of the optimal mechanism of

 ′. Finally, it is easy to see that the (IC) constraint of low-budget types is satisfied. This completes

the proof.

C.2 The General Case

Proof of Lemma 3. Suppose not. Then one can construct another feasible mechanism (a∗, p∗, q∗),

which strictly improves welfare.

Let v̂m2 = inf{v|a(v, b2) ≥ am} for m = 1,… ,M , v̂02 = 0 and v̂
M+1
2 = v. Given a, the optimal

verification rule satisfies q(v, b1) = qm if v ∈ (vm−11 , vm1 ) for m = 1,… ,M , where

qm = 1
c
max

{

0, u(v, b1) − u(v, b2) − ∫

v̂m2

v
a(�, b2)d� + am(v̂m2 − v

m−1
1 ) + ∫

vm−11

v
a(�, b1)d�

}

.

For each m = 1,… ,M + 1, there exists vm−12 ∈ [v̂m−12 , v̂m2 ] such that

∫

v̂m2

v̂m−12

a(v, b2)f (v)dv = am−1[F (vm−12 ) − F (v̂m−12 )] + am[F (v̂m2 ) − F (v
m−1
2 )]. (17)

Consider a∗(v, b2) such that a∗(v, b2) = am if v ∈ (vm−12 , vm2 ) for m = 1,… ,M , a∗(v, b2) = 0 if

v < v02 and a
∗(v, b2) = 1 if v > vM2 . Note that if a1 = 0, then v02 = v. If aM = 1, then vM2 is

in-determined and we assume vM2 = vM−1
2 . Let a∗(v, b1) = a(v, b1).

Let p∗(v, b) = va∗(v, b) − ∫ v
v a

∗(�, b)d� − u(v, b). Let q∗(v, b1) = q(v, b1). We show that the

(IC-b) constraint is satisfied. That is, for m = 1,… ,M ,

qmc ≥ u(v, b1) − u(v, b2) − ∫

vm−12

v
a∗(�, b2)d� + am(vm−12 − vm−11 ) + ∫

vm−11

v
a(�, b1)d�.
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Since a∗(v, b2) = am for v ∈ (vm−12 , v̂m2 ), we have

u(v, b1) − u(v, b2) − ∫

vm−12

v
a∗(�, b2)d� + am(vm−12 − vm−11 ) + ∫

vm−11

v
a(�, b1)d�

=u(v, b1) − u(v, b2) − ∫

v̂m2

v
a∗(�, b2)d� + am(v̂m2 − v

m−1
1 ) + ∫

vm−11

v
a(�, b1)d�

≤u(v, b1) − u(v, b2) − ∫

v̂m2

v
a(�, b2)d� + am(v̂m2 − v

m−1
1 ) + ∫

vm−11

v
a(�, b1)d�,

where the last inequality holds if and only if

∫

v̂m2

v
[a∗(�, b2) − a(�, b2)]d� ≥ 0.

To prove this, we prove that for m = 1,… ,M

∫

v̂m2

v̂m−12

[a∗(�, b2) − a(�, b2)]d� ≥ 0. (18)

(18) holds if and only if

∫

v̂m2

vm−12

[a∗(�, b2) − a(�, b2)]d� ≥ ∫

vm−12

v̂m−12

[a(�, b2) − a∗(�, b2)]d�. (19)

(19) follows from the construction of a∗ and Assumption 2:

∫

v̂m2

vm−12

[a∗(�, b2) − a(�, b2)]d� ≥∫

v̂m2

vm−12

[a∗(�, b2) − a(�, b2)]f (�)
1

f (vm−12 )
d�

=∫

vm−12

v̂m−12

[a(�, b2) − a∗(�, b2)]f (�)
1

f (vm−12 )
d�

≥∫

vm−12

v̂m−12

[a(�, b2) − a∗(�, b2)]d�.

By Assumption 1, Et[p∗(t)] ≥ Et[p(t)]. Hence, constraint (BB) is satisfied. It is also clear that

(a∗, p∗, q∗) satisfies constraints (IR), (IC-v), (BC) and (S), and strictly improves welfare.
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Proof of Lemma 4. The proof is by contradiction. Let (a, p, q) be a feasible mechanism, where

a is a M-step allocation rule, p satisfies the envelope condition and q is given by (7). Suppose

(a, p, q) satisfies neither (C1) nor (C2). I show that one can construct another feasible mechanism

(a∗, p∗, q∗), which strictly improves welfare and satisfies one of the two conditions. Furthermore,

a∗ is aM ′-step function for someM ′ ≤M . I break the proof into three steps.

Step 1. Suppose u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

< 0. Let m > 1 be such that vm′−12 − vm′−11 ≤ 0

for all m′ < m and vm−12 − vm−11 > 0. If there is no such m, then (a, p, q) satisfies (C2). Let v̂ be

defined by F (v̂) = �F (vm−12 ) + (1 − �)F (vm−11 ) if F (vm1 ) > �F (v
m−1
2 ) + (1 − �)F (vm−11 ) and v̂ = vm1

otherwise. Consider two different cases.

Case 1

Suppose (am − am−1)(v̂− vm−11 ) ≥ �[u(v, b2) − u(v, b1) − a1
(

v02 − v
0
1

)

], let ṽm−11 ∈ [vm−11 , v̂] be

such that

(am − am−1)(ṽm−11 − vm−11 ) = �[u(v, b2) − u(v, b1) − a1
(

v02 − v
0
1

)

].

Let ṽm−12 ∈ [v̂, vm−12 ] be such that �[F (vm−12 ) − F (ṽm−12 )] = (1 − �)[F (ṽm−11 ) − F (vm−11 )].

Let ṽm′i = vm′i for i = 1, 2 and m′ ≠ m − 1. Let a∗(v, b1) = am−1 if v ∈ (vm−11 , ṽm−11 ) and

a∗(v, b1) = a(v, b1) otherwise. Let a∗(v, b2) = am if v ∈ (ṽm−12 , vm−12 ) and a∗(v, b2) = a(v, b2)

otherwise. Let u∗(v, b1) = (1 − �)u(v, b1) + �u(v, b2) − �a1
(

v02 − v
0
1

)

and u∗(v, b2) = (1 −

�)u(v, b1)+�u(v, b2)+(1−�)a1
(

v02 − v
0
1

)

. Let p∗(v, b) = va∗(v, b)−∫ v
v a

∗(�, b)d�−u∗(v, b).

By construction, p∗(v, b1) = p(v, b1) ≤ b1. Hence, the (BC) constraint is satisfied. Let

q∗(v, b1) = q(v, b1). By Assumption 1, the (BB) constraint holds. For v ∈ (ṽm′−11 , ṽm′1 ),

m′ = 1,… , m − 1, (IC-b) holds since

u∗(v, b1) − u∗(v, b2) +
m′
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 ) ≤ 0 ≤ q∗(v, b1)c.
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For v ∈ (ṽm′−11 , ṽm′1 ), m
′ = m,… ,M , we have q∗(v, b1) = qm. Then (IC-b) holds since

u∗(v, b1) − u∗(v, b2) +
m′
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 )

=
m′
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) + (am − am−1)(ṽm−12 − ṽm−11 − vm−12 + vm−11 ) − a1

(

v02 − v
0
1

)

≤
m′
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) +

(am − am−1)(vm−11 − ṽm−11 )
�

− a1
(

v02 − v
0
1

)

=
m′
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) + u(v, b1) − u(v, b2)

=qm′c,

where the third line holds since by Assumption 2

vm−12 − ṽm−12 ≥ 1
f (ṽm−12 )

[F (vm−12 ) − F (ṽm−12 )]

≥1 − �
�

1
f (ṽm−11 )

[F (ṽm−11 ) − F (vm−11 )]

≥1 − �
�

(

ṽm−11 − vm−11

)

.

Clearly, (a∗, p∗, q∗) also satisfies constraints (IR), (IC-v) and (S) and strictly increases welfare.

Note also that the new mechanism satisfies u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

= 0.

Suppose ṽm−11 < vm1 , then continue with the argument in step 2.

Suppose ṽm−11 = vm1 < ṽm−12 , then by the arguments in Lemma 3, we can construct a new

mechanism which is feasible and strictly increases welfare, and whose allocation rule is a

(M − 1)-step allocation rule. Continue with the argument in step 2.

Case 2

Suppose (am − am−1)(v̂ − vm−11 ) < �[u(v, b2) − u(v, b1) + a1
(

v02 − v
0
1

)

]. Let ṽm−11 = v̂. Let

ṽm−12 ∈ [v̂, vm−12 ] be such that �[F (vm−12 ) − F (ṽm−12 )] = (1 − �)[F (ṽm−11 ) − F (vm−11 )]. Let
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ṽm′i = vm′i for i = 1, 2 and m′ ≠ m − 1. Let a∗(v, b1) = am−1 if v ∈ (vm−11 , ṽm−11 ), and

a∗(v, b1) = a(v, b1) otherwise. Let a∗(v, b2) = am if v ∈ (ṽm−12 , vm−12 ) and a∗(v, b2) = a(v, b2)

otherwise. Let u∗(v, b1) = u(v, b1) + (am − am−1)(v̂ − vm−11 ) and u∗(v, b2) = u(v, b2) − (1 −

�)(am − am−1)(v̂ − vm−11 )∕�. Then u∗(v, b2) > u∗(v, b1) + a1
(

v02 − v
0
1

)

≥ 0. Let p∗(v, b) =

va∗(v, b) − ∫ v
v a

∗(�, b)d� − u∗(v, b). By construction, p∗(v, b1) = p(v, b1) ≤ b1. Hence, the

(BC) constraint is satisfied. Let q∗(v, b1) = q(v, b1). By Assumption 1, the (BB) constraint

is satisfied. By the same argument in Case 1, the (IC-b) constraint is satisfied. Clearly,

(a∗, p∗, q∗) also satisfies constraints (IR), (IC-v) and (S) and strictly increases welfare.

In this case, by construction, we have ṽm−11 = min
{

ṽm−12 , vm1
}

.

Suppose ṽm−11 = ṽm−12 < vm1 , then let m∗ > m be such that ṽm′−12 − ṽm′−11 ≤ 0 for all m′ < m∗

and ṽm∗−12 − ṽm∗−11 > 0. If there is no suchm∗, (a∗, p∗, q∗) then satisfies (C2). Otherwise repeat

the argument in step 1 for m∗.

Suppose ṽm−11 = vm1 ≤ ṽm−12 , then by the argument in Lemma 3, we can construct a new

mechanism which is feasible and strictly increases welfare, and whose allocation rule is a

(M − 1)-step allocation rule. Repeat the arguments in step 1 for m.

SinceM is finite, in finite steps we can construct a feasible mechanism (a, p, q) that either satisfies

(C2) or u(0, b1) − u(0, b2) + a1v02 ≥ 0. In the latter case, continue with the argument in step 2.

Step 2. Suppose u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

≥ 0. Consider m ≥ 2. Suppose (8) holds for all

m′ < m and

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) < 0.

If there is no such m, then (a, p, q) satisfies (C1). It must be the case that vm−12 < vm−11 . Suppose

vm−12 < vM2 . Letm∗ ≥ m be the smallestm′ such that vm′2 > vm−12 . That is, vm∗2 > vm−12 and vm′2 = vm−12

for m′ = m,… , m∗ − 1. Let v̂ ∈ [vm−12 , vm−11 ] be such that

u(v, b1) − u(v, b2) +
m−1
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) + (am − am−1)(v̂ − vm−11 ) = 0.
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We consider two different cases.

Case 1

Suppose (am∗ − am−1)[F (v̂) − F (vm−12 )] ≤ (am∗+1 − am∗)[F (vm∗2 ) − F (v̂)]. Let ṽ
m∗
2 ∈ [v̂, vm∗2 )

be such that

(am∗ − am−1)[F (ṽm−12 ) − F (vm−12 )] = (am∗+1 − am∗)[F (vm∗2 ) − F (ṽ
m∗
2 )]. (20)

Let ṽm′2 = v̂ for m′ = m−1,… , m∗−1 and ṽm′2 = vm′2 if m′ < m−1 or m′ > m∗. Let ṽm′1 = vm′1
for all m′. Let a∗(v, b1) = a(v, b1). Let a∗(v, b2) = am−1 if v ∈ (vm−12 , ṽm−12 ), a∗(v, b2) = am

∗+1

if v ∈ (ṽm∗2 , v
m∗
2 ) and a

∗(v, b2) = a(v, b2) otherwise. Let p∗(v, b) = va∗(v, b) − ∫ v
v a

∗(�, b)d� −

u(v, b). Clearly, p∗(v, b1) = p(v, b1) ≤ b1. Hence, the (BC) constraint is satisfied. Let

q∗(v, b1) = q(v, b1). By Assumption 1, the (BB) constraint holds.

Finally, we show that (a∗, p∗, q∗) satisfies the (IC-b) constraint. That is, for m′ = 1,… ,M

u(v, b1) − u(v, b2) +
m′
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 ) ≤ qm′c.

This is trivial for m′ ≤ m. For m′ = m + 1,… , m∗, we have ṽm′−12 = ṽm−12 ≤ vm−11 < vm′−11 .

Hence

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) +

m′
∑

j=m+1
(aj − aj−1)(ṽj−12 − vj−11 ) < 0 ≤ qm′c.

Finally, consider m′ ≥ m∗ + 1. It suffices to show that

u(v, b1) − u(v, b2) +
m∗+1
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 )

≤u(v, b1) − u(v, b2) +
m∗+1
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ),

A13



which holds if and only if

(am∗ − am−1)(ṽm−12 − vm−12 ) ≤ (am∗+1 − am∗)(vm∗2 − ṽm∗2 ).

The last inequality holds by (20) and Assumption 2. Clearly, (a∗, p∗, q∗) also satisfies con-

straints (IR), (IC-v) and (S) and strictly increases welfare. Let m′′ > m be such that (8) holds

for all m′ < m′′ and is violated for m′′. If there is no such m′′, then (a∗, p∗, q∗) satisfies (C1).

Otherwise repeat the argument in step 2 for m′′.

Case 2

Suppose (am∗ −am−1)[F (v̂)−F (vm−12 )] > (am∗+1−am∗)[F (vm∗2 )−F (v̂)]. Let ṽ
m−1
2 be such that

(am∗ − am−1)[F (ṽm−12 ) − F (vm−12 )] = (am∗+1 − am∗)[F (vm∗2 ) − F (ṽ
m−1
2 )].

Let ṽm′2 = ṽm−12 for m′ = m,… , m∗ and ṽm′2 = vm′2 if m′ < m − 1 or m′ > m∗. Let

ṽm′1 = vm′1 for all m′. Let a∗(v, b1) = a(v, b1). Let a∗(⋅, b2) such that a∗(v, b2) = am−1 if

v ∈ (vm−12 , ṽm−12 ), a∗(v, b2) = am∗+1 if v ∈ (ṽm−12 , vm∗2 ) and a
∗(v, b2) = a(v, b2) otherwise. Let

p∗(v, b) = va∗(v, b) − ∫ v
v a

∗(�, b)d� − u(v, b). Clearly, p∗(v, b1) = p(v, b1) ≤ b1. Hence, the

(BC) constraint is satisfied. Let q∗(v, b1) = q(v, b1). By Assumption 1, the (BB) constraint

holds. By the same argument in Case 1, the (IC-b) constraint is satisfied. Clearly, (a∗, p∗, q∗)

also satisfies constraints (IR), (IC-v) and (S) and strictly increases welfare. Note that for

(a∗, p∗, q∗) we have ṽm∗2 = ṽm−12 . Repeat the argument in step 2 for m with m∗ replaced by

m∗ + 1.

Since M is finite, in finite steps we can construct a feasible mechanism (a, p, q) that either

satisfies (C1), or vM2 = vm−12 < vm−11 and

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) < 0.

In the latter case, continue with the argument in step 3.
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Step 3. Suppose u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

≥ 0,

u(v, b1) − u(v, b2) +
m′
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) ≥ 0

for allm′ = 1,… , m−1, vM2 = vm−12 < vm−11 , and u(v, b1)−u(v, b2)+
∑m

j=1(a
j−aj−1)(vj−12 −vj−11 ) < 0.

Let ṽm−11 = vm−11 − " for some " > 0 and ṽm′2 = vm−12 + � for m′ = m − 1,… ,M , where � > 0 is

such that

(1 − �)(am − am−1)
[

F (vm−11 ) − F (ṽm−11 )
]

= �(1 − am−1)
[

F (vm−12 ) − F (ṽm−12 )
]

. (21)

Let ṽm′i = vm′i if m′ ≠ m − 1 for i = 1, 2. Let " > 0 be such that

min

{

ṽm−11 − vm−21 , u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 )

}

= 0. (22)

Since
∑m−1

j=1 (a
j − aj−1)(ṽj−12 − ṽj−11 ) ≥ 0, we have ṽm′2 ≤ ṽm′1 for all m′ ≥ m − 1. Let a∗(v, bi) = am

if v ∈ (ṽm−1i , ṽmi ) for i = 1, 2 and m = 1,… ,M , a∗(v, b2) = 0 if v < ṽ02 and a
∗(v, b2) = 1

if v > ṽM2 . Let p∗(v, b) = va∗(v, b) − ∫ v
v a

∗(�, b)d� − u(v, b). Since a∗(v, b1) = a(v, b1) and

a∗(v, b1) ≥ a(v, b1) for all v, we have p∗(v, b1) ≤ p(v, b1) ≤ b1. Hence, the (BC) constraint is

satisfied. Let q∗(v, b1) = qm if v ∈ (ṽm−11 , ṽm1 ) for m = 1,… ,M . Then the change of the verification

cost is

k(qm − qm−1)[F (vm−11 ) − F (ṽm−11 )].

Since qm = 0 ≤ qm−1, the verification cost is reduced. Furthermore, by Assumption 1, the revenue

increases. Hence, the (BB) constraint holds. Finally, we show that the (IC-b) constraint is satisfied.

That is, for m′ = 1,… ,M

u(v, b1) − u(v, b2) +
m′
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 ) ≤ qm′c.
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This is trivial for m′ < m. For m′ ≥ m, this holds since

u(v, b1) − u(v, b2) +
m′
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 ) ≤ 0 = qm′c.

Clearly, (a∗, p∗, q∗) also satisfies constraints (IR), (IC-v) and (S) and strictly increases welfare.

If the first term of (22) reaches zero first, then by the argument in Lemma 3, we can construct

a new mechanism which is feasible and strictly increases welfare, and whose allocation rule is a

(M − 1)-step allocation rule. Then repeat the argument in step 3 for m − 1. If the second term of

(22) reaches zero first and m < M , then repeat the argument in step 3 for m+1. If the second term

of (22) reaches zero first and m =M , then (a∗, p∗, q∗) satisfies (C1).

SinceM is finite, in finite steps we can construct a feasiblemechanism (a∗, p∗, q∗), which strictly

improveswelfare and satisfies (C1). Furthermore, a∗ is aM ′-step allocation rule for someM ′ ≤M .

Lemma 10 Suppose Assumptions 1 and 2 hold. An optimal mechanism of  ′(M,d) satisfies that

v12 ≥ v11.

Proof of Lemma 10. Assume without loss of generality that a2 > a1. Suppose, on the contrary,

that v12 < v
1
1. Since (8) holds for m = 2, it must be that u(v, b1) − u(v, b2) + a1(v20 − v

1
0) > 0. Hence,

it is either (i) u(v, b1) > u(v, b2) ≥ 0, or (ii) a1 > 0 and v02 > v
1
0.

Suppose u(v, b1) > u(v, b2) ≥ 0.

We construct another feasible mechanism (a∗, p∗, q∗), which strictly improves welfare. Let

" > 0 be sufficiently small. Let ṽ11 = v11 − �"∕(1 − �) and ṽ12 > v12 be such that (1 −
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�)
[

F (v11) − F (ṽ
1
1)
]

= �
[

F (ṽ12) − F (v
1
2)
]

. By Assumption 2,

ṽ12 − v
1
2 ≤

[

F (ṽ12) − F (v
1
2)
] 1
f (ṽ12)

≤ 1 − �
�

[

F (v11) − F (ṽ
1
1)
] 1
f (ṽ11)

≤ 1 − �
�

(v11 − ṽ
1
1) = ".

For " > 0 sufficiently small, ṽ12 ≤ ṽ11. Let ṽ
m
i = vmi for i = 1, 2 and m ≠ 1. Let u∗(v, b2) =

u(v, b2)+(a2−a1)" and u∗(v, b1) = u(v, b1)−�(a2−a1)"∕(1−�). For " > 0 sufficiently small,

u∗(v, b1) ≥ u∗(v, b2) > 0. Let a∗(v, bi) = am for v ∈ (ṽm−1i , ṽmi ) for i = 1, 2 and m = 1,… ,M ,

a∗(v, b2) = 0 if v < ṽ02 and a
∗(v, b1) = 1 if v > ṽM2 . Let p∗(v, b) = va∗(v, b) − ∫ v

v a
∗(�, b)d� −

u∗(v, b). By construction, p∗(v, b1) = p(v, b1). Hence, the (BC) constraint is satisfied. Let

q∗(v, b) = q(v, b). Clearly, (a∗, p∗, q∗) satisfies constraints (IR), (IC-v) and (S), and strictly

improves welfare. (a∗, p∗, q∗) satisfies (BB) by Assumption 1.

Finally, we show that (a∗, p∗, q∗) satisfies the (IC-b) constraint. If v < ṽ11, then

u∗(v, b1) − u∗(v, b2) + a1(ṽ02 − ṽ
0
1) = u(v, b1) − u(v, b2) + a

1(v02 − v
0
1) −

(a2 − a1)"
1 − �

≤ q1c.

If v ∈ (ṽ11, v
2
1), then

u∗(v, b1) − u∗(v, b2) + a1(ṽ02 − ṽ
0
1) + (a

2 − a1)(ṽ12 − ṽ
1
1)

=u(v, b1) − u(v, b2) + a1(v02 − v
0
1) + (a

2 − a1)(v12 − v
1
1) −

(a2 − a1)"
1 − �

+ (a2 − a1)(ṽ12 − v
1
2 + v

1
1 − ṽ

1
1)

≤u(v, b1) − u(v, b2) + a1(v02 − v
0
1) + (a

2 − a1)(v12 − v
1
1) −

(a2 − a1)"
1 − �

+ (a2 − a1)
(

" + �"
1 − �

)

=u(v, b1) − u(v, b2) + a1(v02 − v
0
1) + (a

2 − a1)(v12 − v
1
1)

≤min{q2c, q1c},

where the first inequality holds since ṽ12 − v
1
2 ≤ " and the last inequality holds since v12 < v

1
1.
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If v ∈ (vm−11 , vm1 ) for m ≥ 3, then

u∗(v, b1) − u∗(v, b2) + a1(ṽ02 − ṽ
0
1) + (a

2 − a1)(ṽ12 − ṽ
1
1) +

m
∑

j=3
(aj − aj−1)(ṽj−12 − ṽj−11 )

≤u(v, b1) − u(v, b2) + a1(v02 − v
0
1) + (a

2 − a1)(v12 − v
1
1) +

m
∑

j=3
(aj − aj−1)(vj−12 − vj−11 )

≤qmc.

Hence, (IC-b) constraint is satisfied. This contradicts to that (a, p, q) is optimal.

Suppose a1 > 0 and v02 > v
0
1.

We construct another feasible mechanism (a∗, p∗, q∗), which strictly improves welfare. Let

" ∈ (0, a1] be sufficiently small. Let

ṽ11 =
(a2 − a1)v11 + "v

0
1

a2 − a1 + "
< v11.

By Assumption 2, we have

(a2 − a1)
[

F (v11) − F (ṽ
1
1)
]

≤(a2 − a1)(v11 − ṽ
1
1)f (ṽ

1
1)

="(ṽ11 − v
0
1)f (ṽ

1
1)

≤"
[

F (ṽ11) − F (v
0
1)
]

.

Let Δ ∶= (a2 − a1)
[

F (v11) − F (ṽ
1
1)
]

− "
[

F (ṽ11) − F (v
0
1)
]

≥ 0. If v12 > v02, then let ṽ02 = v02

and ṽ12 be such that

�(a2 − a1)
[

F (v12) − F (ṽ
1
2)
]

= �"
[

F (ṽ12) − F (v
0
2)
]

+ (1 − �)Δ.
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For " > 0 sufficiently small, ṽ12 ≥ ṽ02 ≥ v01. If v
1
2 = v

0
2, then let ṽ

1
2 = ṽ

0
2 be such that

�(a2 − a1)
[

F (v12) − F (ṽ
1
2)
]

= (1 − �)Δ.

For " > 0 sufficiently small, ṽ12 = ṽ
0
2 ≥ v01. Let ṽ

m
i = v

m
i for i = 1, 2 and m ≥ 2. For i = 1, 2,

let a∗(v, bi) = a1 − " if v ∈ (ṽ0i , ṽ
1
i ), a

∗(v, bi) = a2 if v ∈ (ṽ1i , v
1
i ), and a

∗(v, bi) = a(v, bi)

otherwise. Let u∗(v, b) = u(v, b) and p∗(v, b) = va∗(v, b) − ∫ v
v a

∗(�, b)d� − u∗(v, b). By

construction, p∗(v, b1) = p(v, b1). Hence, the (BC) constraint is satisfied. Let q∗(v, b) =

q(v, b). Clearly, (a∗, p∗, q∗) satisfies constraints (IR), (IC-v) and (S), and strictly improves

welfare. (a∗, p∗, q∗) satisfies (BB) by Assumption 1.

Finally, we show that (a∗, p∗, q∗) satisfies the (IC-b) constraint. Suppose v12 > v02. If v < ṽ11,

then

u∗(v, b1) − u∗(v, b2) + (a1 − ")(v02 − v
0
1) < u(v, b1) − u(v, b2) + a

1(v02 − v
0
1) = q

1c.

If v ∈ (ṽ11, ṽ
2
1), then

u∗(v, b1) − u∗(v, b2) + (a1 − ")(v02 − v
0
1) + (a

2 − a1 + ")(ṽ12 − ṽ
1
1)

=u(v, b1) − u(v, b2) + a1(v02 − v
0
1) + (a

2 − a1)(v12 − v
1
1)

+ (a2 − a1 + ")(ṽ12 − ṽ
1
1) − "(v

0
2 − v

0
1) − (a

2 − a1)(v12 − v
1
1)

=u(v, b1) − u(v, b2) + a1(v02 − v
0
1) + (a

2 − a1)(v12 − v
1
1)

+ (a2 − a1 + ")ṽ12 − "v
0
2 − (a

2 − a1)v12

≤u(v, b1) − u(v, b2) + a1(v02 − v
0
1) + (a

2 − a1)(v12 − v
1
1) ≤ min{q

1c, q2c},

where the last inequality holds since v12 < v
1
1. To see that the first inequality holds, note that
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by Assumption 2,

(a2 − a1)(v12 − ṽ
1
2) ≥ (a

2 − a1)
[

F (v12) − F (ṽ
1
2)
] 1
f (ṽ12)

≥ "
[

F (ṽ12) − F (v
0
2)
]

≥ "(ṽ12 − v
0
2).

Hence, (a2 − a1 + ")ṽ12 ≤ (a2 − a1)v12 + "v
0
2. Furthermore, ṽmi = vmi for i = 1, 2 and m ≥ 2.

Hence, the (IC-b) constraint is satisfied. Suppose v02 = v
1
2. If v < ṽ

1
1, then

u∗(v, b1) − u∗(v, b2) + (a1 − ")(v02 − v
0
1) < u(v, b1) − u(v, b2) + a

1(v02 − v
0
1) = q

1c.

If v ∈ (ṽ11, ṽ
2
1), then

u∗(v, b1) − u∗(v, b2) + (a1 − ")(v02 − v
0
1) + (a

2 − a1 + ")(ṽ12 − ṽ
1
1)

=u(v, b1) − u(v, b2) + a1(v02 − v
0
1) + (a

2 − a1)(v12 − v
1
1) + a

2(ṽ12 − v
1
2)

≤u(v, b1) − u(v, b2) + a1(v02 − v
0
1) + (a

2 − a1)(v12 − v
1
1) ≤ min{q

1c, q2c},

where the first inequality holds since ṽ12 ≤ v12 and the second inequality holds since v12 < v
1
1.

Furthermore, ṽmi = v
m
i for i = 1, 2 and m ≥ 2. Hence, the (IC-b) constraint is satisfied. This

contradicts to that (a, p, q) is optimal.

Hence, v12 ≥ v11.

LetM ≥ 3 be an integer. We note that if a mechanism is a feasible solution to ′(M−1, d), then

it is also a feasible solution to ′(M,d). Clearly, V (M−1, d) ≤ V (M,d). Suppose V (M−1, d) <

V (M,d), then in an optimal solution to  ′(M,d) the allocation rule must be aM-step allocation
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rule, i.e.,

0 = a0 ≤ a1 < a2 <⋯ < aM ≤ aM+1 = 1,

v = v01 < v
1
1 <⋯ < vM1 = v.

Hence �2 =⋯ = �M = 0 and 
11 =⋯ = 
M1 = 0. Let � ∶= k∕c. Then the first-order conditions of
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 ′(M,d) are

�

[

∫

vm2

vm−12

[

(1 + �)v − �
1 − F (v)
f (v)

]

dv − �[F (vm2 ) − F (v
m−1
2 )]

]

+ (1 − �)

[

∫

vm1

vm−11

[

(1 + �)v − �
1 − F (v)
f (v)

]

f (v)dv

]

− (1 − �)(1 + �)�(vm−12 − vm−11 )[F (vm1 ) − F (v
m−1
1 )] − (1 − �)�[F (vm1 ) − F (v

m−1
1 )]

+ (1 − �)(1 + �)�(vm2 − v
m
1 − v

m−1
2 + vm−11 )[1 − F (vm1 )] + �(v

m
1 − v

m−1
1 ) + �m(vm−12 − vm−11 )

− (vm2 − v
m
1 − v

m−1
2 + vm−11 )

M
∑

j=m+1
�j + �m − �m+1 = 0, (am, 1 ≤ m ≤M − 1)

�

[

∫

vM2

vM−1
2

[

(1 + �)v − �
1 − F (v)
f (v)

]

f (v)dv − �[F (vM2 ) − F (v
M−1
2 )]

]

+ (1 − �)∫

vM1

vM−1
1

[

(1 + �)v − �
1 − F (v)
f (v)

]

f (v)dv

− (1 − �)(1 + �)�(vM−1
2 − vM−1

1 )[F (vM1 ) − F (v
M−1
1 )] − (1 − �)�[F (vM1 ) − F (v

M−1
1 )]

− �vM−1
1 + �M (vM−1

2 − vM−1
1 ) + �M − �M+1 = 0, (aM )

(am+1 − am)
{

(1 − �)
[

(� − (1 + �)vm1 )f (v
m
1 ) + (� + � + ��) [1 − F (v

m
1 )] + (1 + �)�(v

m
2 − v

m
1 )f (v

m
1 )
]

−
M
∑

j=m+1
�j − �

}

= 0, (vm1 , 1 ≤ m ≤M − 1)

a1
{

�
[

(� − (1 + �)v02)f (v
0
2) + �[1 − F (v

0
2)]
]

− (1 − �)(1 + �)� +
M
∑

j=1
�j
}

+ 
02 − 

1
2 = 0, (v02)

(am+1 − am)

{

�
[

(� − (1 + �)vm2 )f (v
m
2 ) + �[1 − F (v

m
2 )]

]

− (1 − �)(1 + �)�[1 − F (vm1 )] +
M
∑

j=m+1
�j
}

+ 
m2 − 

m+1
2 = 0, (vm2 , 1 ≤ m ≤M − 1)

�(aM+1 − aM )
[

(� − (1 + �)vM2 )f (v
M
2 ) + �[1 − F (v

M
2 )]

]

+ 
M2 − 
M+1
2 = 0, (vM2 )

� +
M
∑

m=1
�m − (1 − �) (� + � + ��) + �1 = 0, (u(v, b1))

−
M
∑

m=1
�m − �� + (1 − �)(1 + �)� + �2 = 0. (u(v, b2))
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The variables in the parentheses denote with respect to which variables the first-order conditions

are taken.

Lemma 11 Suppose Assumptions 1 and 2 hold and V (M,d) > V (M −1, d) for someM ≥ 3. An

optimal mechanism of  ′(M,d) satisfies that vm2 − v
m
1 is strictly increasing in m = 1,…M − 1.

Proof of Lemma 11. Since am+1 > am for m = 1,…M − 1, the FOCs of vm1 become

(1 − �)
[

(� − (1 + �)vm1 )f (v
m
1 ) + (� + � + ��) [1 − F (v

m
1 )] + (1 + �)�(v

m
2 − v

m
1 )f (v

m
1 )
]

−
M
∑

j=m+1
�j − � = 0,

for m = 1,… ,M − 1. Then for m = 1,… ,M − 1

vm2 − v
m
1 =

1
�
vm1 −

� + � + ��
(1 + �)�

1 − F (vm1 )
f (vm1 )

−
�

(1 + �)�
+

� +
∑M

j=m+1 �
j

(1 − �)(1 + �)�f (vm1 )
,

which is strictly increasing in vm1 by Assumptions 1 and 2. If �m+1 = 0, then vm+12 − vm+11 > vm2 − v
m
1

since vm+11 > vm1 .

If �m+1 > 0, then vm+12 ≥ vm+11 > vm1 ≥ vm2 since (8) holds for m and m + 2 and (8) holds with

equality for m + 1. Hence, vm+12 − vm+11 ≥ 0 ≥ vm2 − v
m
1 . By Lemma 10, v12 ≥ v11. Hence, if there

exists m ≥ 1 such that vm+12 − vm+11 ≥ 0 ≥ vm2 − v
m
1 , then it must be the case that vm+12 − vm+11 =

vm2 − v
m
1 = ⋯ = v12 − v

1
1 = 0. In particular, v22 − v

2
1 = v12 − v

1
1. Then we can construct another

feasible mechanism (a∗, p∗, q∗), which strictly improves welfare. Let v̂ ∈ (v11, v
2
1) be such that

(a3 − a2)
[

F (v21) − F (v̂)
]

= (a2 − a1)
[

F (v̂) − F (v11)
]

.

Let a∗(v, b) = a1 if v ∈ (v11, v̂), a
∗(v, b) = a3 if v ∈ (v̂, v21) and a

∗(v, b) = a(v, b) otherwise. Let

p∗(v, b) = va∗(v, b)−∫ v
v a

∗(�, b)d�−u(v, b). Then the (BC) constraint is satisfied by Assumption 2.

Let q∗(v, b1) = q(v, b1). Clearly, (a∗, p∗, q∗) satisfies constraints (IR), (IC-v), (IC-b), (S) and (BB),

and strictly improves welfare. A contradiction.
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Lemma 12 Suppose Assumptions 1 and 2 hold. Then V (M,d) = V (5, d) for all M ≥ 5 and

d ≥ 0.

Proof of Lemma 12. Fix d ≥ 0 andM ≥ 6 be an integer. We show that V (M − 1, d) = V (M,d).

Suppose, on the contrary, that V (M − 1, d) < V (M,d), then in an optimal solution to  ′(M,d)

the allocation rule must be aM-step allocation rule. In particular, 0 = a0 ≤ a1 < a2 < ⋯ < aM ≤

aM+1 = 1. By Lemmas 10 and 11, an optimal solution to  ′(M,d) must satisfies

vM−1
2 − vM−1

1 > vM−2
2 − vM−2

1 >⋯ > v12 − v
1
1 ≥ 0. (23)

Fix v = v01 < v11 < ⋯ < vM1 = v and 0 ≥ v02 ≤ v12 ≤ ⋯ ≤ vM2 ≤ vM+1
2 ≤ v such that (23) holds.

Then  ′(M,d) is linear in u(v, b1), u(v, b2) and am for m = 1,… ,M . Then an optimal solution

can be obtained at an extreme point of the feasible region. By (23), inequalities corresponding to

�m for m = 2,…M holds if the inequality corresponding to �1 holds. Hence, the feasible set is

characterized by (S), (BC), (BB) and the following inequalities:

u(v, b1) ≥ 0, u(v, b2) ≥ 0,

u(v, b1) − u(v, b2) + a1(v02 − v
0
1) ≥ 0, (24)

0 ≤ a0 ≤ a1 ≤⋯ ≤ aM ≤ aM+1 = 1.

Note that if a1 = 0, then u(v, b1) ≥ 0 is redundant. Hence, in addition to (S), (BC), (BB) and

aM ≤ 1, at most three of the following four inequalities are active at the same time: u(v, b1) ≥ 0,

u(v, b2) ≥ 0, a1 ≥ 0 and (24). Since M ≥ 6, at least one of the following constraints hold with

equality: a1 ≤ a2⋯ ≤ aM−1 ≤ aM , a contradiction.

Lemma 13 Suppose Assumptions 1 and 2 hold. For any d > 0, there existsM(d) such that for all

M > M(d),

V − V (M,d) ≤ (1 − �)
(

1 + k
c

) E[v]
M

.
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Proof of Lemma 13. Let (a, p, q) denote an optimal mechanism of  ′. Then p(v, b) = va(v, b) −

∫ v
v a(�, b)d� − u(v, b) for all (v, b) ∈ T and q is defined by (6). FixM ≥ 2. Let a0 = 0, aM+1 = 1

and am = (m − 1)a(v, b1)∕M for m = 1,… ,M . Let v01 = v, v
M
1 = v and for m = 0,… ,M − 1

vm1 = inf
{

v ||
|

a(v, b1) ≥ am+1
}

.

Then v = v01 ≤ v11 ≤ ⋯ ≤ vM1 = v and 0 = a0 ≤ a1 < a2 < ⋯ < aM ≤ aM+1 = 1. Let

a∗(v, b1) = am if v ∈ (vm−11 , vm1 ) for m = 1,… ,M . Then a(v, b1) − 1∕M ≤ a∗(v, b1) ≤ a(v, b1). Let

v̂m2 = inf{v|a(v, b2) ≥ am} for m = 1,… ,M , v̂02 = 0 and v̂
M+1
2 = v. For each m = 1,… ,M + 1,

there exists vm−12 ∈ [v̂m−12 , v̂m2 ] such that

∫

v̂m2

v̂m−12

a(v, b2)f (v)dv = am−1[F (vm−12 ) − F (v̂m−12 )] + am[F (v̂m2 ) − F (v
m−1
2 )]. (25)

Consider a∗(v, b2) such that a∗(v, b2) = am if v ∈ (vm−12 , vm2 ) for m = 1,… ,M , a∗(v, b2) = 0 if

v < v02 and a
∗(v, b2) = 1 if v > vM2 . Note that since a1 = 0, we have v02 = v. Clearly, a∗ satisfies

constraint (S). Let p∗(v, b) = va∗(v, b) − ∫ v
v a

∗(�, b)d� − u(v, b) for b ∈ B. Let q∗ be such that

cq∗(v, b1) = cq(v, b1) +
v
M
.

We show that the (IC-b) constraint is satisfied, i.e., for all v ∈ (vm−11 , vm1 ), m = 1,… ,M ,

cq∗(v, b1) ≥ u(v, b1) − u(v, b2) − ∫

vm−12

v
a(�, b2)d� + am(vm−12 − v) + ∫

v

v
a∗(�, b1)d�.

Recall that for v ∈ (vm−11 , vm1 ), we have

cq(v, b1) ≥ u(v, b1) − u(v, b2) − ∫

v̂m2

v
a(�, b2)d� + a(v, b1)(v̂m2 − v) + ∫

v

v
a(�, b1)d�.
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Then for v ∈ (vm−11 , vm1 )

cq∗(v, b1) = cq(v, b1) +
v
M

≥ u(v, b1) − u(v, b2) − ∫

v̂m2

v
a(�, b2)d� + a(v, b1)v̂m2 −

(

a(v, b) − 1
M

)

v + ∫

v

v
a(�, b1)d�

≥ u(v, b1) − u(v, b2) − ∫

v̂m2

v
a(�, b2)d� + am(v̂m2 − v) + ∫

v

v
a(�, b1)d�

≥ u(v, b1) − u(v, b2) − ∫

v̂m2

v
a∗(�, b2)d� + am(v̂m2 − v) + ∫

v

v
a∗(�, b1)d�

= u(v, b1) − u(v, b2) − ∫

vm−12

v
a∗(�, b2)d� + am(vm−12 − v) + ∫

v

v
a∗(�, b1)d�,

where the third line holds since a(v, b) − 1∕M ≤ a∗(v, b) ≤ a(v, b) and the fourth line holds by the

same argument in the proof of Lemma 3. Then

Et[p∗(t) − q∗(t)k] − Et[p(t) − q(t)k]

=� ∫

v

v

[

v −
1 − F (v)
f (v)

]

[a∗(v, b2) − a(v, b2)]f (v)dv

+ (1 − �)∫

v

v

[

v −
1 − F (v)
f (v)

]

[a∗(v, b1) − a(v, b1)]f (v)dv − (1 − �)∫

v

v
k[q∗(v, b1) − q(v, b1)]f (v)dv

≥ − E[v]
M

− (1 − �)E[v]
M

k
c
.

For any d > 0, there existsM(d) such that for allM > M(d), we have E[v]
M
+ (1 − �)E[v]

M
k
c
< d.

Then (a∗, p∗, q∗) is a feasible solution to  ′(M,d) forM >M(d). Hence,

V − V (M,d)

≤(1 − �)

[

∫

v

v
v[a(v, b1) − a∗(v, b1)]f (v)dv − ∫

v

v

[

q(v, b1) − q∗(v, b1)
]

kf (v)dv

]

≤(1 − �)
(

1 + k
c

) E[v]
M

.
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Proof of Theorem 3. By Lemmas 6 and 13, we have

V − V (2, d) = V − V (M,d) ≤ (1 − �)
(

1 + k
c

) E[v]
M

.

Let M goes to infinity and we have V (2, 0) ≤ V ≤ V (2, d) for all d > 0. By Lemma 14,

limd→0 V (2, d) = V (2, 0). Hence, V = V (2, 0).

Hence, there exists u(v, b1) ≥ 0, u(v, b2) ≥ 0, v ≤ v11 ≤ v, v ≤ v02 ≤ v12 ≤ v22 ≤ v and

0 ≤ a1 ≤ a2 ≤ v the optimal mechanism of  ′ is given by

a(v, b1) = a1 + �{v≥v11}
(

a2 − a1
)

,

a(v, b2) = �{v≥v02}a
1 + �{v≥v12}

(

a2 − a1
)

+ �{v≥v22}(1 − a
2),

p(v, b1) = −u(v, b1) + �{v≥v11}
(

a2 − a1
)

v11,

p(v, b2) = −u(v, b2) + �{v≥v02}a
1v02 + �{v≥v12}

(

a2 − a1
)

v12 + �{v≥v22}(1 − a
2)v22,

q(v, b1) =
1
c

[

u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

+ �{v≥v11}
(

a2 − a1
)

(v12 − v
1
1)
]

,

q(v, b2) = 0.

By Lemma 10, v12 ≥ v11. We show below that v02 = v and a
1 = 0.

First, we show that v02 = v. We consider two different cases: u(v, b1)−u(v, b2)+a1
(

v02 − v
0
1

)

= 0

and u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

> 0.

Suppose u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

= 0.

Suppose to the contradiction that v02 > v. Then we can construct another feasible mechanism

(a∗, p∗, q∗), which strictly improves welfare. Since v02 > v = v01, we have u(v, b2) > u(v, b1)

and, by construction, a1 > 0 and v11 > v.

Let " > 0 be sufficiently small. Let ṽ01 = v + " and ṽ
0
2 < v

0
2 be such that �[F (v

0
2) − F (ṽ

0
2)] =

(1 − �)F (v + "). For " > 0 sufficiently small, ṽ01 < min{v11, ṽ
0
2}. Let ṽ1i = v1i for i =

1, 2. Let u∗(v, b1) = u(v, b1) + a1" and u∗(v, b2) = u(v, b2) − (1 − �)a1"∕�. For " > 0

sufficiently small, u∗(v, b2) ≥ u∗(v, b1) > 0. Let a∗(v, b1) = 0 if v < ṽ01 and a
∗(v, b1) =
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a(v, b1) otherwise. Let a∗(v, b2) = a1 if v ∈ (ṽ02, v
0
2) and a

∗(v, b2) = a(v, b2) otherwise. Let

p∗(v, b) = va∗(v, b)−∫ v
v a

∗(�, b)d�−u∗(v, b). Since u∗(v, b1)−a1ṽ01 = u(v, b1)−a
1v01, we have

p∗(v, b1) = p(v, b1) ≤ b1. Hence, the (BC) constraint is satisfied. Let q∗(v, b1) = q(v, b1).

Clearly, (a∗, p∗, q∗) satisfies constraints (IR), (IC-v) and (S), and strictly improves welfare.

(a∗, p∗, q∗) satisfies (BB) by Assumption 1.

Finally, we show that (a∗, p∗, q∗) satisfies the (IC-b) constraint. First, for v < v + ", we have

u∗(v, b1) − u∗(v, b2) ≤ 0 ≤ q∗(v, b1)c. Next, we show that for m = 1, 2

qmc ≥ u∗(v, b1) − u∗(v, b2) +
m
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 ).

Since

v02 − ṽ
0
2 = ∫

v02

ṽ02

f (v) 1
f (v)

dv

≥ 1
f (ṽ02)

[F (v02) − F (ṽ
0
2)]

≥ 1 − �
�

F (v + ")
f (v + ")

≥ 1 − �
�

",

where the inequalities hold by Assumption 2, we have

u∗(v, b1) − u∗(v, b2) +
1
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 )

=u(v, b1) − u(v, b2) + a1v02 +
a1"
�
+ a1(ṽ02 − v

0
2) − a

1(v01 + ")

≤u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

.

Furthermore, ṽmi = v
m
i for i = 1, 2 and m ≥ 1. Hence, the (IC-b) constraint is satisfied. This

contradicts to that (a, p, q) is optimal. Hence v02 = v.
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Suppose u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

> 0.

Suppose to the contradiction that v02 > v. In this case, 
02 = 0. By construction, we have

a1 > 0 and v11 > v. Hence, �1 = 0. Furthermore, since u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

> 0

and v12 ≥ v11, we have �
1 = �2 = 0. Then v02 satisfies

�
[

(� − (1 + �)v02)f (v
0
2) + �[1 − F (v

0
2)]
]

− (1 − �)(1 + �)�[1 − F (v01)] = 0, (26)

� ∫

vM2

v02

[v + �'(v) − �] f (v)dv

+ (1 − �)

[

∫

vM1

v01

[v + �'(v) − �] f (v)dv − (1 + �)�(v02 − v
0
1)[1 − F (v

0
1)]

]

− �v01 − �
M+1 = 0. (27)

Since v02 ≥ v01, it follows from Claims 3 and (27) that ∫ vM1
v01

[v + �'(v)] f (v)dv ≥ �[1−F (v01)],

i.e., v̂(�) = v.

Given �, � and �, (34) and (35) define v12 as functions of v
1
1, denoted by g1 and g2, respectively.

By a similar argument in Claim 6, g′1(v) > 1, and g
′
2(v) < 1 if v > v̂(�) and g2(v) ≥ v. Let

Δ3 denote the left-hand side of (30) or (27), then

)Δ3
)v11

= (1 − �)
[

(� − v11 − �'(v
1
1))f (v

1
1) + (1 + �)�(v

1
2 − v

1
1)f (v

1
1) + (1 + �)�[1 − F (v

1
1)]
]

− �,

)Δ3
)v12

= �(� − v12 − �'(v
1
2))f (v

1
2) − (1 − �)(1 + �)�[1 − F (v

1
1)].

Clearly, )Δ3(v1, g2(v1))∕)v2 = 0 by (33). Since v12 ≥ v11, then g2(v) > g1(v) for all v < v11.

Then )Δ3(v1, g2(v1))∕)v1 > Δ3(v1, g1(v1))∕)v1 = 0 for all v1 < v11. Then

0 = Δ3(v11, v
1
2) = Δ3(v

0
1, v

0
2) + ∫

v11

v01

)Δ3(v1, g2(v1))
)v1

dv1 > Δ3(v01, v
0
2) = 0,

a contradiction. Hence, v02 = v.
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Next, we show that a1 = 0. Suppose a1 > 0, then �1 = 0. Then v02 satisfies

a1
{

�
[

� − v02 − �'(v
0
2)
]

f (v02) − (1 − �)(1 + �)� +
2
∑

j=1
�j
}

+ 
02 = 0, (28)

� ∫

vM2

v02

[v + �'(v) − �] f (v)dv + (1 − �)∫

vM1

v01

[v + �'(v) − �] f (v)dv − �v01 − �
M+1 = 0. (29)

By Claims 3, it follows from (29) that ∫ vM1
v01

[v + �'(v)] f (v)dv − � ≥ 0, i.e., v̂(�) = v. Since

g′2(v) ≤ 1 if v ≥ v̂(�) and g2(v) ≥ v, and g2(v11) = v12 ≥ v11, we have v02 = g2(v01) > v01 = v, a

contradiction. Hence, a1 = 0.

Let a∗ = a2, v∗1 = v
1
1, v

∗
2 = v

1
2 and v

∗∗
2 = v22. Let u

∗
1 = u(v, b1) and u

∗
2 = u(v, b2). This completes

the proof.

Proof of Corollary 2. This results holds trivially if the first-best can be achieved. For the rest of

the proof, I assume that the first-best can be achieved. Suppose there are two optimal mechanisms

(a, p, q) and (â, p̂, q̂). By Theorem 3, there exist (u∗1, u
∗
2, a

∗, v∗1, v
∗
2, v

∗∗
2 ) and (û

∗
1, û

∗
2, â

∗, v̂∗1, v̂
∗
2, v̂

∗∗
2 ) that

characterize the two different optimal mechanisms, respectively.

First, I show that the convex combination of the two mechanisms (�a + (1 − �)â, �p + (1 −

�)p̂, � + (1 − �)q̂), where � ∈ (0, 1), is also optimal. Clearly, it satisfies (IR), (BC), (BB) and (S):

[�a(t) + (1 − �)â(t)]v − [�p(t) + (1 − �)p̂(t)] = �[a(t)v − p(t)] + (1 − �)[â(t)v − p̂(t)] ≥ 0,

�p(t) + (1 − �)p̂(t) ≤ b,

Et [�p(t) + (1 − �)p̂(t) − [�q(t) + (1 − �)q̂(t)]k] = �Et[p(t) − q(t)k] + (1 − �)Et[p̂(t) − q̂(t)k] ≥ 0,

Et[�a(t) + (1 − �)â(t)] = �Et[a(t)] + (1 − �)E[â(t)] ≤ S.

A30



It satisfies (IC-v) since �a(v, b) + (1 − �)â(v, b) is non-decreasing in v and

�p(v, b) + (1 − �)p̂(v, b)

=�

[

a(v, b)v − ∫

v

v
a(�, b)d� − u(v, b)

]

+ (1 − �)

[

â(v, b)v − ∫

v

v
â(�, b)d� − û(v, b)

]

= [�a(v, b) + (1 − �)] v − ∫

v

v
[�a(�, b) + (1 − �)â(�, b)]d� − [�u(v, b) + (1 − �)û(v, b)].

Finally, it satisfies (IC-b) since

[�a(v, b2) + (1 − �)â(v, b2)]v − [�p(v, b2) + (1 − �)p̂(v, b2)]

=�[a(v, b2)v − p(v, b2)] + (1 − �)[â(v, b2)v − p̂(v, b2)]

≥�[a(v̂, b1)v − p(v̂, b1) − q(v̂, b1)c] + (1 − �)[â(v̂, b1)v − p̂(v̂, b1) − q̂(v̂, b1)c]

=[�a(v, b1) + (1 − �)â(v, b1)]v − [�p(v̂, b1) + (1 − �)p̂(v̂, b1)] − [�q(v̂, b1)c + (1 − �)q(v̂, b1)]c.

Furthermore,

Et [[�a(t) + (1 − �)â(t)]v − [�q(t) + (1 − �)q̂(t)]k]

=�Et[a(t)v − q(t)k] + (1 − �)Et[â(t)v − q̂(t)k]

=V .

Hence, (�a + (1 − �)â, �p + (1 − �)p̂, � + (1 − �)q̂) is an optimal mechanism of  .

Second, I show that v∗1 = v̂
∗
1. Suppose, on the contrary, that v

∗
1 < v̂

∗
1. Then

�a(v, b1) + (1 − �)â(v, b1) = �{v≥v∗1}�a
∗ + �v≥v̂∗1(1 − �)â

∗,

which is a 3-step function, a contradiction.

Third, I show that v∗2 = v̂
∗
2, v

∗∗
2 = v̂∗∗2 and a∗ = â∗. Suppose a∗ = â∗ = 1. By Proposition 2, (S)

holds with equality in an optimal mechanism. Hence, v∗2 = v
∗∗
2 = v̂∗2 = v̂

∗∗
2 .
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Suppose a∗ < 1 and â∗ = 1. Since (S) holds with equality in both mechanisms, it must be

that v∗2 < v̂∗2. In this case, a(v, b1) = �{v≥v∗1}[�a
∗ + (1 − �)]. If v ∈

(

v∗2,min{v
∗∗
2 , v̂

∗∗
2 }

)

, then

a(v, b2) = �a∗ < �a∗ + (1 − �), which is a contradiction to Lemma 3.

Suppose a∗ < 1 and â∗ < 1. In this case, a(v, b1) = �{v≥v∗1}[�a
∗ + (1 − �)â∗]. Suppose, on

the contrary, that v∗2 < v̂∗2. If v ∈
(

v∗2,min{v
∗∗
2 , v̂

∗
2}
)

, then a(v, b2) = �a∗ < �a∗ + (1 − �)â∗,

which is a contradiction to Lemma 3. Hence, v∗2 = v̂∗2. Suppose, on the contrary, that v∗∗2 < v̂∗∗2 .

If v ∈
(

v∗∗2 , v̂
∗∗
2

)

, then a(v, b2) = � + (1 − �)â∗ > �a∗ + (1 − �)â∗, a contradiction to Lemma 3.

Hence, v∗∗2 = v̂∗∗2 . Finally, since (S) holds with equality in both mechanisms, it must be the case

a∗ = â∗.

Lastly, I show that u∗i = û∗i for i = 1, 2. Proposition 9 shows that if the first-best cannot be

achieved then both (BC) and (BB) hold with equality in an optimal mechanism. Hence, u∗1 =

a∗v∗1 − b1 = â∗v̂∗1 − b1 = û∗1. If � ≥ �∕(1 − �), then by Proposition 4 u∗2 = u∗1 = û∗1 = û∗2. If

� < �∕(1 − �), then u∗2 = û
∗
2 by (BB).

C.3 Proof of Lemma 6

Let M ≥ 3 be an integer. We want to show that V (M − 1, d) = V (M,d). Suppose to the

contradiction that V (M − 1, d) < V (M,d), then an optimal solution to  ′(M,d) satisfies the

first-order conditions given before the proof of Lemma 11 in Appendix 4.2.

For later use, we note here that the summation of FOCs of am′ , m + 1 ≤ m′ ≤ M , m =

0,… ,M − 1, gives:

�

[

∫

vM2

vm2

[

(1 + �)v − �
1 − F (v)
f (v)

]

f (v)dv − �[F (vM2 ) − F (v
m
2 )]

]

+ (1 − �)

[

∫

vM1

vm1

[

(1 + �)v − �
1 − F (v)
f (v)

]

f (v)dv − (1 + �)�(vm2 − v
m
1 )[1 − F (v

m
1 )] − �[1 − F (v

m
1 )]

]

− �vm1 + (v
m
2 − v

m
1 )

M
∑

j=m+1
�j + �m+1 − �M+1 = 0. (30)

Recall that �2 = ⋯ = �M = 0. We break the proof into several claims. In all claims, we assume,
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without explicitly repeating this, that Assumptions 1 and 2 hold, u(v, b1), u(v, b2), {am}Mm=1, {v
m
1 }

M−1
m=1

and {vm2 }
M
m=0} define an optimal mechanism of  ′(M,d) and �, �, �, �1, �2, {�m}Mm=1, {�

m}M+1
m=1 ,

{
m1 }
M
m=1 and {


m
2 }

M+1
m=0 are the associated Lagrangian multipliers.

Claim 1 
m2 = 0 for m = 2,… ,M − 1.

Proof. Since am+1 > am for m = 1,…M − 1, the FOCs of vm1 become

(1 − �)
[

(� − (1 + �)vm1 )f (v
m
1 ) + (� + � + ��) [1 − F (v

m
1 )] + (1 + �)�(v

m
2 − v

m
1 )f (v

m
1 )
]

−
M
∑

j=m+1
�j − � = 0,

for m = 1,… ,M − 1. Then for m = 1,… ,M − 1

vm2 =
1 + �
�

vm1 −
� + � + ��
(1 + �)�

1 − F (vm1 )
f (vm1 )

−
�

(1 + �)�
+

� +
∑M

j=m+1 �
j

(1 − �)(1 + �)�f (vm1 )
, (31)

which is strictly increasing in vm1 by Assumptions 1 and 2. Let m = 1,… ,M −2. If �m+1 = 0, then

vm+12 > vm2 since vm+11 > vm1 and (31). If �m+1 > 0, then vm+12 ≥ vm+11 > vm1 ≥ vm2 since (8) holds for

m and m + 2 and (8) holds with equality for m + 1. Hence, 
m2 = 0 for m = 2,… ,M − 1.

Let

'(v) ∶= v −
1 − F (v)
f (v)

,

denote the “virtual” value, which is strictly increasing in v by Assumption 1. By Lemmas 10 and

11, we have vM−1
2 > vM−1

1 . In this case, �M = 0.

Claim 2 Suppose vM−1
2 > vM−1

1 , then v + �'(v) > � ≥ vM−1
2 + �'(vM−1

2 ).

Proof. Since �M = 0, the FOC of vM−1
2 implies that � ≥ vM−1

2 + �'(vM−1
2 ). Since vM−1

2 > vM−1
1

and �M = 0, the FOC of aM implies that

� ∫

vM2

vM−1
2

[v + �'(v) − �] f (v)dv + (1 − �)∫

vM1

vM−1
1

[v + �'(v) − �] f (v)dv ≥ 0.
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Hence, it must be the case that � < v + �'(v).

Claim 3 Suppose vM−1
2 > vM−1

1 , then 
M2 = 
M+1
2 = 0 and vM2 + �'(vM2 ) ≤ �.

Proof. Suppose vM2 + �'(vM2 ) > � ≥ vM−1
2 + �'(vM−1

2 ), then vM2 > vM−1
2 and therefore 
M2 = 0.

Suppose vM2 + �'(vM2 ) ≤ � < v + �'(v), then vM2 < v and therefore 
M+1
2 = 0. Since 
M+1

2 = 0

and vM2 + �'(vM2 ) ≤ �, the FOC of vM2 implies that 
M2 = 0. Hence, 
M2 = 0.

Suppose aM+1 > aM , then the FOC of vM2 implies that � ≥ vM2 +�'(v
M
2 ). Suppose a

M+1 = aM ,

then by construction vM2 = vM−1
2 and therefore vM2 + �'(vM2 ) ≤ �. Hence, vM2 + �'(vM2 ) ≤ � <

v + �'(v), which implies that vM2 < v and therefore 
M+1
2 = 0.

In what follows, we consider two cases: u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

> 0 and u(v, b1) −

u(v, b2) + a1
(

v02 − v
0
1

)

= 0.

Case 1. vM−1
2 > vM−1

1 and u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

= 0.

Claim 4 Suppose vM−1
2 > vM−1

1 and u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

= 0, then 
12 = 0.

Proof. Suppose 
02 > 0, then v
0
2 = v. Since (8) holds for m = 2, we have v

1
2 ≥ v11 > v = v

0
2. Hence,


12 = 0.

Suppose 
02 = 0. Suppose a1 = 0, then the FOC of v02 implies that 
12 = 0. Suppose a1 >

0. Suppose to the contradiction that 
12 > 0, then we can construct another feasible mechanism

(a∗, p∗, q∗), which strictly improves welfare. Since 
12 > 0, we have v
0
2 = v

1
2 ≥ v11. We consider two

different cases: (1) v02 = v
1
2 = v

1
1 and (2) v

0
2 = v

1
2 > v

1
1.

Suppose v02 = v
1
2 = v

1
1.

Let ṽ11 be such that a
2(v11 − ṽ

1
1) = a

1(v11 − v). Then, by Assumption 2, we have

a2
[

F (v11) − F (ṽ
1
1)
]

= (a2 − a1 + a1)
[

F (v11) − F (ṽ
1
1)
]

≤ a1
[

F (v11) − F (ṽ
1
1)
]

+ (a2 − a1)f (ṽ11)(v
1
1 − ṽ

1
1)

= a1
[

F (v11) − F (ṽ
1
1)
]

+ a1f (ṽ11)ṽ
1
1

≤ a1F (v11).
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Let ṽ02 = v and ṽ
1
2 be such that �

[

F (v12) − F (ṽ
1
2)
]

= (1 − �)
[

a1F (v11) − a
2
[

F (v11) − F (ṽ
1
1)
]]

.

Let ṽm1 = vm1 and ṽm2 = vm2 for all m ≥ 1. Let a∗(v, bi) = am if v ∈ (ṽm−1i , ṽmi ) for m ≥ 2 and

i = 1, 2 and a∗(v, bi) = 0 if v ∈ (v, ṽ1i ) for i = 1, 2. Let p
∗(v, b) = va∗(v, b) − ∫ v

v a
∗(�, b)d� −

u(v, b). Then, by construction, p∗(v, b1) = p(v, b1) ≤ b1. Hence, the (BC) constraint is satis-

fied. Let q∗(v, b1) = q(v, b1). By Assumption 1, (a∗, p∗, q∗) improves revenue and therefore

satisfies the (BB) constraint. Clearly, (a∗, p∗, q∗) satisfies constraints (IR), (IC-v) and (S), and

strictly improves welfare.

Finally, we show that (a∗, p∗, q∗) satisfies the (IC-b) constraint. For v ∈ (v, ṽ11), we have

u(v, b1) − u(v, b2) < u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

= q1c.

For v ∈ (ṽ11, v
1
1), we have

u(v, b1) − u(v, b2) + a2(ṽ12 − ṽ
1
1) ≤ u(v, b1) − u(v, b2) + a1

(

v02 − v
0
1

)

= q1c.

The first inequality holds since a2(ṽ12 − ṽ
1
1) ≤ a2(v11 − ṽ

1
1) = a1(v11 − v) = a1

(

v02 − v
0
1

)

. For

v ∈ (vm−11 , vm−21 ), m ≥ 2, we have

u(v, b1) − u(v, b2) + a2(ṽ12 − ṽ
1
1) +

m
∑

j=3
(aj − aj−1)(ṽj−12 − ṽj−11 )

=u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) + a2(ṽ12 − ṽ

1
1) − (a

2 − a1)(v12 − v
1
1) − a

1 (v02 − v
0
1

)

=u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) + a2ṽ12 − a

2ṽ11 − a
2v12 + (a

2 − a1)v11 + a
1v01

≤u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) = qmc,

where the last inequality holds by construction. Hence, the (IC-b) constraint is satisfied.

Thus, (a∗, p∗, q∗) is feasible. However, this contradicts to that (a, p, q) is optimal.

Suppose v02 = v
1
2 > v

1
1.
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Let a∗(v, b1) = a1 − " for some " > 0 sufficiently small if v < v11 and a
∗(v, b1) = a(v, b1)

otherwise. Let ṽ02 < v02 be such that �(a1 − ")
[

F (v02) − F (ṽ
0
2)
]

= (1 − �)"F (v11). For " > 0

sufficiently small, v11 < ṽ
0
2. Let ṽ

m
2 = v

m
2 for m ≥ 1. Let a∗(v, b2) = a1 − " if v ∈ (ṽ02, ṽ

1
2) and

a∗(v, b2) = a(v, b2) otherwise. Let u∗(v, b1) = u(v, b1) + "(v11 − v
0
1) and u

∗(v, b2) = u(v, b2) −

(1 − �)"(v11 − v
0
1)∕�. For " > 0 sufficiently small, u∗(v, b2) ≥ u∗(v, b1) > 0. Let p∗(v, b) =

va∗(v, b) − ∫ v
v a(�, b)d� − u(v, b). Then, by construction, we have p∗(v, b1) = p(v, b1) ≤ b1.

Hence, the (BC) constraint is satisfied. Let q∗(v, b1) = q(v, b1). Then (a∗, p∗, q∗) satisfies

(BB) by Assumption 1. Clearly, (a∗, p∗, q∗) satisfies constraints (IR), (IC-v) and (S), and

strictly improves welfare.

Finally, we show that (a∗, p∗, q∗) satisfies the (IC-b) constraint. Note that, by Assumption 2,

we have

(a1 − ")(v02 − ṽ
0
2) = (a

1 − ")∫

v02

ṽ02

f (v) 1
f (v)

dv

≥ (a1 − ") 1
f (ṽ02)

[F (v02) − F (ṽ
0
2)]

≥ 1 − �
�

" 1
f (v11)

F (v11)

≥ 1 − �
�

"(v11 − v
0
1).

Then, for v < v11, we have

u∗(v, b1) − u∗(v, b2) + (a1 − ")(ṽ02 − v
0
1)

=u(v, b1) − u(v, b2) + a1v02 +
"(v11 − v

0
1)

�
+ (a1 − ")(ṽ02 − v

0
2) − "v

0
2 − (a

1 − ")v01

≤u(v, b1) − u(v, b2) + a1v02 +
"(v11 − v

0
1)

�
−
(1 − �)"(v11 − v

0
1)

�
− "v02 − (a

1 − ")v01

≤u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

+ "(v11 − v
0
2)

<u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

= q1c.
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For v ∈ (vm−11 , vm1 ) for m = 2,… ,M , we have

u∗(v, b1) − u∗(v, b2) + (a1 − ")(ṽ02 − v
0
1) + (a

2 − a1 + ")(v12 − v
1
1) +

m
∑

j=3
(aj − aj−1)(ṽj−12 − ṽj−11 )

≤u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) + "(v11 − v

0
2) + "(v

1
2 − v

1
1),

=u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) = qmc.

Hence, the (IC-b) constraint is satisfied. Thus, (a∗, p∗, q∗) is feasible. However, this contra-

dicts to that (a, p, q) is optimal.

Hence, it must be that 
12 = 0.

By Claims 1, 3 and 4, we have 
m2 = 0 for m = 1,… ,M + 1. Thus, for m = 1,… ,M − 1, vm1
and vm2 satisfy

(1 − �)
[

(� − vm1 − �'(v
m
1 ))f (v

m
1 ) + (1 + �)�[1 − F (v

m
1 )] + (1 + �)�(v

m
2 − v

m
1 )f (v

m
1 )
]

−
M
∑

j=m+1
�j − � = 0, (32)

�(� − vm2 − �'(v
m
2 ))f (v

m
2 ) − (1 − �)(1 + �)�[1 − F (v

m
1 )] +

M
∑

j=m+1
�j = 0. (33)

Recall that (32) and (33) are the first-order conditions of vm1 and v
m
2 , respectively, form = 1,… ,M−

1.

Claim 5 Suppose vM−1
2 > vM−1

1 and u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

= 0, then �m = 0 for m =

3,… ,M .

Proof. The result follows directly from Lemmas 10 and 11.

Claim 6 Suppose vM−1
2 > vM−1

1 and u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

= 0, thenM ≤ 2.
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Proof. Let m̂ = 1 if �2 = 0 and m̂ = 2 if �2 > 0. For m = m̂,… ,M − 1, (32) and (33) become

(1 − �)
[

(� − vm1 − �'(v
m
1 ))f (v

m
1 ) + (1 + �)�[1 − F (v

m
1 )] + (1 + �)�(v

m
2 − v

m
1 )f (v

m
1 )
]

− � = 0,

(34)

�(� − vm2 − �'(v
m
2 ))f (v

m
2 ) − (1 − �)(1 + �)�[1 − F (v

m
1 )] = 0, (35)

Given �, � and �, (34) and (35) define vm2 as functions of vm1 , denoted by g1 and g2, respectively.

Clearly, by Assumptions 1 and 2, g′1(v
m
1 ) > 1. Since �m̂ > 0, (8) holds by equality for m̂, which

implies that vm̂2 ≥ vm̂1 . Furthermore, since g′1(v
m
1 ) > 1, vm2 ≥ vm1 for all m̂ ≤ m ≤ M − 1. Since

v + �'(v) < � for all v < vM2 , vm2 ≥ vm1 ≥ v ≥ 0,
∑M

j=m+1 �
j = 0, � ≥ 0, �m+1 = 0 and �M+1 ≥ 0,

(30) implies that

∫

v

vm
[v + �'(v) − �] f (v)dv ≥ 0,

which holds if and only if vm ≥ v̂(�), where

v̂(�) ∶= inf

{

v̂
|

|

|

|

|

∫

v

vm
[v + �'(v) − �] f (v)dv ≥ 0

}

.

By the implicit function theorem, we have

g′2(v
m
1 ) =

1 − �
�

(1 + �)�f (vm1 )
−(� − (1 + �)vm2 )f ′(v

m
2 ) + (1 + 2�)f (v

m
2 )
> 0. (36)

To see that the last inequality holds, note that (� − v − �'(v))f (v) is strictly decreasing in v for

v < vM2 . Taking derivative with respect to v yields (� − (1 + �)v)f ′(v) − (1 + 2�)f (v) < 0 for

v < vM2 . Note that Assumption 1 implies that for all v ≥ vm1 , we have

f (v) ≥ f (vm1 )
1 − F (v)
1 − F (vm1 )

. (37)
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Then for vm1 ≥ v̂(�) we have

1 − F (vm1 ) ≥
f (vm1 )

1 − F (vm1 ) ∫

v

vm1

(1 − F (v))dv

=
f (vm1 )

1 − F (vm1 )

[

(1 + �)∫

v

vm1

(1 − F (v))dv − �∫

v

vm1

(1 − F (v))dv

]

=
f (vm1 )

1 − F (vm1 )

[

−(1 + �)vm1 [1 − F (v
m
1 )] + ∫

v

vm1

[

(1 + �)v − �
1 − F (v)
f (v)

]

f (v)dv

]

≥ (� − (1 + �)vm1 )f (v
m
1 ),

where the first line holds by (37), the third line holds by integration by parts, and the last line holds

since vm1 ≥ v̂(�). Combining this and (35) yields

(� − vm2 − �'(v
m
2 ))f (v

m
2 ) =

1 − �
�

(1 + �)�[1 − F (vm1 )]

= 1 − �
�

�
[

[1 − F (vm1 )] + �[1 − F (v
m
1 )]

]

≥ 1 − �
�

�
[

(� − (1 + �)vm1 )f (v
m
1 ) + �[1 − F (v

m
1 )]

]

= 1 − �
�

�
[

� − vm1 − �'(v
m
1 )
]

f (vm1 ).

Hence,

�f (vm1 )
f (vm2 )

≤ �
1 − �

� − vm2 − �'(v
m
2 )

� − vm1 − �'(v
m
1 )
.

Furthermore,

− (� − (1 + �)vm2 )f
′(vm2 ) + (1 + 2�)f (v

m
2 )

= − (� − vm2 − �'(v
m
2 ))f

′(vm2 ) + �
{ [1 − F (vm2 )]f

′(vm2 )
f (vm2 )

+ f (vm2 )
}

+ (1 + �)f (vm2 )

≥(1 + �)f (vm2 ),
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where the last inequality holds since � − vm2 − �'(v
m
2 ) > 0, f ′ ≤ 0 by Assumption 2 and [1 −

F (vm2 )]f
′(vm2 ) + f

2(vm2 ) ≥ 0 by Assumption 1. Finally, since vm2 ≥ vm1 ≥ v̂(�), we have

g′2(v
m
1 ) =

1 − �
�

(1 + �)�f (vm1 )
−(� − (1 + �)vm2 )f ′(v

m
2 ) + (1 + 2�)f (v

m
2 )

≤
� − vm2 − �'(v

m
2 )

� − vm1 − �'(v
m
1 )

≤ 1.

Note that g′2(v
m
1 ) < 1 if v

m
1 > v̂(�) or v

m
1 < v

m
2 .

Thus, there exists at most one vm1 ≥ v̂(�) such that g1(vm1 ) = g2(v
m
1 ) ≥ vm1 , i.e., (34) and (35) has

at most one solution such that vm2 ≥ vm1 ≥ v̂(�). Hence,M ≤ m̂ + 1 ≤ 3.

SupposeM = 3. By Claim 3, v+�'(v) < � for all v ≤ vM2 . Furthermore, � ≥ 0 and �M+1 ≥ 0.

Hence, it follows from (30) that

∫

v

v1
[v + �'(v) − �] f (v)dv ≥ 0,

i.e., v1 ≥ v̂(�). Then we have vm̂1 > vm̂−1 ≥ v̂(�), and g2(vm̂1 ) = vm̂2 ≥ vm̂1 since �m̂ > 0. Since

g′2(v) < 1 if v > v̂(�) and g2(v) ≥ v, we have g2(v) > v for all v < vm̂1 . Hence, v
m̂−1 = g2(vm̂−1) >

vm̂−1, a contradiction. Hence,M = 2 and v12 ≥ v11.

Case 2. vM−1
2 > vM−1

1 and u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

> 0. In this case, by Lemmas 10 and

11, �m = 0 for m = 1,… ,M .

Claim 7 Suppose vM−1
2 > vM−1

1 and u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

> 0, then 
12 = 0.

Proof. Since u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

> 0, �1 = 0. Suppose, on the contrary, that 
12 > 0.

Then v12 = v
0
2.

Suppose 
02 > 0, then v
1
2 = v02 = v = v01. Hence, u(v, b1) > u(v, b2). Let ṽ12 = v + " for some

" > 0 sufficiently small. Let ṽ11 be such that �F (") = (1−�)
[

F (v11) − F (ṽ
1
1)
]

. For " > 0 sufficiently

small, ṽ12 < ṽ11. Let ṽ
m
i = vmi and for i = 1, 2 and m ≠ 1. Let a∗(v, b2) = a1 for all v ∈ (v, ṽ12) and

a∗(v, b2) = a(v, b2) otherwise. Let a∗(v, b1) = a2 for v ∈ (ṽ11, v
1
1) and a

∗(v, b1) = a(v, b1) otherwise.

Let u∗(v, b1) = u(v, b1)−(a2−a1)(v11− ṽ
1
1) and u

∗(v, b2) = u(v, b2)+
1−�
�
(a2−a1)(v11− ṽ

1
1). For " > 0
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sufficiently small, u∗(v, b1) ≥ u∗(v, b2) > 0. Let p∗(v, b) = va∗(v, b) − ∫ v
v a

∗(�, b)d� − u∗(v, b). By

construction, p∗(v, b1) = p(v, b1) ≤ b1. Hence, the (BC) constraint holds. Let q∗(v, b1) = q(v, b1).

By Assumption 1, the (BB) constraint holds. For v ∈ (v, ṽ11), (IC-b) holds since

u∗(v, b1) − u∗(v, b2) + a1(ṽ02 − ṽ
0
1) = u(v, b1) − u(v, b2) + a

1(v02 − v
0
1) −

(a2 − a1)(v11 − ṽ
1
1)

�
≤ q1c.

For v ∈ (ṽ11, v
1
1), (IC-b) holds since

u∗(v, b1) − u∗(v, b2) + a1(ṽ02 − ṽ
0
1) + (a

2 − a1)(ṽ12 − ṽ
1
1)

=u(v, b1) − u(v, b2) +
2
∑

j=1
(aj − aj−1)(vj−12 − vj−11 )

−
(a2 − a1)(v11 − ṽ

1
1)

�
+ (a2 − a1)(v11 − ṽ

1
1 + ṽ

1
2 − v

1
2)

=u(v, b1) − u(v, b2) +
2
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) + (a2 − a1)(ṽ12 − v

1
2) −

(1 − �)(a2 − a1)(v11 − ṽ
1
1)

�

≤u(v, b1) − u(v, b2) +
2
∑

j=1
(aj − aj−1)(vj−12 − vj−11 )

≤u(v, b1) − u(v, b2) + a1(v02 − v
0
1) = q

1c,

where the last inequality holds since v12 = v < v
1
1, and the first inequality holds since by Assumption

2 we have

ṽ12 − v
1
2 ≤

F (")
f (ṽ12)

≤ 1
f (ṽ11)

1 − �
�

[

F (v11) − F (ṽ
1
1)
]

≤
(1 − �)(v11 − ṽ

1
1)

�
.
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For v ∈ (vm−11 , vm1 ), m = 2,… ,M , (IC-b) holds since

u∗(v, b1) − u∗(v, b2) +
m
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 )

=u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) + (a2 − a1)(ṽ12 − v

1
2) −

(1 − �)(a2 − a1)(v11 − ṽ
1
1)

�

≤u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) = qmc.

Clearly, (a∗, p∗, q∗) also satisfies constraints (IR), (IC-v) and (S), and strictly improves welfare. This

contradicts to the optimality of (a, p, q). Hence, 
12 = 0.

Suppose 
02 = 0. Suppose a1 = 0, then the FOC of v02 implies that 
12 = 0. Suppose a1 > 0.

Then

�(� − (1 + �)v02)f (v
0
2) + ��[1 − F (v

0
2)]

≥(1 − �)(1 + �)� −
M
∑

j=2
�j

>(1 − �)(1 + �)�[1 − F (v11)] −
M
∑

j=2
�j

≥�(� − (1 + �)v12)f (v
1
2) + ��[1 − F (v

1
2)].

Since (� − (1 + �)v)f (v) + �[1 − F (v)] is strictly decreasing in v when v + �'(v) < �, we have

v12 > v
0
2 and therefore 


1
2 = 0.

By Claims 1, 3 and 7, we have 
m2 = 0 for m = 1,… ,M . Thus, for m = 1,… ,M − 1, vm1 and

vm2 satisfies (34), (35) and (30).

Claim 8 Suppose vM−1
2 > vM−1

1 and u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

> 0, thenM ≤ 2.

Proof. Suppose, on the contrary, that M ≥ 3. Then there exists 1 ≤ m < M − 1 such that

vm2 ≥ vm1 . It follows from (30) that ∫ vM1
vm1

[v + �'(v)] f (v)dv ≥ �[1 − F (vm1 )], i.e., v
m
1 ≥ v̂(�). Both

(vm1 , v
m
2 ) and (v

M−1
1 , vM−1

2 ) are solutions to (34) and (35), and satisfy v2 ≥ v1 ≥ v̂(�). However, by
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a similar argument in Claim 6, (34) and (35) have at most one solution satisfying v2 ≥ v1 ≥ v̂(�),

a contradiction. Hence, it must beM ≤ 2.

To summarize, we have shown in both cases that M ≤ 2. However, this contradicts to the

assumption that M ≥ 3. Hence, it must be that V (M,d) = V (M − 1, d) for all M ≥ 3. This

completes the proof of Lemma 6.

C.4 Continuity

Let � = k∕c. I abuse notation and let ′(2, �, �, S, b1, d) denote the principal’s problem ′(2, d)

when verification cost is k, punishment is c, the percentage of high-budget agents is �, supply

is S and low-budget agent’s budget is b1. Define V ∶ R+ × (0, 1)2 × [v, v] × ℝ+ → ℝ+ and

Γ∗ ∶ R+ × (0, 1)2 × [v, v] × R+ → R2+ × [0, 1] × [v, v]
3 as follows. Let V (�, �, S, b1, d) denote the

value of  ′(2, �, �, S, b1, d) and Γ∗(�, �, S, b1, d) the set of optimal solutions.

Lemma 14 Suppose Assumption 1 holds. ThenV (�, �, S, b1, d) is continuous andΓ∗(�, �, S, b1, d)

is upper hemicontinuous.

Proof of Lemma 14. Let correspondence Γ ∶ R+ × (0, 1)2 × [v, v] ×R+ → R2+ × [0, 1] × [v, v]
3 be

defined as follows. For each (�, �, S, b1, d), let (u(v, b1), u(v, b2), a2, v11, v
1
2, v

2
2) ∈ Γ(�, �, S, b1, d)

if and only if it is a feasible solution to (2, d). To simplify notation, let u1 = u(v, b1) and u2 =

u2(v, b2). Clearly, Γ is compact-valued and upper hemicontinuous. I show that it is also lower

hemicontinuous.

Fix (�, �, S, b1, d), (u1, u2, a2, v11, v
1
2, v

2
2) ∈ Γ(�, �, S, b1, d) and a sequence (�(n), �(n), S(n), b1(n), d(n))→

(�, �, S, b1, d) as n →∞. Let'(v) ∶= v− 1−F (v)
f (v)

and r be such that'(r) = 0. I show that after taking

a subsequence there exist
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
)

for all n and
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

→ (u1, u2, a2, v11, v
1
2, v

2
2) as n→ ∞.
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Case 1: Suppose a2 = 0. Then (S) and (BB) become:

�
[

1 − F (v22)
]

≤ S,

− u1 − [(1 − �)� − �] (u1 − u2) + � ∫

v

v22

'(v)f (v)dv ≥ −d.

Case 1.1: Suppose v22 < r.

After taking a subsequence, I can assume that for all n, F −1
(

�(n)−S(n)
�(n)

)

< r and

−(1 − �(n))(1 + �(n))u1 + [(1 − �(n))�(n) − �(n)] u2 + �(n)∫

v

r
'(v)f (v)dv ≥ −d(n).

Let u1(n) = u1, u2(n) = u2, a2(n) = a2, v11(n) = v
1
1, v

1
2(n) = v

1
2 and

v22(n) = inf

⎧

⎪

⎨

⎪

⎩

v ≥ max
{

v22, F
−1
(

�(n)−S(n)
�(n)

)}

,

−(1 − �(n))(1 + �(n))u1 + [(1 − �(n))�(n) − �(n)] u2 + �(n) ∫
v
v '(�)f (�)d� ≥ −d(n)

⎫

⎪

⎬

⎪

⎭

.

Clearly,
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
)

for all n

and
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

→ (u1, u2, a2, v11, v
1
2, v

2
2) as n →∞.

Case 1.2

Suppose v22 ≥ r. Suppose v22 = v, then (BB) implies that u1 = u2 = 0. Let u1(n) = u1, u2(n) =

u2, a2(n) = a2, v11(n) = v
1
1, v

1
2(n) = v

1
2 and v

2
2(n) = v

2
2. Clearly,

(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

∈

Γ
(

�(n), �(n), S(n), b1(n), d(n)
)

for all n and
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

→ (u1, u2, a2, v11, v
1
2, v

2
2)

as n→ ∞.

Suppose v22 < v. After taking a subsequence, I can assume that for all n, F −1
(

�(n)−S(n)
�(n)

)

< v.

Let a2(n) = a2, v11(n) = v
1
1, v

1
2(n) = v

1
2 and

v22(n) = max
{

v22, F
−1
(

�(n) − S(n)
�(n)

)}

.
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For n sufficiently large, ∫ v
v22(n)

'(v)f (v)dv > 0. If u2 > 0, then let u1(n) = u1 + min{Δ(n), 0}

and u2(n) = u2+min{Δ(n), 0}; otherwise let u1(n) = u1+min
{

Δ(n)
(1−�(n))(1+�(n))

, 0
}

and u2(n) =

u2, where

Δ(n) = −(1− �(n))(1 + �(n))u1 + [(1 − �(n))�(n) − �(n)] u2 + �(n)∫

v

v22(n)
'(�)f (�)d� + d(n).

Clearly,
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
)

for all n

and
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

→ (u1, u2, a2, v11, v
1
2, v

2
2) as n →∞.

Case 2: Suppose a2 > 0.

Case 2.1: Suppose v22 < r.

Let a2(n) = min
{

b1(n)+u1
v11

, a2
}

. After taking a subsequence, I can assume that for all n,

F −1

(

�(n) − S(n) + (1 − �)a2(n)
[

1 − F (v11)
]

− �a2F (v12)
1 − �(n)a2(n)

)

< r

and

− (1 − �(n))(1 + �(n))u1 + [(1 − �(n))�(n) − �(n)] u2 + (1 − �(n))∫

v

v11

a2(n)'(v)f (v)dv

− (1 − �(n))�(n)a2(n)(v12 − v
1
1)
[

1 − F (v11)
]

+ �(n)∫

r

v12

a2(n)'(v)f (v)dv + �(n)∫

v

r
'(v)f (v)dv ≥ −d(n).

Let u1(n) = u1, u2(n) = u2, v11(n) = v
1
1, v

1
2(n) = v

1
2 and

v22(n) = inf

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

v ≥ max
{

v22, F
−1
(

�(n)−S(n)+(1−�)a2(n)[1−F (v11)]−�a2F (v12)
1−�(n)a2(n)

)}

,

−(1 − �(n))(1 + �(n))u1 + [(1 − �(n))�(n) − �(n)] u2

+(1 − �(n)) ∫ v
v11
a2(n)'(�)f (�)d� − (1 − �(n))�(n)a2(n)(v12 − v

1
1)
[

1 − F (v11)
]

+�(n) ∫ v
v12
a2(n)'(�)f (�)d� + �(n) ∫ v

v '(�)f (�)d� ≥ −d(n)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.

Clearly,
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
)

for all n
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and
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

→ (u1, u2, a2, v11, v
1
2, v

2
2) as n→∞.

Case 2.2: Suppose v22 ≥ r.

Suppose v11 = v and v
1
2 = v

2
2, then the proof follows that of Case 1.2. Assume for the rest of

the proof that v11 < v or v
1
2 < v

2
2. Let

A ∶= (1 − �)∫

v21

v11

'(v)f (v)dv − (1 − �)�∫

v

v11

(v12 − v
1
1)f (v)dv + � ∫

v22

v12

'(v)f (v)dv.

and

A(n) ∶= (1 − �(n))∫

v21

v11

'(v)f (v)dv − (1 − �(n))�(n)∫

v

v11

(v12 − v
1
1)f (v)dv + �(n)∫

v22

v12

'(v)f (v)dv.

SupposeA < 0. After taking a subsequence, I can assume that for all n,S(n)−�(n)
[

1 − F (v22)
]

>

0, A(n) < 0 and

−(1 − �(n))(1 + �(n))u1 + [(1 − �(n))�(n) − �(n)] u2 + �(n)∫

v

v22

'(v)f (v)dv > −d(n).

Let u1(n) = u1, u2(n) = u2, v11(n) = v
1
1, v

1
2(n) = v

1
2, v

2
2(n) = v

2
2 and

a2(n) = min

⎧

⎪

⎨

⎪

⎩

a2, S(n)−�(n)[1−F (v22)]
�(n)[F (v22)−F (v

1
2)]+(1−�(n))[1−F (v

1
1)]
, b1(n)+u1

v11
,

−(1−�(n))(1+�(n))u1+[(1−�(n))�(n)−�(n)]u2+�(n) ∫
v
v22
'(v)f (v)dv+d(n)

−A(n)

⎫

⎪

⎬

⎪

⎭

.

Clearly,
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
)

for all n

and
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

→ (u1, u2, a2, v11, v
1
2, v

2
2) as n →∞.

Suppose A = 0.

Suppose d = 0 and v22 = v. Then u1 = u2 = 0 and v
1
2 ≥ v11. Define

gn(v) ∶=

⎧

⎪

⎨

⎪

⎩

(1 − �(n)) ∫ vv '(�)f (�)d� − (1 − �(n))�(n)(v
1
2 − v)[1 − F (v)] + �(n) ∫

v
v12
'(�)f (�)d� if v < v12

∫ vv '(�)f (�)d� if v ≥ v12

.

A46



Then

g′n(v) ∶=

⎧

⎪

⎨

⎪

⎩

−(1 − �(n))'(v)f (v) + (1 − �(n))�(n)(v12 − v)f (v) + (1 − �(n))�(n)[1 − F (v)] if v < v12
−'(v)f (v) if v ≥ v12

.

Let g∞ and g′∞ denote the case in which �(n) = � and �(n) = �.

Suppose v11 < v
1
2. Then

gn(v12) = ∫

v

v12

'(�)f (�)d� > 0.

Let u1(n) = u1, u2(n) = u2, v12(n) = v
1
2, v

2
2(n) = v

2
2,

v11(n) = inf
{

v ≥ v11 ||gn(v) ≥ 0
}

< v12,

and a2(n) = min

{

a2,
S(n) − �(n)

[

1 − F (v22)
]

�(n)[F (v22) − F (v
1
2)] + (1 − �(n))[1 − F (v

1
1(n))]

,
b1(n)
v11(n)

}

.

If v ∈ (v11, v
1
2), then g

′
n(v)∕f (v) is strictly decreasing. Since g∞(v

1
1) = A = 0 and g∞(v

1
2) > 0,

g∞(v) > 0 for all v ∈ (v11, v
1
2). Hence, v

1
1(n)→ v11 as n→ ∞. Clearly,

(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

∈

Γ
(

�(n), �(n), S(n), b1(n), d(n)
)

for all n and
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

→ (u1, u2, a2, v11, v
1
2, v

2
2)

as n →∞.

Suppose v11 = v
1
2 < v. Let u1(n) = u1, u2(n) = u2, v

1
1(n) = v

1
1, v

1
2(n) = v

1
2, v

2
2(n) = v

2
2 and

a2(n) = min
{

a2, S(n)−�(n)[1−F (v22)]
�(n)[F (v22)−F (v

1
2)]+(1−�(n))[1−F (v

1
1(n))]

, b1(n)
v11(n)

}

.

Clearly,
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
)

for all n

and
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

→ (u1, u2, a2, v11, v
1
2, v

2
2) as n →∞.

Suppose v22 < v or d > 0. After taking a subsequence, I can assume there exists " > 0 such
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that for all n, S(n) − �(n)[1 − F (n)] > ", b1(n) > " and

∫

v

v22

'(v)f (v)dv + d(n) > ".

Note that (0, 0, 0, v11, v
1
2, v

2
2) ∈ Γ(�(n), �(n), S(n), b1(n), d(n)). Define �(n) ∈ (0, 1] as fol-

lows:

�(n) = sup

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

� ≤ 1

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

�(n)�a2[F (v22) − F (v
1
2)] + �(n)[1 − F (v

2
2)] + (1 − �(n))�a

2[1 − F (v11)] ≥ S(n),

�a2v11 − �u1 ≤ b1(n),

−(1 − �(n))(1 + �(n))�u1 + [(1 − �(n))�(n) − �(n)] �u2

+(1 − �(n)) ∫ v
v11
�a2'(�)f (�)d� − (1 − �(n))�(n)�a2(v12 − v

1
1)
[

1 − F (v11)
]

+�(n) ∫ v22
v12
�a2'(�)f (�)d� + �(n) ∫ v

v22
'(�)f (�)d� ≥ −d(n)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

.

Since at (0, 0, 0, v11, v
1
2, v

2
2) constraints (S), (BC) and (BB) hold with strict inequality by a gap

at least ", it is not hard to see that �(n) → 1 as n → ∞. Let u1(n) = �(n)u1, u2(n) = �(n)u2,

a2(n) = �(n)a2, v11(n) = v
1
1, v

1
2(n) = v

1
2 and v

2
2(n) = v

2
2. Clearly,

(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

∈

Γ
(

�(n), �(n), S(n), b1(n), d(n)
)

for all n and
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

→ (u1, u2, a2, v11, v
1
2, v

2
2)

as n →∞.

Suppose A > 0. After taking a subsequence, I can assume that there exists " > 0 such that

for all n, S(n) − �(n)
[

1 − F (v22)
]

> ", b1(n) > " and A(n) > ".

Suppose v22 = v and d = 0. Let

â2 = min

{

a2, "
2
[

F (v22) − F (v
1
2) + 1 − F (v

1
1)
] , "
2v11

}

> 0.
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Then (0, 0, â2, v11, v
1
2, v

2
2) ∈ Γ(�(n), �(n), S(n), b1(n), d(n)). Define �(n) ∈ (0, 1] as follows:

�(n) = sup

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

� ≤ 1

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

�(n)[�a2 + (1 − �)â2][F (v22) − F (v
1
2)] + �(n)[1 − F (v

2
2)]

+(1 − �(n))[�a2 + (1 − �)â2][1 − F (v11)] ≥ S(n),

[�a2 + (1 − �)â2]v11 − �u1 ≤ b1(n),

−(1 − �(n))(1 + �(n))�u1 + [(1 − �(n))�(n) − �(n)] �u2

+(1 − �(n)) ∫ v
v11
[�a2 + (1 − �)â2]'(�)f (�)d�

−(1 − �(n))�(n)[�a2 + (1 − �)â2](v12 − v
1
1)
[

1 − F (v11)
]

+�(n) ∫ v22
v12
[�a2 + (1 − �)â2]'(�)f (�)d� + �(n) ∫ v

v22
'(�)f (�)d� ≥ −d(n)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

Since at (0, 0, â2, v11, v
1
2, v

2
2) constraints (S), (BC) and (BB) hold with strict inequality by a

gap at least min{â2", "∕2}, it is not hard to see that �(n) → 1 as n → ∞. Let u1(n) =

�(n)u1, u2(n) = �(n)u2, a2(n) = �(n)a2, v11(n) = v11, v
1
2(n) = v12 and v

2
2(n) = v22. Clearly,

(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
)

for all n and
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

→

(u1, u2, a2, v11, v
1
2, v

2
2) as n→∞.

Suppose v22 < v or d > 0. Then by a similar argument to that of A = 0, there exist
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
)

for all n and
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

→

(u1, u2, a2, v11, v
1
2, v

2
2) as n→ ∞.

Hence, Γ is hemicontinuous. By Berge’s Maximum Theorem, V is continuous and Γ∗ is upper

hemicontinuous.

D Properties of the Optimal Mechanism

Let a∗ = a2, v∗1 = v11, v
∗
2 = v12, v

∗∗
2 = v22, u

∗
1 = u(v, b1) and u∗2 = u(v, b2) denote an solution to

 ′(2, 0). Let �, �, �, �1, �2, �3, �1 and �2 denote the corresponding Lagrangian multipliers.

Proof of Proposition 3. First-best is achieved if the allocation rule satisfies v∗ ∶= v∗1 = v∗2 =

F −1(1 − S) and a∗ = 1, and verification is zero. Hence, u∗1 = u∗2 = v∗ − b1 and (BB) holds if and
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only if

b1 − v∗F (v∗) ≥ 0. (38)

Since v∗ = F −1(1−S), there exists Ŝ(b1) < 1 such that (38) holds if and only ifS ≥ Ŝ(b1). Clearly,

Ŝ(b1) is strictly decreasing in b1.

Proof of Proposition 2. Let S ′ ∶= (1 − �)a∗
[

1 − F (v∗1)
]

+ �a∗[F (v∗∗2 ) −F (v
∗
2)] + �[1 −F (v

∗∗
2 )].

Suppose to the contradiction that S ′ < S. Let � ∈ (0, 1) be such that � + (1 − �)S ′ = S.

Consider a new mechanism (a∗, p∗, q∗). Let a∗(v, b) = � + (1 − �)a(v, b) and p∗(v, b) = va∗(v, b) −

∫ v
v a

∗(�, b)d� − (1 − �)u(v, b) for all v and b. Finally, let q(v, b2) = 0 for all v, q(v, b1) = (1 −

�)
[

u(v, b1) − u(v, b2)
]

∕c if v < v∗1 and q(v, b1) = (1 − �)
[

u(v, b1) − u(v, b2) + a∗(v∗2 − v
∗
1)
]

∕c if

v > v∗1. Clearly, (a
∗, p∗, q∗) strictly improves welfare upon (a, p, q). Now we show that (a∗, p∗, q∗)

is also feasible. By construction, (IR) and (IC-v) hold. Note that

p∗(v, b) = va∗(v, b) − ∫

v

v
a∗(�, b)d� − (1 − �)u(v, b)

= (1 − �)va(v, b) + �v − ∫

v

v
[� + (1 − �)a(�, b)] d� − (1 − �)u(v, b)

= (1 − �)va(v, b) − (1 − �)∫

v

v
a(�, b)d� − (1 − �)u(v, b)

= (1 − �)p(v, b).

Hence, E [p∗(v, b) − kq∗(v, b)] = (1 − �)E [p(v, b) − kq(v, b)] ≥ 0. That is, (BB) holds. Since

p∗(v, b1) = (1 − �)p(v, b1) ≤ b1, (BC) holds. Since E[a∗(v, b)] = � + (1 − �)E[a(v, b)] = � + (1 −

�)S ′ = S, (S) holds. Finally, we show that (IC-b) holds. If v ≤ v∗1, then

(1 − �)
[

u(v, b1) − u(v, b2)
]

+ �(v − v) ≤ q(v, b1)c.

If v > v∗1, then

(1 − �)
[

u(v, b1) − u(v, b2)
]

+ �(v − v) + (� + (1 − �)a∗ − �)(v∗2 − v
∗
1) ≤ q(v, b1)c.
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Thus, we can conclude that (a∗, p∗, q∗) is feasible. However, this contradicts to that (a, p, q) is

optimal. Hence, (S) holds with equality.

Proposition 9 Suppose Assumptions 1 and 2 hold. Suppose also that S < Ŝ(b1), i.e., the first-best

cannot be achieved. In an optimal mechanism of  , (S), (BB) and (BC) hold with equality.

Proof of Proposition 9. First, it follows from Proposition 2 that (S) holds with equality. Second,

we show that (BC) holds with equality. Suppose to the contradiction that (BC) holds with strict

inequality. We consider four different cases: (1) v∗2 > v
∗
1, (2) v

∗∗
2 > v∗2 = v

∗
1, (3) v

∗∗
2 = v∗2 = v

∗
1 and

a∗ < 1 and (4) v∗∗2 = v∗2 = v
∗
1 and a

∗ = 1.

Suppose v∗2 > v
∗
1.

Let " > 0 and � > 0 be such that (1 − �)
[

F (v∗1 + ") − F (v
∗
1)
]

= �[F (v∗2) − F (v
∗
2 − �)]. For

" > 0 sufficiently small, we have v∗2 − v
∗
1 − "− � ≥ 0. Consider a new mechanism (a∗, p∗, q∗)

that satisfies

a∗(v, b1) = �{v≥v∗1+"}a
∗, p(v, b1) = �{v≥v∗1}a

∗(v∗1 + ") − u
∗
1,

q(v, b1) =
1
c

[

�{v≥v∗1}a
∗(v∗2 − v

∗
1 − " − �) + u

∗
1 − u

∗
2

]

,

a(v, b2) = �{v≥v∗2−�}a
∗ + �{v≥v∗∗2 } (1 − a

∗) ,

p(v, b2) = �{v≥v∗2−�}a
∗(v∗2 − �) + �{v≥v∗∗2 }(1 − a

∗)v∗∗2 − u
∗
2,

q(v, b2) = 0.

Clearly, for " > 0 sufficiently small, (a∗, p∗, q∗) is feasible and strictly improves welfare upon

(a, p, q), a contradiction.

Suppose v∗∗2 > v∗2 = v
∗
1.

Let " > 0 and � > 0 be such that a∗
[

F (v∗1 + ") − F (v
∗
1)
]

= �[F (v∗∗2 ) − F (v
∗∗
2 − �)]. For

" > 0 sufficiently small, we have v∗∗2 −v
∗
1−"−� ≥ 0. Consider a new mechanism (a∗, p∗, q∗)

A51



that satisfies

a∗(v, b1) = �{v≥v∗1+"}a
∗, p(v, b1) = �{v≥v∗1}a

∗(v∗1 + ") − u
∗
1,

q(v, b1) =
1
c

[

�{v≥v∗1}a
∗(v∗2 − v

∗
1) + u

∗
1 − u

∗
2

]

,

a(v, b2) = �{v≥v∗2+"}a
∗ + �{v≥v∗∗2 −�} (1 − a

∗) ,

p(v, b2) = �{v≥v∗2+"}a
∗(v∗2 + ") + �{v≥v∗∗2 −�}(1 − a

∗)(v∗∗2 − �) − u
∗
2,

q(v, b2) = 0.

Clearly, for " > 0 sufficiently small, (a∗, p∗, q∗) is feasible and strictly improves welfare upon

(a, p, q), a contradiction.

Suppose v∗∗2 = v∗2 = v
∗
1 and a

∗ < 1.

Let " > 0 and � > 0 be such that [(1 − �)a∗ + �]
[

F (v∗1 + ") − F (v
∗
1)
]

= (1−�)�[1−F (v∗1+

")]. For " > 0 sufficiently small, we have � ≤ 1 − a∗. Consider a new mechanism (a∗, p∗, q∗)

that satisfies

a∗(v, b1) = �{v≥v∗1+"}(a
∗ + �), p(v, b1) = �{v≥v∗1}(a

∗ + �)(v∗1 + ") − u
∗
1,

q(v, b1) =
1
c
(

u∗1 − u
∗
2

)

,

a(v, b2) = �{v≥v∗2+"}, p(v, b2) = �{v≥v∗2+"} − u
∗
2,

q(v, b2) = 0.

Clearly, for " > 0 sufficiently small, (a∗, p∗, q∗) is feasible and strictly improves welfare upon

(a, p, q), a contradiction.

Suppose v∗∗2 = v∗2 = v
∗
1 and a

∗ = 1.

In this case, the first-best allocation rule is achieved. Hence, it must be the case that the total

verification cost is strictly positive, i.e., u∗1 > u∗2 ≥ 0. Let u∗2 − u
∗
1 ≥ " > 0. Consider a new
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mechanism (a∗, p∗, q∗) that satisfies

a∗(v, b1) = �{v≥v∗1}, p(v, b1) = �{v≥v∗1}v
∗
1 − u

∗
1 + ",

q(v, b1) =
1
c
(

u∗1 − u
∗
2 − "

)

,

a(v, b2) = �{v≥v∗2}, p(v, b2) = �{v≥v∗2} − u
∗
2,

q(v, b2) = 0.

Clearly, for " > 0 sufficiently small, (a∗, p∗, q∗) is feasible and strictly improves welfare upon

(a, p, q), a contradiction.

Lastly, I show that (BB) holds with equality. Suppose not. Then we can increase u∗1 and u
∗
2

by the same amount. The resulting new mechanism is feasible and gives the same welfare. In

particular, (BC) holds with strict inequality in the new mechanism. Then we can repeat the above

argument and construct another feasible mechanism which strictly improves welfare upon (a, p, q),

a contradiction.

By Theorem 3, v∗1, v
∗
2, v

∗∗
2 , a

2, u∗1, u
∗
2, �, �, �, �

1, �2, �3, �1 and �2 satisfy the following first-order
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conditions:

(1 − �)
[

(� − v∗1 − �'(v
∗
1))f (v

∗
1) + (1 + �)�[1 − F (v

∗
1)] + (1 + �)�(v

∗
2 − v

∗
1)f (v

∗
1)
]

− � − �2 = 0, (39)

�(� − v∗2 − �'(v
∗
2))f (v

∗
2) − (1 − �)(1 + �)�[1 − F (v

∗
1)] + �

2 = 0, (40)

(1 − a∗)(� − v∗∗2 − �'(v
∗∗
2 ))f (v

∗∗
2 ) = 0, (41)

� ∫

v∗∗2

v∗2

[v + �'(v) − �] f (v)dv

+ (1 − �)

[

∫

v

v∗1

[v + �'(v) − �] f (v)dv − (1 + �)�(v∗2 − v
∗
1)[1 − F (v

∗
1)]

]

− �v∗1 + �
2(v∗2 − v

∗
1) − �

3 = 0, (42)

� + �1 + �2 − (1 − �) (� + � + ��) + �1 = 0, (43)

− �1 − �2 − �� + (1 − �)(1 + �)� + �2 = 0. (44)

Furthermore, (S) and (BB) become:

(1 − �)a∗[1 − F (v∗1)] + �a
∗[F (v∗∗2 ) − F (v

∗
2)] + �[1 − F (v

∗∗
2 )] = S, (45)

− (1 − �)u∗1 + (1 − �)a
∗v∗1[1 − F (v

∗
1)] − �u

∗
2 + �a

∗v∗2[1 − F (v
∗
2)] + �(1 − a

∗)v∗∗2 [1 − F (v
∗∗
2 )]

− (1 − �)�(u∗1 − u
∗
2) − (1 − �)�a

∗(v∗2 − v
∗
1)[1 − F (v

∗
1)] = 0. (46)

Proof of Proposition 4.

1. Suppose, on the contrary, that u∗1 > u
∗
2 ≥ 0. In this case, �1 = �1 = �2 = 0. (43) implies that

� = (1 − �)(� + � + ��). (44) implies �2 = �� − (1 − �)(1 + �)�. Since �2 ≥ 0, we have

�[� − �(1 − �)] ≥ �(1 − �) which implies that � < �∕(1 − �), a contradiction.

2. Since S < 1, we have u∗1 = u∗2 by the first result of Proposition 4. It suffices to show that

v∗1 = v∗2. Suppose, on the contrary, that v∗2 > v∗1. In this case, �2 = 0. Combining (43) and

(44) yields � − � + �1 + �2 = 0. Since �1, �2 ≥ 0, we have � ≤ �. Taking the difference of
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(39) divided by (1 − �)f (v∗1) and (40) divided by �f (v
∗
2) gives

[1 + (1 + �)�]
(

v∗2 − v
∗
1

)

+ �
[

'(v∗2) − '(v
∗
1)
]

+ (1 + �)�
1 − F (v∗1)
f (v∗1)

+ (1 + �)
�(1 − �)

�
1 − F (v∗1)
f (v∗2)

−
�

(1 − �)f (v∗1)
= 0. (47)

Since v∗2 > v
∗
1, f (v

∗
2) ≤ f (v∗1) and � ≤ �, we have

0 ≥ [1 + (1 + �)�]
(

v∗2 − v
∗
1

)

+ �
[

'(v∗2) − '(v
∗
1)
]

+ (1 + �)
�
�
1 − F (v∗1)
f (v∗1)

− �
(1 − �)f (v∗1)

>
�
�
1 − F (v∗1)
f (v∗1)

+ �
[

�
�
1 − F (v∗1)
f (v∗1)

− 1
(1 − �)f (v∗1)

]

≥ 0,

where the last inequality holds since 1 − F (v∗1) ≥ S and � ≥ �∕[S(1 − �)]. A contradiction.

Hence, v∗1 = v
∗
2.

Proof of Proposition 5. Suppose, on the contrary, that u∗1 > u
∗
2 ≥ 0. In this case, �1 = �

1 = �2 = 0.

(43) implies that � = (1 − �)(� + � + ��). Taking the difference of (39) divided by (1 − �)f (v∗1)

and (40) divided by �f (v∗2) gives

[1 + (1 + �)�]
(

v∗2 − v
∗
1

)

+ �
[

'(v∗2) − '(v
∗
1)
]

+ (1 + �)�
1 − F (v∗1)
f (v∗1)

+ (1 + �)
�(1 − �)

�
1 − F (v∗1)
f (v∗2)

−
�

(1 − �)f (v∗1)
= 0. (47)

Suppose S ≤ (1 − �)
[

1 − F (b1)
]

. Since (BC) holds with equality and u∗1 ≥ 0, we have a∗ ≥

b1∕v∗1. By (S), we have

(1 − �)
b1
v∗1

[

1 − F (v∗1)
]

≤ S.

Since S ≤ (1 − �)
[

1 − F (b1)
]

, there exists a unique Let v̂(S, b1, �) ∈ [b1, v] such that the above

inequality holds with equality when v∗1 = v̂(S, b1, �), where v̂ is strictly decreasing in S and � and

strictly increasing in b1. Then v∗1 ≥ v̂(S, b1, �). Hence, v∗2−v
∗
1 ≤ '(v∗2)−'(v

∗
1) ≤ v−'

(

v̂(S, b1, �)
)

.
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Since v∗2 ≥ v∗1, f (v
∗
2) ≤ f (v∗1) and � = (1 − �)(� + � + ��), we have

0 ≤ [1 + (1 + �)�]
(

v∗2 − v
∗
1

)

+ �
[

'(v∗2) − '(v
∗
1)
]

+ (1 + �)
�
�
1 − F (v∗1)
f (v∗2)

−
� + � + ��
f (v∗1)

<(1 + �)(1 + �)
[

v − '
(

v̂(S, b1, �)
)]

+ (1 + �)
�
�
1 − F (v∗1)
f (v∗2)

−
(1 + �)�
f (v∗1)

≤(1 + �)

{

(1 + �)
[

v − '
(

v̂(S, b1, �)
)]

+
�
�
1 − F

(

v̂(S, b1, �)
)

f (v)
−

�
f
(

v̂(S, b1, �)
)

}

.

Note that the term in the braces is strictly increasing in S and converges to −�∕f (v) < 0 as S goes

to zero. Hence, there exists Ŝ such that u∗1 = u
∗
2 if S < Ŝ.

Proof of Proposition 6. Suppose, on the contrary, that u∗1 > u
∗
2 ≥ 0. In this case, �1 = �

1 = �2 = 0.

(43) implies that � = (1 − �)(� + � + ��). Taking the difference of (39) divided by (1 − �)f (v∗1)

and (40) divided by �f (v∗2) gives

[1 + (1 + �)�]
(

v∗2 − v
∗
1

)

+ �
[

'(v∗2) − '(v
∗
1)
]

+ (1 + �)�
1 − F (v∗1)
f (v∗1)

+ (1 + �)
�(1 − �)

�
1 − F (v∗1)
f (v∗2)

−
�

(1 − �)f (v∗1)
= 0. (47)

Suppose S ≥ (1 − �)
[

1 − F (b1)
]

. Then by (S),

�[1 − F (v∗2)] ≥ (1 − �)
[

1 − F (b1)
]

− S. (48)

Since S ≥ (1 − �)
[

1 − F (b1)
]

, there exists a unique v̂(S, b1, �) ∈ [b1, v] such that (48) holds with

equality, where v̂ is strictly decreasing in b1, S and �. Then v∗2 ≤ v̂(S, b1, �). Hence, v∗2 − v
∗
1 ≤

'(v∗2) − '(v
∗
1) ≤ '

(

v̂(S, b1, �)
)

− b1.
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Since v∗2 ≥ v∗1, f (v
∗
2) ≤ f (v∗1) and � = (1 − �)(� + � + ��), we have

0 ≤ [1 + (1 + �)�]
(

v∗2 − v
∗
1

)

+ �
[

'(v∗2) − '(v
∗
1)
]

+ (1 + �)
�
�
1 − F (v∗1)
f (v∗2)

−
� + � + ��
f (v∗1)

<(1 + �)(1 + �)
[

'
(

v̂(S, b1, �) − b1
)]

+ (1 + �)
�
�
1 − F (v∗1)
f (v∗2)

−
(1 + �)�
f (v∗1)

≤(1 + �)

{

(1 + �)
[

'
(

v̂(S, b1, �)
)

− b1
]

+
�
�

1 − F
(

b1
)

f
(

v̂(S, b1, �)
) −

�
f
(

b1
)

}

.

Note that the term in the braces is strictly decreasing in b1 and converges to −�∕f (v) < 0 as b1

goes to v. Hence, there exists b̂1 such that u∗1 = u
∗
2 if b1 > b̂1.

E Extensions and Discussions

E.1 Per-unit Price Constraint

Proof of Theorem 4. The proof of Theorem 1 can easily modified to prove Theorem 4. It suffices

to show that (a∗, p∗) satisfies (PC) (instead of (BC)):

p∗(v, b) =va(v, b) − ∫

v

v
a∗(v, b)dv − u(v, b)

≤va(v, b) − ∫

v

v
a(v, b)dv − u(v, b)

≤a(v, b)b

=a∗(v, b)b,

where the third line holds by the same argument used in the proof of Theorem 1 and the last line

holds since a∗(v, b) = a(v, b) by construction. Hence, there exists v∗1 and v
∗
2 such that the optimal

allocation rule satisfies a(v, b1) = �{v≥v∗1} min
{

u∗

v∗1−b1
, 1
}

and a(v, b2) = �{v≥v∗2}.

Lemma 15 Suppose Assumption 2 holds, and the principal does not inspect agents. In an optimal

mechanism of  ′
PC , it is without loss of generality to assume that u(v, b1) = u(v, b2).
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Proof. The proof of Lemma 1 can easily modified to prove Lemma 15. It suffices to show that

(a∗, p∗) satisfies (PC) (instead of (BC)). Note that a∗(v, b) = a(v, b) by construction and the rest of

the proof follows from a similar argument used in the proof of Theorem 1.

Lemma 16 Suppose Assumptions 1 and 2 hold, and the principal does not inspect agents. In an

optimal mechanism of  ′
PC , the allocation rule satisfies

∫

v

v
a(�, b2)f (�)d� ≥ ∫

v

v
a(�, b1)f (�)d�, ∀v. (49)

Proof. The proof of Lemma 2 applies.

Proof of Theorem 5. The proof of Theorem 2 can easily modified to prove Theorem 5. It suffices

to show that (a∗, p∗) satisfies (PC) (instead of (BC)). Note that a∗(v, b) = a(v, b) by construction

and the rest of the proof follows from a similar argument used in the proof of Theorem 1.

E.2 Monetary Penalty

Proof of Lemma 8. Consider types t ∶= (v, b) and t̂ such that p(t̂) + max{�(t̂, n), �(t̂, b)} ≤ b.

Then (IC) requires that

a(t)v − p(t) − (1 − q(t))�(t, n) − q(t)�(t, b)

≥a(t̂)v − p(t̂) − (1 − q(t̂))�(t̂, n) − q(t̂)�(t̂, b)

Consider an alternative mechanism (a∗, p∗, q∗, �∗) with a∗ = a and q∗ = q. Let �∗(t, n) =

�∗(t, b) = 0 for all t and �∗(t̂, b) = c for all t̂ such that b̂ ≠ b. Let p∗(t) = p(t) + (1 − q(t))�(t, n) +

q(t)�(t, b). Since p(t) + max{�(t, n), �(t, b)} ≤ b, we have p∗(t) ≤ b, i.e., (BC) holds. It is easy to

see that the new mechanism also satisfies (IR), (BB) and (S) and does not affect the welfare.

Finally, I show that (IC) holds. Consider types t ∶= (v, b) and t̂ such that p∗(t̂)+c ≤ b. If b̂ = b,
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then (BC) in the old mechanism implies that p(t̂) + max{�(t̂, n), �(t̂, b)} ≤ b. Hence,

a∗(t)v − p∗(t)

=a(t)v − p(t) − (1 − q(t))�(t, n) − q(t)�(t, b)

≥a(t̂)v − p(t̂) − (1 − q(t̂))�(t̂, n) − q(t̂)�(t̂, b)

=a∗(t̂)v − p∗(t̂) + q(t̂)�(t̂, b̂) − q(t̂)�(t̂, b)

=a∗(t̂)v − p∗(t̂).

If b̂ ≠ b, then b ≥ p∗(t̂) + c = p(t̂) + (1 − q(t̂))�(t̂, n) + q(t̂)�(t̂, b̂) + c ≥ p(t̂) + max{�(t̂, n), �(t̂, b)}.

Hence,

a∗(t)v − p∗(t)

=a(t)v − p(t) − (1 − q(t))�(t, n) − q(t)�(t, b)

≥a(t̂)v − p(t̂) − (1 − q(t̂))�(t̂, n) − q(t̂)�(t̂, b)

=a∗(t̂)v − p∗(t̂) + q(t̂)�(t̂, b̂) − q(t̂)�(t̂, b)

≥a∗(t̂)v − p∗(t̂) − q∗(t̂)�∗(t̂, b).

The last inequality holds since �(t̂, b̂) ≥ 0 and �∗(t̂, b) = c ≥ �(t̂, b).

E.3 Punishing the Innocent or without Verification

Lemma 17 An optimal mechanism of PI satisfies (i) �(t, b̂) = 1 for b̂ ≠ b, (ii) p(t) < b implies

that �(t, n) = �(t, b) = 0 and (iii) (1 − �(t, n))�(t, b) = 0 for almost all t.

Proof. By the standard argument, (IC-v) implies that a is non-decreasing and

p(t) + (1 − q(t))�(t, n)c + q(t)�(t, b)c = a(t)v − ∫

v

0
a(�, b)d� − u(0, b).

Consider a new mechanism (a∗, p∗, q∗, �∗). Let a∗ = a. Thus, (S) holds. Let �∗(t̂, b) = 1 and
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q∗(t̂) = q(t̂)�(t̂, b) for b ≠ b̂. Let p∗(t) = min {p(t) + (1 − q(t))�(t, n)c + q(t)�(t, b)c, b} . Thus,

(BC) holds. Since p∗(t) ≥ p(t) and q∗(t) ≤ q(t), (BB) holds. Let �∗(t, n) = 0 if q∗(t) = 1 and

otherwise

�∗(t, n) = min
{

p(t) + (1 − q(t))�(t, n)c + q(t)�(t, b)c − p∗(t)
(1 − q∗(t))c

, 1
}

.

Finally, let �∗(t, b) = 0 if q∗(t) = 0 and otherwise

�∗(t, b) =
p(t) + (1 − q(t))�(t, n)c + q(t)�(t, b)c − p∗(t) − (1 − q∗(t))�∗(t, n)c

q∗(t)c
≥ 0.

Then, �∗(t, b) > 0 if and only if �∗(t, n) = 1. Furthermore, p∗(t) ≥ p(t). Hence, �∗(t, b) > 0 implies

that

�∗(t, b) ≤ (1 − q(t))�(t, n) + q(t)�(t, b) − 1 + q∗(t)
q∗(t)

≤ 1.

Note also that, by construction, p(t) < b implies that �∗(t, n) = �∗(t, b) = 0. By construction,

p(t) + (1 − q(t))�(t, n)c + q(t)�(t, b)c = p∗(t) + (1 − q∗(t))�∗(t, n)c + q∗(t)�∗(t, b)c.

Hence (IR) holds. Consider a type t = (v, b) and t̂ such that p(t̂) ≤ p∗(t̂) ≤ b. Then

a∗(t)v − p∗(t) − (1 − q∗(t))�∗(t, n)c − q∗(t)�∗(t, b)c

=a(t)v − p(t) − (1 − q(t))�(t, n)c − q(t)�(t, b)c

≥a(t̂)v − p(t̂) − (1 − q(t̂))�(t̂, n)c − q(t̂)�(t̂, b)c

≥a∗(t̂)v − p∗(t̂) − (1 − q∗(t̂))�∗(t̂, n)c − q∗(t̂)c.

If b̂ = b, the last inequality holds trivially. If b̂ ≠ b, the last inequality holds since p∗(t̂) + (1 −

q∗(t̂))�(t̂, n)c ≥ p(t̂) + (1 − q(t̂))�(t̂, n)c and q∗(t̂) = q(t̂)�(t̂, b). Hence, (IC) holds. Thus, we have

verified that (a∗, p∗, q∗, �∗) is feasible. Since p∗(t) ≥ p(t), we have (1 − q(t))�(t, n)c + q(t)�(t, b)c ≥

(1 − q∗(t))�∗(t, n)c + q∗(t)�∗(t, b)c. Furthermore, q∗(t) ≤ q(t). For a positive measure set of t, one

of the above two inequalities holds strictly. Hence, (a∗, p∗, q∗, �∗) strictly improves welfare.
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Lemma 18 An optimal mechanism of PI satisfies �(t, b) = 0 for almost all t.

Proof. Fix a mechanism (a, p, q, �). Suppose �(t, b) > 0 on a positive measure set of t. Consider a

new mechanism (a∗, p∗, q∗, �∗) with a∗ = a and p∗ = p. If �(t, b) > 0, let q∗(t) = q(t)[1 − �(t, b)] <

q(t), �∗(t, b) = 0 and

�∗(t, n) =
(1 − q(t))�(t, n) + q(t)�(t, b)

1 − q∗(t)
= 1.

If �(t, b) = 0, let q∗(t) = q(t), �∗(t, b) = 0 and �∗(t, n) = �(t, n). By construction,

(1 − q(t))�(t, n)c + q(t)�(t, b)c = (1 − q∗(t))�∗(t, n)c + q∗(t)�∗(t, b)c.

Clearly, the new mechanism satisfies (IR), (BC), (BB) and (S) and strictly improves welfare. Con-

sider types t = (v, b) and t̂ such that p(t̂) = p∗(t̂) ≤ b. Then

a∗(t)v − p∗(t) − (1 − q∗(t))�∗(t, n)c − q∗(t)�∗(t, b)c

=a(t)v − p(t) − (1 − q(t))�(t, n)c − q(t)�(t, b)c

≥a(t̂)v − p(t̂) − (1 − q(t̂))�(t̂, n)c − q(t̂)c

=a∗(t̂)v − p∗(t̂) − (1 − q∗(t̂))�∗(t̂, n)c − q∗(t̂)c.

If �(t̂, b̂) = 0, the last equality holds trivially. If �(t̂, b̂) > 0, the last equality holds since �(t̂, n) =

�∗(t̂, n) = 1.
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