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Abstract

A principal allocates an object among a finite number of agents, each of whom values

the object. Each agent has access to private information about the principal’s payoff

if he receives the object. There are no monetary transfers. The object is allocated

based on the agents’ reports. The principal can inspect agents’ reports at a cost and

punish them, but punishments are sufficiently limited because verification is imperfect

or information arrives only after the object has been allocated for a set period of time.

If the number of agents is small, a threshold exists such that all agents whose values

are below the threshold are pooled and an optimal allocation rule is efficient at the top

of value distributions. If the number of agents is large, an optimal allocation rule also

involves pooling at the top. If the number of agents is sufficiently large, the pooling

areas at the bottom and the top meet and an optimal mechanism can be implemented

via a shortlisting procedure. The fact that optimal mechanisms depend on the number

of agents implies that small and large organizations should behave differently.
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1 Introduction

In many large organizations, scarce resources must be allocated internally without the

benefit of prices. Examples include the head of personnel for an organization choosing one of

several applicants for a job, venture capital firms choosing which startup to fund and funding

agencies allocating a grant among researchers. In these settings, the principal must rely on

the verification of agents’ claims, which can be costly. For example, the head of personnel

can confirm a job applicant’s past work experience or monitor their performance once they

are hired. A venture capital firm can investigate competing startups or audit the progress

of a startup once it is funded. Furthermore, the principal can punish an agent if his claim

is found to be false. For example, the head of personnel can reject an applicant, fire an

employee or deny a promotion. Venture capitals and funding agencies can cut off funding.

Prior work has examined two extreme cases. In Ben-Porath et al. (2014), verification

is costly but punishment is large enough in the sense that an agent can be rejected and

does not receive the resource. In Mylovanov and Zapechelnyuk (2017), verification is free

but punishment is sufficiently limited. In this paper, I consider a situation with both costly

verification and sufficiently limited punishment. I interpret verification as acquiring infor-

mation (such as by requesting documentation, interviewing an agent or monitoring an agent

at work), which could be costly. Moreover, punishment can be sufficiently limited because

verification is imperfect or information arrives only after an agent has been hired for some

time.

This paper has three main contributions. Firstly, despite of the similarity between the

problems they study, Ben-Porath et al. (2014) and Mylovanov and Zapechelnyuk (2017) ob-

tain different sets of optimal mechanisms. The first contribution of this paper is to establish

a connection between Ben-Porath et al. (2014) and Mylovanov and Zapechelnyuk (2017) in

a symmetric environment, and highlights the role played by the number of agents. In the

concluding section, I provide a more detailed comparison of the results in this paper with

those in previous papers regarding the role played by the number of agents. Secondly, in

practice, the principal can often take actions that affect verification cost and punishment

level simultaneously. For example, the principal can obtain more precise information by

incurring a higher information acquisition cost, which leads in turn to a higher expected

punishment. Thus, it is important to understand the interactions between verification cost

and punishment level. In the paper, I show that the impact of a change in punishment

level on optimal mechanisms is qualitatively different from that in Mylovanov and Zapechel-

nyuk (2017) in which verification is free. This highlights the importance of considering both

costly verification and sufficiently limited punishment. Thirdly, I provide results on optimal
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mechanisms in a general asymmetric environment. Some of the comparative statics results

I obtain are different from those in Ben-Porath et al. (2014), which again highlights the

importance of considering both costly verification and sufficiently limited punishment. This

analysis also extends that of Mylovanov and Zapechelnyuk (2017), who consider only the

symmetric environment.

Specifically, in the model, there is one principal who has to allocate one indivisible object

among a finite number of agents. She would like to give the object to the agent who has

the highest value to her, but doing this encourages all agents to exaggerate their values. At

her disposal, the principal has two devices to discourage agents from exaggeration: firstly,

the principal can ration at the bottom or top of the distribution of values, but this reduces

allocative efficiency; secondly, the principal can verify an agent’s claim and punish him if his

claim is found to be false, but verification is a costly procedure. The goal of this paper is to

identify the optimal way to provide incentives via these two devices.

In Sections 3 and 4, I focus on the symmetric environment and characterize an optimal

symmetric mechanism in this setting. If the number of agents is sufficiently small, then a

one-threshold mechanism as in Ben-Porath et al. (2014) is optimal. The allocation rule in

this mechanism is efficient at the top of the value distribution and involves pooling only at the

bottom. For intermediate and large numbers of agents, the allocation rule involves pooling

at both the top and the bottom as in Mylovanov and Zapechelnyuk (2017). Specifically, the

following two-threshold mechanism is optimal. If there are agents whose values are above the

upper threshold, then one of them is chosen at random and inspected with probability one.

If all agents’ values are below the upper threshold but some are above the lower threshold,

then the one with the highest value is chosen and inspected with some probability. If all

agents’ values are below the lower threshold, then one of them is chosen at random and no

one is inspected. It should be noted that a one-threshold mechanism can be viewed as a

two-threshold mechanism whose upper threshold is equal to the upper-bound of the value

support. For a sufficiently large number of agents, the two thresholds coincide, and the two-

threshold mechanism can be implemented using a shortlisting procedure. In this shortlisting

procedure, agents whose values are above a threshold are shortlisted with probability one,

and agents whose values are below the threshold are shortlisted with some probability. The

principal then chooses one agent from the shortlist at random. The selected agent is inspected

if and only if his value is above the threshold. The fact that the optimal mechanism depends

on the number of agents implies that small and large organizations should behave differently.

To understand the intuition behind these results, consider an agent with the lowest

possible value to the principal. Intuitively, as the number of agents increases, this agent

becomes worse off and has stronger incentives to exaggerate his value in a one-threshold
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mechanism as it is now more likely that another agent whose value is above the threshold

exists. When punishments are sufficiently limited, the principal can make exaggeration

less attractive only by introducing distortions to the allocation rule at the top of the value

distribution.

This distinction between small and intermediate numbers of agents is important because

it allows us to establish a connection between Ben-Porath et al. (2014) and Mylovanov

and Zapechelnyuk (2017). Note that this distinction is absent if either verification is free

or punishment is large enough. In Ben-Porath et al. (2014), an optimal mechanism never

involves pooling at the top of the value distribution because punishment is large enough. If

punishment is sufficiently limited, then pooling at the top is part of the optimal mechanism

for a sufficiently large number of agents. In Mylovanov and Zapechelnyuk (2017), an optimal

mechanism always involves pooling at the top because verification is free. If verification is

costly, then pooling at the top disappears for a sufficiently small number of agents.

As an effort to understand the trade-off between verification (or information) cost and

punishment level (or information quality), I provide some comparative statics results with

respect to verification cost and punishment level in Section 4. An increase in verification

cost has two opposite effects on the size of the pooling areas. Firstly, when verification

becomes costlier, the optimal threshold mechanism involves more pooling at the bottom to

save verification cost. Secondly, the enlarging pooling area at the bottom benefits agents

with very low values and reduces their incentives to exaggerate their values, which leads to

less or no pooling at the top. In the paper, I show that the second effect dominates and

that one-threshold or two-threshold mechanisms consequently remain optimal for a larger

number of agents as verification becomes costlier.

The impact of a change in punishment level is ambiguous and more interesting. On the

one hand, a reduction in punishment effectively makes verification costlier as the principal

must inspect agents more frequently to maintain incentive compatibility. Then the above

analysis implies that one-threshold or two-threshold mechanisms remain optimal for a larger

number of agents as punishment becomes less severe. On the other hand, a reduction in

punishment level makes it more difficult to prevent agents from exaggeration through pun-

ishments, which leads to larger pooling areas at both the bottom and the top to restore

incentive compatibility. This in turn implies that one-threshold or two-threshold mecha-

nisms remain optimal for a smaller number of agents as punishment becomes less severe.

In general, the impact of a change in punishment level is not monotonic. In particular,

the top pooling area can either increase or decrease as the penalty decreases. This result

is in contrast to the findings in Mylovanov and Zapechelnyuk (2017). In Mylovanov and

Zapechelnyuk (2017), the top pooling area increases as the penalty decreases because the
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first effect is absent if verification is free.1

In Section 5, I study a general model with asymmetric agents. In this setting, threshold

mechanisms remain optimal. The analysis, however, is much more complex. Although there

is still a unique lower threshold for all agents, different agents may face different upper

thresholds. This analysis also extends that of Mylovanov and Zapechelnyuk (2017), who

consider only the symmetric environment, to the asymmetric environment.

Because of the complication of the pooling areas at the top, it is generally extremely

difficult to fully characterize the set of optimal mechanisms. Thus, I provide results only

for some important special cases. In Section 5.1, I study the environment in which different

agents may have different value distributions, but they are identical otherwise. For simplicity,

assume that there are two groups of agents: H and L. I consider two cases. First, I assume

that the value distribution of group H agents are “better” than that of group L agents

in the sense of first-order stochastic dominance. If the number of agents is small, then a

one-threshold mechanism in which group H agents are favored is optimal. Group H agents

are favored in the sense that if all agents’ reported values are below the threshold, then a

group H agents is more likely to be selected. If the number of agents is large, then it is

optimal for the principal to ignore group L agents and chooses an optimal mechanism as if

she faces only group H agents. One surprising implication of this result is that group H

agents can actually get better off when the number of competitors increases. This is true

even if additional competitor all come from group H.

Second, I consider the case in which the value distribution of group L agents are “more

risky” than that of group H agents in the sense of mean-preserving spread. If the number

of agents is small, then a one-threshold mechanism in which group H agents are favored

is optimal. This result is consistent with that of Ben-Porath et al. (2014). Intuitively, the

principal benefits less from checking an agent if there is less uncertainty about his type.

However, in contrast to Ben-Porath et al. (2014), if the number of agents is sufficiently large,

a shortlisting procedure is optimal and the “more risky” group L is favored. This is because

in this case if a group is favored, the agents in that group are more likely to be selected both

when their values are above and below the threshold. Since it is more likely to select an

agent with high type from the right tail if his value distribution is “more risky”, group L is

favored.

In Section 5.2, I revisit the symmetric environment and characterize the set of all optimal

threshold mechanisms. First, I show that in an optimal mechanism all agents must share the

same upper threshold. This result is consistent with Mylovanov and Zapechelnyuk (2017).

Second, I find that limiting the principal’s ability to punish agents also limits her ability to

1See Proposition 5A in Mylovanov and Zapechelnyuk (2017).
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treat agents differently. In particular, when a one-threshold mechanism is optimal, the set of

all optimal threshold mechanisms shrinks as punishment becomes more limited. Eventually,

the unique optimal threshold mechanism is symmetric. If punishment is sufficiently limited

so that a two-threshold mechanism or a shortlisting procedure is optimal, then the principal

can once again treat agents differently, although only to the extent that they share the

same set of thresholds. The comparison is less clear in this case because the sets of optimal

mechanisms are disjoint for different levels of punishments.

Technically, I follow Vohra (2012) and use tools from linear programming, which allows

me to analyze Ben-Porath et al. (2014) and Mylovanov and Zapechelnyuk (2017) in a unified

framework. It also allows me to obtain results on optimal mechanisms in the asymmetric

environment with sufficiently limited punishments, which are unavailable in Mylovanov and

Zapechelnyuk (2017).

The rest of the paper is organized as follows. Section 1.1 discusses other related work.

Section 2 presents the model. Section 3 characterizes an optimal symmetric mechanism

when agents are ex ante identical. Section 4 discusses the properties of this optimal sym-

metric mechanism. Section 5 studies a general asymmetric environment. Finally, Section 6

concludes the paper.

1.1 Other related literature

This paper is related to the literature on costly state verification. The first contribution

in the series is Townsend (1979), who has studied a model of a principal and a single agent.

In Townsend (1979), verification is deterministic. Border and Sobel (1987) and Mookherjee

and Png (1989) have generalized it by allowing random inspection. Gale and Hellwig (1985)

have considered the effects of costly verification in the context of credit markets. These

models differ from what I consider here in that in their models there is only one agent

and monetary transfers are allowed. Recently, Patel and Urgan (2017) have also studied the

problem of a principal who must allocate a good among multiple agents when transfers are not

allowed. As in Ben-Porath et al. (2014), in Patel and Urgan (2017), verification is costly and

punishment is large enough. But, in addition to costly verification, the principal can deploy

another instrument: money burning. They have shown that both instruments are present in

the optimal mechanism. Furthermore, the optimal mechanism admits monotonicity in the

allocation probability with regards to an agent’s value, and takes a threshold form where all

the values below a certain threshold are not subject to verification or money burning.

Technically, this paper is related to the literature on reduced form implementation, in-

cluding Maskin and Riley (1984), Matthews (1984), Border (1991) and Mierendorff (2011).
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The most related paper is that of Pai and Vohra (2014), who have also used reduced form

implementation and linear programming to derive optimal mechanisms for financially con-

strained agents.

2 Model

The set of agents is I := {1, . . . , n}. There is a single indivisible object to be allocated

among them. The value of the principal of assigning the object to agent i is vi, where vi is

agent i’s private information. I assume {vi} to be independently distributed and that their

density fi is strictly positive on Vi := [vi, vi] ⊂ R+. The assumption that an agent’s value

to the principal is always non-negative simplifies some statements, but the results in this

paper can easily extend to include negative values. I use Fi to denote the corresponding

cumulative distribution function. Let V :=
∏

i Vi. Agent i gets a private benefit of bi(vi) if

he receives the object, and 0 otherwise. The principal can verify agent i’s report at a cost

ki ≥ 0. Verification perfectly reveals an agent’s type. The cost to an agent to have his report

verified is zero. If agent i receives the object and is inspected, the principal can impose a

non-negative penalty ci(vi) on him.2 Note that an agent can be punished only if he receives

the object. The interpretation of this assumption is that the principal can only punish an

agent by taking the object back, possibly after a number of periods (e.g., rejecting a job

applicant or firing him after a certain length of employment).

For tractability, I assume that penalty is linear in private benefit: ci(vi) = cibi(vi) for

all vi for some 0 < ci ≤ 1. This assumption is natural in some applications. In the job

slot example, this assumption is satisfied if an agent receives a private benefit for each

period he is employed and the penalty is being fired after a pre-specified number of periods.

In the example of venture capital firms or funding agencies, this assumption is satisfied if

agents receive funds periodically and the penalty is cutting off funding after certain periods.

Furthermore, this assumption allows us to obtain a clear analysis on the interaction between

the verification cost (ki) and the level of punishment (ci). Lastly, this assumption can be

relaxed, and the results in this paper can easily extend if ci(vi)/bi(vi) is minimized at vi.
3

I invoke the Revelation Principle and focus on direct mechanisms in which truth-telling

2I will use the words “verify” and “inspect” interchangeably in this paper.
3(IC) can be rewritten as: for each agent i,

Qi(v
′
i) ≥

bi(vi)

ci(vi)

(
1− Pi(vi)

Pi(v′i)

)
,∀vi, v′i.

Suppose that ci(vi)/bi(vi) is minimized at vi and Pi(vi) is non-decreasing. Then, for any given v′i, the left-
hand side of the above inequality is maximized at vi. If redefining ci := ci(vi)/bi(vi), then (IC) hold if and
only if (2) holds.
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is a Bayes-Nash equilibrium. Clearly, if an agent is inspected, it is optimal to penalize him

if and only if he is found to have lied. Using this result, a direct mechanism can be written

as a pair (p, q), where p := (p1, . . . , pn) : V → [0, 1]n and q := (q1, . . . , qn) : V → [0, 1]n.

For each i and each profile of reported values, v ∈ V , pi(v) specifies the probability with

which i is assigned the object, and qi(v) specifies the probability of inspecting i conditional

on the object being assigned to agent i. The utility of an agent whose true type is vi and

who reports v′i is pi(vi, v−i)bi(vi) if v′i = vi, and it is

pi(v
′
i, v−i) (bi(vi)− qi(v′i, v−i)ci(vi))

otherwise. A mechanism is feasible if
∑

i pi(v) ≤ 1 for all v ∈ V . A mechanism satisfies the

incentive compatibility (IC) constraints if, for each agent i,

Ev−i [pi(vi, v−i)bi(vi)] ≥ Ev−i [pi(v
′
i, v−i) (bi(vi)− qi(v′i, v−i)ci(vi))] , ∀vi, v′i.

The principal’s objective is to maximize her expected gain from allocating the object minus

the expected verification cost,

Ev

[
n∑
i=1

pi(v) (vi − qi(v)ki)

]
, (1)

subject to the feasibility and IC constraints.

Note that if ki = 0, then the above principal’s problem reduces to that considered in

Mylovanov and Zapechelnyuk (2017); and if ci(vi) = bi(vi) for all vi, then it reduces to that

considered in Ben-Porath et al. (2014).

For each agent i and each vi ∈ Vi, let Pi(vi) := Ev−i [pi(vi, v−i)] denote the in-

terim probability with which agent i is assigned the object. If Pi(vi) 6= 0, then let

Qi(vi) := Ev−i [pi(vi, v−i)qi(vi, v−i)] /Pi(vi); and otherwise let Qi(vi) := 0. Then Pi(vi)Qi(vi)

is the interim probability with which agent i is inspected. Let P := (P1, . . . , Pn) and

Q := (Q1, . . . , Qn). The principal’s problem can then be written in the following reduced

form:

max
P ,Q

n∑
i=1

Evi [Pi(vi) (vi −Qi(vi)ki)] ,
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subject to

Pi(vi)bi(vi) ≥ Pi(v
′
i) (bi(vi)−Qi(v

′
i)ci(vi)) ,∀vi, v′i, (IC)

0 ≤ Qi(vi) ≤ 1,∀vi, (F1)∑
i

∫
Si

Pi(vi)dFi(vi) ≤ 1−
∏
i

(
1−

∫
Si

dFi(vi)

)
,∀Si ⊂ Vi. (AF2)

In particular, an allocate rule p is feasible if and only if the corresponding reduced form

allocation rule P satisfies (AF2) by Theorem 2 in Mierendorff (2011), which generalizes the

well-known Maskin-Riley-Matthews-Border conditions to asymmetric environments.

I begin solving the principal’s problem by solving for the optimal Q for a given

P . Because penalty, ci(vi), is linear in private benefit, bi(vi), (IC) becomes Pi(vi) ≥
Pi(v

′
i) (1− ciQi(v

′
i)) for all vi and v′i. Then (IC) holds if and only if

ϕi ≥ Pi(v
′
i) (1− ciQi(v

′
i)) , ∀v′i, (2)

where ϕi := infvi Pi(vi) is agent i’s lowest interim probability of receiving the object. Because

Qi(v
′
i) ≤ 1, (2) holds only if

(1− ci)Pi(v′i) ≤ ϕi,∀v′i. (3)

Remark 1 Note that if ci = 1, as in Ben-Porath et al. (2014), then (3) is satisfied au-

tomatically. This explains why there is no pooling at the top of the value distribution in

Ben-Porath et al. (2014). In contrast, if 0 < ci < 1, then (3) imposes an upper-bound on Pi

and, as I demonstrate later, there can be pooling at the top for a sufficiently large number of

agents.

For the rest of the paper, I assume that punishment is sufficiently limited, i.e. 0 < ci < 1

for some i. This is to say that the principal cannot reduce agent i’s payoff to his outside option

by punishing him. If we interpret verification as acquiring information, then punishment can

be sufficiently limited because information is imperfect.

If (3) holds, then it is optimal to set Qi(vi) = (1− ϕi/Pi(vi)) /ci for all vi ∈ Vi since

the principal’s objective function is strictly decreasing in Qi. Substituting this into the

principal’s objective function results in

n∑
i=1

Evi
[
Pi(vi)

(
vi −

ki
ci

)]
+
ϕiki
ci

. (4)

In Sections 3 and 4, I assume {vi} to be identically distributed and that their density

f is strictly positive on V = [v, v] ⊂ R+. I use F to denote the corresponding cumulative
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distribution function. In addition, I assume ci = c and ki = k for all i. In this symmetric

setting, there exists an optimal mechanism that is symmetric. Hence, I focus on symmetric

mechanisms in Sections 3 and 4. In what follows, I suppress the subscript i whenever the

meaning is clear. The results of Section 3 can be extended to environments in which the

values (vi) of different agents can follow different distributions (Fi), and both the punishments

(ci) and the verification costs (ki) can be different for different agents. I discuss this general

asymmetric setting in Section 5.

3 Optimal mechanisms

In this section, I demonstrate that a simple threshold mechanism is optimal. As an

overview of the proof idea, I solve the principal’s problem in two steps. In the first step,

I characterize an optimal mechanism for any given lowest probability with which an agent

receives the object (ϕ). In the second step, I solve for the optimal ϕ.

3.1 Optimal mechanisms for fixed ϕ

Fix ϕ = infv P (v) ≤ 1/n.4 I first solve the following problem (OPT − ϕ):

max
P

Ev
[
P (v)

(
v − k

c

)]
+
ϕk

c
,

subject to

ϕ ≤ P (v) ≤ ϕ

1− c
,∀v, (IC′)

n

∫
S

P (v)dF (v) ≤ 1−
(

1−
∫
S

dF (v)

)n
,∀S ⊂ V. (F2)

In this symmetric setting, when mechanisms are symmetric, (AF2) can be simplifed to (F2).

Recall that Q exists such that (F1) and (IC) hold if and only if P satisfies (IC′). To solve

(OPT − ϕ), I approximate the continuum-type space with a finite partition, characterize

an optimal mechanism in the finite model and take limits. Later, I show that the limiting

mechanism is optimal in the original model.

4Note that the problem (OPT − ϕ) is feasible only if ϕ ≤ 1/n.
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3.1.1 Finite case

Fix an integer m ≥ 2. For t = 1, . . .m, let

vt :=v +
(2t− 1)(v − v)

2m
,

f t :=F

(
v +

t(v − v)

m

)
− F

(
v +

(t− 1)(v − v)

m

)
.

Consider the finite model in which vi can take only m possible different values (i.e. vi ∈
{v1, . . . , vm}) and the probability mass function satisfies f(vt) = f t for t = 1, . . . ,m. I

slightly abuse notation and let P := (P 1, . . . , Pm), where P t is the interim probability with

which a type vt agent is assigned the good. Then, the corresponding problem of (OPT −ϕ)

in the finite model, denoted by (OPTm− ϕ), is given by

max
P

m∑
t=1

f tP t

(
vt − k

c

)
+
ϕk

c
,

subject to

ϕ ≤ P t ≤ ϕ

1− c
,∀t, (IC′m)

n
∑
t∈S

f tP t ≤ 1−

(∑
t/∈S

f t

)n

,∀S ⊂ {1, . . . ,m}. (F2m)

To solve (OPTm − ϕ), I first rewrite it as a polymatroid optimization problem. Define

G(S) := 1 −
(∑

t/∈S f
t
)n

and H(S) := G(S) − nϕ
∑

t∈S f
t for all S ⊂ {1, . . . ,m}. Define

zt := f t(P t − ϕ) for all t = 1, . . . ,m and z := (z1, . . . , zm). Clearly, P t ≥ ϕ if and only if

zt ≥ 0 for all t = 1, . . . ,m. Using these notations, (F2m) can be rewritten as

n
∑
t∈S

zt ≤ H(S),∀S ⊂ {1, . . . ,m}.

It is easy to verify that H(∅) = 0 and H is submodular. However, H is not monotonic.

Define H(S) := minS′⊃S H(S). Then H(∅) = 0, and H is non-decreasing and submodular.

Furthermore, by Lemma 2 in Appendix A,{
z

∣∣∣∣∣z ≥ 0, n
∑
t∈S

zt ≤ H(S), ∀S

}
=

{
z

∣∣∣∣∣z ≥ 0, n
∑
t∈S

zt ≤ H(S), ∀S

}
.
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Thus, (OPTm− ϕ) can be rewritten as (OPTm1− ϕ)

max
z

m∑
t=1

zt
(
vt − k

c

)
+ ϕ

m∑
t=1

f tvt,

subject to

0 ≤ zt ≤ cϕf t

1− c
,∀t, (IC′m1)

n
∑
t∈S

zt ≤ H(S),∀S ⊂ {1, . . . ,m}. (F2m1)

Without the upper-bound on zt in (IC′m1), this is a standard polymatroid optimization

problem and can be solved using the greedy algorithm. With the upper-bound, this is

a weighted polymatroid intersection problem and efficient algorithms exist that solve the

optima if the weights (vt − k/c) are rational.5 In this paper, I solve the problem using a

“guess-and-verify” approach. Although we cannot directly apply the greedy algorithm to

(OPTm1 − ϕ), it is not difficult to conjecture the optimal solution. Intuitively, zt = 0 if

vt < k/c. Consider vt ≥ k/c. Because H is non-decreasing and submodular, and the upper-

bound on zt is linear in f t, the solution found by the greedy algorithm potentially violates

the upper-bound for large t. Hence, it is natural to conjecture that a cutoff t exists such

that the upper-bounds in (IC′m1) bind if and only if t > t.

Formally, let St := {t, . . . ,m} for all t = 1, . . . ,m, and Sm+1 := ∅. If ϕ ≤ (1 − c)/n, let

t := 0; otherwise, I show in the proof of Lemma 1 that a unique t ∈ {1, . . . ,m + 1} exists

such that

H(St) ≤ n
m∑
τ=t

cϕf τ

1− c
and H(St+1) > n

m∑
τ=t+1

cϕf τ

1− c
.

Note that, by definition, if we assign the highest possible value allowed by (F2m1) to∑m
τ=t+1 z

τ , then (IC′m1) must be violated for some t ≥ t + 1. However, it is possible to

assign the highest possible value allowed by (F2m1) to
∑m

τ=t z
τ while respecting (IC′m1) for

all t ≥ t. Hence, it is natural to conjecture that t defined above is the cutoff above which

the upper-bounds in (IC′m1) bind. I can now construct my candidate optimal solution of

(OPTm1− ϕ) as follows

ẑt :=

{
zt if vt ≥ k

c

0 if vt < k
c

, (5)

5See, for example, Cook et al. (2011) and Frank (2011).
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where

zt :=


cϕf t

1−c if t > t
1
n
H(St)−

∑m
τ=t+1

cϕf t

1−c if t = t
1
n

[
H(St)−H(St+1)

]
if t < t

,

As previously discussed, if t > t and vt − k/c > 0, then I conjecture that the upper-bound

in (IC′m1) binds and let ẑt = cϕf t/(1 − c). If t ≤ t and vt − k/c > 0, then, in the spirit

of greedy algorithms, I start by assigning the highest possible value allowed by (F2m1) to

ẑt and continue to assign values to ẑt−1, ẑt−2, . . . in the same fashion. Finally, it is clear

that if vt − k/c < 0, then it is optimal to set ẑt = 0. ẑ is feasible following from the fact

that H(∅) = 0, and H is non-decreasing and submodular. Furthermore, we can verify the

optimality of ẑ by the duality theorem:

Lemma 1 ẑ defined in (5) is an optimal solution to (OPTm1− ϕ).

For each t = 1, . . . ,m, let

P t
m :=

ẑt

f t
+ ϕ (6)

The following corollary directly follows from Lemma 1:

Corollary 1 Pm defined in (6) is an optimal solution to (OPTm− ϕ).

3.1.2 Continuum case

I characterize an optimal solution of (OPT − ϕ) by taking m to infinity. Let vl be such

that F (vl)n−1 = nϕ and

vu := inf

{
v

∣∣∣∣1− F (v)n − nϕ

1− c
[1− F (v)] ≥ 0

}
. (7)

vl is chosen so that if all agents whose values are below vl are pooled together and ranked

below any other agents with higher values, their interim probability of receiving the object

F (vl)n−1/n is equal to the lower-bound in (IC′), ϕ. The definition of vu mirrors that of t.

Informally, vu is chosen so that if all agents whose values are above vu are pooled together and

ranked above any other agents with lower values, then their interim probability of receiving

the object [1−F (v)n]/n[1−F (v)] is equal to the upper-bound in (IC′), ϕ/(1− c). Note that

if ϕ ≤ (1− c)/n, then vu = v. Let Pϕ be defined as follows: If vl < vu, let

Pϕ(v) :=


ϕ

1−c if v ≥ vu

F (v)n−1 if vl < v < vu

ϕ if v ≤ vl
.
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If vl ≥ vu, let

v̂ := inf

{
v

∣∣∣∣1− nϕF (v)− nϕ

1− c
[1− F (v)] ≥ 0

}
∈ [vu, vl], (8)

and

Pϕ(v) :=

{
ϕ

1−c if v ≥ v̂

ϕ if v < v̂
.

Finally, let

P ∗ϕ(v) :=

{
P (v) if v ≥ k

c

ϕ if v < k
c

. (9)

I show in Appendix A that P ∗ϕ is the “pointwise limit” of Pm as m → ∞. Moreover, P ∗ϕ is

an optimal solution to (OPT − ϕ).

Theorem 1 P ∗ϕ defined in (9) is an optimal solution to (OPT − ϕ).

3.2 Optimal ϕ

I complete the characterization of an optimal mechanism by solving for the optimal ϕ.

Firstly, if verification is sufficiently costly or the principal’s ability to punish an agent is

sufficiently limited, then pure randomization is optimal.

Theorem 2 If v− k/c ≤ Ev[v], then pure randomization is optimal: P ∗ = 1/n and Q∗ = 0.

To make the problem more interesting, in what follows I assume that

Assumption 1 v − k/c > Ev[v].

Recall that given ϕ, vl is uniquely pinned down by F (vl)n−1 = nϕ and vu is uniquely

pinned down by (7). Define v∗ and v∗∗ by equations (10) and (11), respectively:

Ev[v]− Ev[max{v, v∗}] +
k

c
= 0, (10)

Ev[v]− Ev[min{v, v∗∗}] + (1− c)
[
Ev[v]− Ev[max{v, v∗∗}] +

k

c

]
= 0. (11)

They are well defined under Assumption 1. Furthermore, v∗∗ > v∗ ≥ k/c. Finally, let

v\ := sup

{
v

∣∣∣∣F (v)n−1(1− F (v))

1− c
− 1 + F (v)n ≤ 0

}
. (12)

An optimal mechanism is characterized by the following theorem:
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Theorem 3 Supposing that Assumption 1 holds, there are three cases.

1. If F (v∗)n−1 ≥ n(1− c), then the optimal ϕ∗ = F (v∗)n−1/n, the optimal inspection rule

satisfies Q∗ = (1− ϕ∗/P ∗) /c and the following allocation rule is optimal:

P ∗(v) :=

{
F (v)n−1 if v ≥ v∗

ϕ∗ if v < v∗
.

2. If F (v∗)n−1 < n(1− c) and v∗∗ ≤ v\, then the optimal ϕ∗ = (1− c)/n(1− cF (v∗∗)), the

optimal inspection rule satisfies Q∗ = (1− ϕ∗/P ∗) /c and the following allocation rule

is optimal:

P ∗(v) :=

{
ϕ∗

1−c if v ≥ v∗∗

ϕ∗ if v < v∗∗
.

3. If F (v∗)n−1 < n(1− c) and v∗∗ > v\, then the optimal ϕ∗ is defined by

Ev[v]− Ev[min{v, vu(ϕ∗)}] + (1− c)
[
Ev[v]− Ev[max{v, vl(ϕ∗)}] +

k

c

]
= 0, (13)

the optimal inspection rule satisfies Q∗ = (1− ϕ∗/P ∗) /c and the following allocation

rule is optimal:

P ∗(v) :=


ϕ∗

1−c if v ≥ vu(ϕ∗)

F (v)n−1 if vl(ϕ∗) < v < vu(ϕ∗)

ϕ∗ if v ≤ vl(ϕ∗)

.

To understand the result, consider the following implementation of the optimal mecha-

nism in Theorem 3. There are two thresholds. I abuse notation here and denote them by

vl and vu with v ≤ vl ≤ vu ≤ v. If every agent reports a value below vl, then an agent is

selected uniformly at random and receives the good, and no one is inspected. If any agent

reports a value above vl but all reports are below vu, then the agent with the highest re-

ported value receives the good, is inspected with some probability (proportional to 1/c) and

is penalized if he is found to have lied. If any agent reports a value above vu, then an agent

is selected uniformly at random among all the agents whose reported values are above vu,

receives the good, is inspected with a probability of 1 and is penalized if he is found to have

lied. I call a mechanism a one-threshold mechanism if vu = v, a two-threshold mechanism if

vl < vu < v, and a shortlisting mechanism if vl = vu < v.

To understand conditions (10), (11) and (13), consider the impact of a reduction in

vl. Intuitively, this improves allocation efficiency at the bottom of the value distribution.
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After some algebra, one can verify that the increase in allocation efficiency is proportional

to Ev[max{v, vl}] − Ev[v]. However, as vl decreases, agents with low v’s become worse

off and have stronger incentives to exaggerate their types. To restore IC, the principal

must now inspect agents more frequently, which raises the total verification cost by an

amount proportional to k/c. Furthermore, because the principal’s ability to penalize an

agent is sufficiently limited, more pooling at the top (i.e. a lower vu) may also be required

to restore IC. This reduces the allocation efficiency at the top by an amount proportional

to [Ev[v]− Ev[min{v, vu}]] /(1 − c). In an optimal mechanism, the marginal gain from a

reduction in vl (proportional to the left-hand side of (14)) must equal the marginal cost

(proportional to the right-hand side of (14)):

Ev[max{v, vl}]− Ev[v] =
Ev[v]− Ev[min{v, vu}]

1− c
+
k

c
. (14)

This is precisely the case captured by the third part of Theorem 3 (compare (14) with (13)).

If the limited punishment constraint does not bind (i.e. vu = v), there is no efficiency loss at

the top and [Ev[v]− Ev[min{v, vu}]] /(1 − c) = 0. In this case, (14) becomes (10) (vl = v∗)

and an optimal mechanism is characterized by the first part of Theorem 3. If the principal’s

ability to punish an agent is sufficiently limited so that vu = vl(= v∗∗), then (14) becomes

(11) and an optimal mechanism is characterized by the second part of Theorem 3.

Remark 2 If k = 0, then v∗ = v and F (v∗)n−1 = 0 < n(1 − c) for any 0 < c < 1. That

is, when verification is free, there is always pooling at the top (Mylovanov and Zapechelnyuk

(2017)).

4 Properties of optimal mechanisms

Theorem 3 in the previous section shows that either one-threshold mechanisms, two-

threshold mechanisms or shortlisting mechanisms are optimal. In this section, I show that

which of the above three kinds of mechanisms are optimal crucially depends on the number of

agents (n). Specifically, I show that there exist n∗(ρ, c) and n∗∗(ρ, c) with n∗(ρ, c) < n∗∗(ρ, c)

such that if n ≤ n∗(ρ, c), then one-threshold mechanisms are optimal; if n∗(ρ, c) < n <

n∗∗(ρ, c), then two-thresholds mechanisms are optimal; and if n ≥ n∗∗(ρ, c), then shortlisting

mechanisms are optimal. Here ρ := k/c ≥ 0 is referred as the effective verification cost. The

effective verification cost, ρ, is strictly decreasing in c. This is because a smaller c implies a

lower level of punishment, which essentially makes verification costlier as the principal must

inspect agents more frequently to maintain IC.
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Formally, let n∗(ρ, c) < 1/(1− c) be defined by

F (v∗)n
∗(ρ,c)−1 = n∗(ρ, c)(1− c), (15)

where v∗ is defined by

Ev[v]− Ev[max{v, v∗}] + ρ = 0. (10)

Because v∗ is independent of n, by Theorem 3, one-threshold mechanisms are optimal if and

only if n ≤ n∗(ρ, c). Intuitively, for fixed v∗, an agent whose type below v∗ gets the object

with probability

ϕ∗ =
1

n
F (v∗)n−1,

which is strictly decreasing in n. In particular, an agent with the lowest type becomes

worse off and has stronger incentives to exaggerate his type when the number of agents, n,

increases. For an n sufficiently large, IC cannot be sustained without pooling at the top of

the value distribution.

Because v∗ is strictly increasing in ρ, the left-hand side of (15) is strictly decreasing

in n and the right-hand side of (15) is strictly increasing in n, n∗ is strictly increasing

in ρ. Intuitively, as the effective verification cost (ρ) increases, the principal optimally

reduces the use of verification and instead enlarges the pooling area at the bottom of the

value distribution (v∗ increases) to maintain IC. As a result, an agent with the lowest type

becomes better off (ϕ increases), and IC can therefore be sustained without pooling at the

top for a larger number of agents. For a fixed ρ, v∗ is independent of c but the right-hand

side of (15) is strictly decreasing in c. Hence, n∗ is strictly increasing in c. Intuitively, the

upper-bound on P in (IC′) becomes larger as c increases, and IC can therefore be sustained

without pooling at the top for a larger number of agents.

Next, let n∗∗(ρ, c) < 1/(1− c) be defined by

1− F (v∗∗)n
∗∗(ρ,c)

1− F (v∗∗)
=
F (v∗∗)n

∗∗(ρ,c)−1

1− c
, (16)

where v∗∗ is given by

Ev[v]− Ev[min{v, v∗∗}] + (1− c) [Ev[v]− Ev[max{v, v∗∗}] + ρ] = 0. (11)

When comparing (16) with (12), it is easy to see that v∗∗ ≤ v\ if and only if n ≥ n∗∗(ρ, c). Per

Theorem 3, shortlisting mechanisms are optimal if and only if n ≥ n∗∗(ρ, c). As previously

discussed, an agent with the lowest type becomes worse off and has stronger incentives to

exaggerate his type when the number of agents, n, increases. As a result, pooling areas
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at both the bottom and the top of the value distribution must be enlarged to ensure that

the mechanism is incentive compatible and to save verification cost. Formally, I show in

Appendix 4 that vl(n, ρ, c) is strictly increasing in n and vu(n, ρ, c) is strictly decreasing in

n. Eventually, for a sufficiently large number of agents, the two pooling areas meet and

there is a unique threshold such that all agents whose values are above the threshold and all

agents whose values are below the threshold are pooled, respectively.

Recall that v∗∗ > v∗. Hence,

F (v∗∗)n
∗(ρ,c)−1

1− c
>
F (v∗)n

∗(ρ,c)−1

1− c
= n∗(ρ, c) ≥ 1− F (v∗∗)n

∗(ρ,c)

1− F (v∗∗)
.

Because the left-hand side of (16) is strictly increasing in n, and the right-hand side of (16)

is strictly decreasing in n, we have n∗∗(ρ, c) > n∗(ρ, c). It is easy to see that v∗∗(ρ, c) is

strictly increasing in both ρ and c, and independent of n. Recall that v\ is independent of

ρ. I show in Lemma 4 in Appendix A that if n(1− c) < 1, then v\ is strictly increasing in n

and strictly decreasing in c. Hence, n∗∗(ρ, c) is strictly increasing in both ρ and c.

Fixed ρ, an increase in c has two opposite impacts on the size of the pooling areas. On

the one hand, the upper-bound on P in (IC′) becomes larger as c increases, which reduces

the pooling area at the top (vu increases) needed to sustain IC. On the other hand, it

follows from the analysis in Section 3 that the marginal cost from a reduction in vl increases

as c increases.6 Hence, it is optimal for the principal to enlarge the pooling area at the

bottom (vl increases). Formally, I show in Appendix B that both vl(n, ρ, c) and vu(n, ρ, c)

are strictly increasing in c. The analysis above on n∗∗ shows that the first effect dominates,

and two-thresholds mechanisms are optimal for a larger number of agents as c increases.

Fixed c, an increase in ρ also has two opposite impacts on the size of the pooling areas.

On the one hand, as previously discussed, as the effective verification cost (ρ) increases, the

principal optimally reduces the use of verification and instead enlarges the pooling area at

the bottom of the value distribution to maintain IC. On the other hand, as the pooling area

at the bottom increases, an agent with the lowest type becomes better off, and IC can be

sustained with less pooling at the top (vu increases). Formally, I show in Appendix B that

both vl(n, ρ, c) and vu(n, ρ, c) are strictly increasing in ρ. The analysis above on n∗∗ shows

that the second effect dominates, and two-thresholds mechanisms are optimal for a larger

number of agents as ρ increases.

These results are summarized by the following corollary:

Corollary 2 Suppose that Assumption 1 holds. Given k > 0, c ∈ (0, 1) and ρ = k/c, there

6Fixed ρ = k/c, the right-hand side of (14) is strictly increasing in c.
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exists 0 < n∗(ρ, c) < n∗∗(ρ, c) < 1/(1− c) such that the following statements are true:

1. If n ≤ n∗(ρ, c), then one-threshold mechanisms are optimal; if n∗(ρ, c) < n < n∗∗(ρ, c),

then two-thresholds mechanisms are optimal; if n ≥ n∗∗(ρ, c), then shortlisting mecha-

nisms are optimal.

2. n∗(ρ, c) and n∗∗(ρ, c) are strictly increasing in ρ and c.

3. v∗(n, ρ, c) is strictly increasing in ρ, and independent of n and c. v∗∗ is strictly in-

creasing in ρ and c, and independent of n. If n∗(ρ, c) < n < n∗∗(ρ, c), then vl(n, ρ, c) is

strictly increasing in n, ρ and c, and vu(n, ρ, c) is strictly decreasing in n, and strictly

increasing in ρ and c.

Corollary 2 gives comparative statics results in terms of (ρ, c). It is also interesting to see

the comparative statics results with respect to the model primitives (k, c). The impact of k is

straightforward. As k increases, verification becomes costlier. The optimal mechanism given

in Theorem 3 sees more pooling at the bottom (measured by ϕ) in order to save verification

cost. An increase in ϕ relaxes the upper-bound on P , which leads to less or no pooling at

the top. The impact of c is ambiguous. On the one hand, given the amount of pooling at

the bottom (measured by ϕ), a reduction in c lowers the upper-bound on P in (IC′), which

implies more pooling at the top. On the other hand, a reduction in c makes verification

costlier. Similar to the case of an increase in k, this change increases the amount of pooling

at the bottom (ϕ increases) and relaxes the upper-bound on P . As a result, there may be

less or no pooling at the top. This result is in contrast to the findings of Mylovanov and

Zapechelnyuk (2017). In Mylovanov and Zapechelnyuk (2017), the top pooling area increases

as the penalty decreases.7 This is because the second channel is absent if verification is free

(k = 0). The non-monotonicity of the pooling area at the top is further illustrated by the

following numerical example.

Example 1 Consider a numerical example in which {vi} are uniformly distributed on [0, 1].

There are n = 8 agents. The verification cost is k = 0.4. I slightly abuse notation and

redefine vl = vu = v∗∗ if vl > vu. Figure 1 plots vl and vu as functions of c. Observe that

the change of vu is not monotonic. As c increases, the pooling area at the top first expands

and then shrinks.

Finally, a careful examination of (15) and (10) proves the following corollary:

Corollary 3 limc→1 n
∗(k/c, c) =∞ and limk→0 n

∗(k/c, c) = 0.

7See Proposition 5A in Mylovanov and Zapechelnyuk (2017).
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Figure 1: The impact of level of punishment (c)

Corollary 3 shows that as the principal’s ability to punish an agent becomes large enough,

the model collapses to Ben-Porath et al. (2014); and as the verification cost diminishes, the

model collapses to Mylovanov and Zapechelnyuk (2017).

5 Asymmetric environment

In this section, I consider the general model with asymmetric agents and show that a

generalized threshold mechanism is optimal in this case. The analysis, however, is much more

complex. Although there is still a unique lower threshold for all agents, different agents may

face different upper thresholds. Because of the complication of the pooling areas at the

top, it is generally extremely difficult to fully characterize the set of optimal mechanisms.

Thus, I provide results only for some important special cases. Section 5.1.1 studies the case

in which one group agents’ value distribution is “better” than the other’s in the sense of

first-order stochastic dominance. Section 5.1.2 studies the case in which one group agents’s

value distribution is “more risky” than the other’s in the sense of mean-preserving spread.

Section 5.2 revisits the symmetric environment. Finally, in Appendix C.3, I characterize the

set of optimal one-threshold mechanisms. If ci = 1 for all i, then these are the set of optimal

mechanisms found in Ben-Porath et al. (2014).

Similar to that in Section 3, I first characterize an optimal mechanism given the lowest

probabilities with which each agent receives the object (ϕ := (ϕ1, . . . , ϕn)). Formally, fix
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ϕi = infvi Pi(vi) for all i and consider the following problem (OPTA− ϕ):

max
P ,Q

n∑
i=1

Evi
[
Pi(vi)

(
vi −

ki
ci

)]
+
ϕiki
ci

,

subject to

ϕi ≤ Pi(vi) ≤
ϕi

1− ci
,∀vi, (AIC′)

0 ≤ Qi(vi) ≤ 1,∀vi, (F1)∑
i

∫
Si

Pi(vi)dFi(vi) ≤ 1−
∏
i

(
1−

∫
Si

dFi(vi)

)
,∀Si ⊂ Vi. (AF2)

Clearly, (OPTA− ϕ) is feasible only if
∑

i ϕi ≤ 1. As in the symmetric case, I approximate

the continuum type space with a finite partition, solve an optimal mechanism in the finite

model and take limits. The following theorem gives an optimal solution to (OPTA− ϕ):

Theorem 4 There exist dl and dui for i = 1, . . . , n such that P ∗ defined by

P ∗i (vi) :=

{
P i(vi) if vi >

ki
ci

ϕi if vi <
ki
ci
.
, (17)

where

P i(vi) :=


ϕi

1−ci if vi > dui + ki
ci∏

j 6=i,duj≥vi−
ki
ci

Fj

(
vi − ki

ci
+

kj
cj

)
if dl + ki

ci
< vi < dui + ki

ci

ϕi if vi < dl + ki
ci

. (18)

is an optimal solution to (OPTA− ϕ).

Unsurprisingly, agents are now ordered by their “net” values vi− ki/ci, which is equal to

their values to the principal minus the effective verification cost borne by the principal.8. As

before, there is a unique lower threshold dl such that all agents whose net values vi − ki/ci
below the threshold are pooled. However, there can be up to n distinct upper thresholds

dui (i = 1, . . . , n).

To illustrate how an optimal mechanism in Theorem 4 can be implemented, assume that

there are two distinct upper thresholds: du1 = · · · = duj > duj+1 = . . . dun. Then the first j

agents whose net values are above du1 are pooled together, while the other n−j agents whose

8This is consistent with the result in Section 3 because when ki = k and ci = c for all i, ordering agents
by net values produces the same result as ordering them by values.
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net values are above duj+1 are pooled together and ranked below any of the first j agents

whose net value is above duj+1. Specifically, the following procedure implements the truth-

telling equilibrium in a threshold mechanism: If there exists some agent i (1 ≤ i ≤ j) whose

net value vi− ki/ci is above du1 , then one such agent is selected at random, receives the good

and is inspected with probability one. If vi−ki/ci < du1 for all 1 ≤ i ≤ j but vi−ki/ci ≥ duj+1

for some 1 ≤ i ≤ j, then the agent with the highest reported net value among the first j

agents receives the good and is inspected with some probability. If vi − ki/ci < duj+1 for all

1 ≤ i ≤ j and vi− ki/ci ≥ duj+1 for some j + 1 ≤ i ≤ n, then one agent is selected at random

among the last n− j agents whose reported net values are above duj+1, receives the good and

is inspected with probability one. If vi − ki/ci < duj+1 for all i but vi − ki/ci ≥ dl for some i,

then the agent with the highest reported net value receives the good and is inspected with

some probability. If vi−ki/ci < dl for all i, then one agent is selected at random and receives

the good and no one is inspected. Finally, an agent is punished if and only if he is found to

have lied.

Because of the complication of the pooling areas at the top, it is much harder to find an

optimal solution to (OPTA−ϕ). Specifically, dui ’s are solved recursively from the largest to

the smallest. Furthermore, to characterize the set of optimal ϕ’s, without prior knowledge

of which set of agents share the same upper threshold, one must consider 2n different cases.9

Thus, I leave the full characterization of optimal mechanisms to future research. In what

follows, I provide results only for some important special cases.

Before proceeding, I introduce the following assumption:

Assumption 2 vi − ki/ci > Evi [vi] for some i.

By a similar argument to that in the proof of Theorem 2, we can show that pure random-

ization is optimal if verification is sufficiently costly or the principal’s ability to punish an

agent is sufficiently limited, i.e., vi−ki/ci ≤ Evi [vi] for all i. To make the problem interesting,

in the rest of this section I assume that Assumption 2 holds.

5.1 First-order stochastic dominance and mean-preserving spread

For simplicity, suppose that there are two groups of agents g ∈ {H,L}. The number

of agents in group g is ng. The value (v) of an agent in group g follows the cumulative

distribution Fg, with density fg and support [v, v] ⊂ R+. The two group of agents are

otherwise identical. An agent gets a private benefit b(v) if he receives the object and 0

9Assume, without loss of generality, that du1 ≥ · · · ≥ dun. If there are ν distinct upper thresholds, then
there are Cνn possibilities to consider. In total, there are

∑n
ν=1 C

ν
n = 2n possibilities to consider.
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otherwise. The principal can verify an agent’s report at a cost k ≥ 0 and impose a penalty

cb(v) on him, where 0 < c ≤ 1.

In this setting, there exists an optimal mechanism that is group symmetric. Hence, I

focus on group symmetric mechanisms in the rest of this subsection. Let ϕg denote the

lowest probability with which a group g agent receives the object. Let Pg denote the interim

probability with which a group g agent receives the object, and Qg be such that PgQg is the

interim probability with which a group g agent is inspected. I slightly abuse notation, and

let ϕ := (ϕH , ϕL), P := (PH , PL) and Q := (QH , QL).

Recall that ρ := k/c denotes the effective verification cost. Define d∗g and d∗∗g , g ∈ {H,L}
by equations (19) and (20), respectively: For g ∈ {H,L},∫ vg

vg

(
v −max{v, d∗g + ρ}

)
dFg(v) + ρ = 0, (19)

(1− c)

[∫ vg

vg

(
v −max{v, d∗∗g + ρ}

)
dFg(v) + ρ

]
+

∫ vg

vg

(
v −min{v, d∗∗g + ρ}

)
dFg(v) = 0.

(20)

5.1.1 First-order stochastic dominance

Suppose that agents in group H are “better” than those in group L in the sense that FH

first-order stochastically dominates FL.

Recall that d∗g and d∗∗g , g ∈ {H,L} are defined by equations (19) and (20), respectively.

I argue that d∗H ≥ d∗L and d∗∗H ≥ d∗∗L . Because v −max{v, dl + ρ} is strictly increasing in v

and FH first-order stochastically dominates FL, we have
∫ v
v

(
v −max{v, dl + ρ}

)
dFH(v) ≥∫ v

v

(
v −max{v, dl + ρ}

)
dFL(v) for all dl. Furthermore, the left-hand side of equation (19)

is strictly decreasing in d∗g. Hence, d∗H ≥ d∗L. By a similar argument, d∗∗H ≥ d∗∗L .

To simplify the analysis, assume further that d∗H ≥ d∗∗L . In this case, an optimal mecha-

nism is characterized by the following theorem:

Theorem 5 Suppose that Assumption 2 holds and FH first-order stochastically dominates

FL so that d∗H ≥ d∗∗L . There are two cases.

1. If nH(1− c)FH(d∗H + ρ) + nL(1− c)FL(d∗H + ρ) ≤ FH(d∗H + ρ)nHFL(d∗H + ρ)nL, then the

optimal

ϕ∗ =

(
FH(d∗H + ρ)nHFL(d∗H + ρ)nL − nL(1− c)FL(d∗H + ρ)

nHFH(d∗H + ρ)
, 1− c

)
,

23



the optimal inspection rule satisfies Q∗ = ((1− ϕ∗H/P ∗H) /c, (1− ϕ∗L/P ∗L) /c) and the

following allocation rule is optimal:

P ∗g (v) =

{
Fg(v)ng−1Fg′(v)ng′ if v − ρ ≥ d∗H
ϕ∗g if v − ρ < d∗H

, for g, g′ ∈ {H,L} and g 6= g′.

2. If nH(1 − c)FH(d∗H + ρ) + nL(1 − c)FL(d∗H + ρ) > FH(d∗H + ρ)nHFL(d∗H + ρ)nL, then

in any optimal mechanism a group L agent never receives the object (P ∗L = 0) and is

never inspected (Q∗L = 0). The mechanism given in Theorem 3, when applied to group

H agents, is optimal.

The inequality in part 1 of Theorem 5 is satisfied if nH and nL are small. If the number of

agents is small, then part 1 of Theorem 5 proves that a one-threshold mechanism is optimal.

Specifically, if there exists an agent whose net value (v−ρ) is above the threshold dl, then the

agent with the highest net value receives the object and is inspected with some probability.

If all agents’ net values are below dl, then one agent is selected randomly and no one is

inspected. Since agents in different groups have different value distributions, the principal

may benefit by selecting agents from one group more frequently than the other when all

agents’ net values are below dl. We say group g is favored if for g, g′ ∈ {H,L} and g 6= g′,

ϕg =
FH(dl + ρ)nHFL(dl + ρ)nL − ng′(1− c)Fg′(dl + ρ)

ngFg(dl + ρ)
, ϕg′ = 1− c.

Note that if all agents’ net values are below dl, group g′ agents are selected just frequently

enough to satisfy their IC, and group g agents are favored in the sense that they are selected

more frequently. To understand the definition of d∗g, consider a marginal reduction in dl.

Clearly, this change has no first-order impact on the allocation efficiency and IC of group g′.

We can apply the analysis in Section 3 to understand the impact of this change on group g.

(Compare (19) with (10).) Hence, it is optimal to choose dl = d∗g when group g is favored.

An alternative interpretation of d∗g is as follows.10 Consider a principal who has two

choices: choosing a group g agent without checking, and checking the group g agent and

then choosing between him and an outside option v. If the value of the outside option is

v = d∗g + ρ, then the principal is indifferent between her two choices. Intuitively, the higher

d∗g is, the principal is more inclined to select a group g agent without checking. Naturally,

the group with the highest d∗g is the principal’s choice for the favored group.

Since FH first-order stochastically dominates FL, d∗H ≥ d∗L. This implies that the princi-

pal’s optimal choice of favored group is group H. This result is consistent with Ben-Porath

10See Ben-Porath et al. (2014) and Doval (2014).
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et al. (2014). The intuition for this result is also clear. Since agents from group H are more

likely to have high values, group H is a better choice to be the favored group.

More interestingly, when the number of agents is large, part 2 of Theorem 5 proves that in

any optimal mechanism agents in group L never receive the object and are never inspected.

It is optimal for the principle to choose a mechanism as if she faces only group H agents.

The intuition of this result is as follows. As the number of agents increases, an agent with

the lowest type becomes worse off and has stronger incentives to exaggerate his type. In

order to maintain IC, the principal must introduce pooling at the top of value distributions.

Because group H is “better” than group L in the sense of first-order stochastic dominance,

it is less costly for the principal to distort group L’s allocations. If d∗H ≥ d∗∗L , then group

H is so much “better” than group L that the principal finds it optimal to ignore group L

agents all together.

To better understand this result, assume that FH(d∗H + ρ)nH−1 ≥ nH(1− c). In this case,

there is a threshold dl such that the following mechanism is optimal: If there is a group H

agent whose net value is above dl, then select the group H agent with the highest net value

and inspect him with some probability. If all group H agents’ net values are below dl but

some group L agents’ net values are above dl, then randomly select one agent among all

group L agents whose net values are above dl and inspects him with some probability. If all

agents’ net values are below dl, then select one agent randomly and inspect no one.

We say group H is favored if

ϕH =
FH(dl + ρ)nH−1

nH
, ϕL = 0,

and group L is favored if

ϕH = 1− c, ϕL =
1− c
nL

FH(dl + ρ)nH − nH(1− c)FH(dl + ρ)

1− cFL(dl + ρ)
.

As before, if group g is favored and all agents’ net values are below dl, group g′ agents are

selected just frequently enough to satisfy their IC, and group g agents are favored in the

sense that they are selected more frequently. By a similar analysis to that above, it is optimal

to set dl = d∗H when group H is favored, and it is optimal to set dl = d∗∗L when group L is

favored (compare (20) with (11)).11 If d∗H ≥ d∗∗L , then group H is the principal choice’s for

favored group. In other words, group H is so much “better” than group L that the principal

finds it optimal to ignore group L agents all together.

Next, we turn to the impact of an increase in the number of agents on agents’ payoffs.

11d∗∗g does not have a straightforward interpretation in terms of search.
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Figure 2: A group H agent’s probability of receiving the good can increase as the number
of agents increases.

The result is somewhat surprising. The common sense is that an agent’s expected payoff is

lower if he faces more fierce competition. This is true for group L agents. However, in the

environment considered here, a group H agent can actually get better off when he has more

competitors. This is possible even if the additional competitors all come from group H. This

is because when the number of agents is small, group H agents need to compete with both

agents in their own group and group L agents; but when the number of agents is large, they

need to compete with only people from their own group. As a result, they essentially face

less competition and their chances of receiving the object can actually increase. This point

is further illustrated by the following numerical example.

Example 2 Consider a numerical example in which the verification cost is k = 0.2 and the

punishment is c = 0.9. Assume that the value of a group L agent is uniformly distributed on

[0, 1] (i.e. FL(v) = v for v ∈ [0, 1]) and the value of a group H agent follows the cumulative

distribution FH(v) = v2 for v ∈ [0, 1]. Clearly, FH first-order stochastically dominates FL.

Furthermore, d∗H ≈ 0.65 > d∗∗L ≈ 0.63. Hence, Theorem 5 applies.

Assume that there are nL = 2 agents in group L. Figure 2 plots a group H agent’s

interim allocation rules (P ∗H) when nH = 2 and nH = 3, respectively. Observe that when the

number of group H agents increases from nH = 2 to nH = 3, the interim probability with

which a group H agent (P ∗H(v)) receives the object weakly increases for all v ∈ [0, 1] and

strictly increases for v ≤ 0.87.
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5.1.2 Mean-preserving spread

Suppose that agents in group H are “less risky” than those in group L in the sense that

FL is a mean-preserving spread of FH . Then [vH , vH ] ⊆ [vL, vL].

Recall that d∗g and d∗∗g , g ∈ {H,L} are defined by equations (19) and (20), respectively. I

argue that d∗H ≥ d∗L and d∗∗H ≤ d∗∗L . Firstly, because v−max{v, dl+ρ} is strictly increasing and

concave in v, and FL is a mean-preserving spread of FH ,
∫ vH
vH

(
v −max{v, dl + ρ}

)
dFH(v) ≥∫ vL

vL

(
v −max{v, dl + ρ}

)
dFL(v) for all dl. Furthermore, the left-hand side of equation (19)

is strictly decreasing in d∗g. Hence, d∗H ≥ d∗L. Secondly, since FL is a mean-preserving spread

of FH , for all dl,∫ vH

vH

[
(1− c)

(
v −max{v, dl + ρ}

)
+
(
v −min{v, dl + ρ}

)]
dFH(v)

=

∫ vH

vH

[
v −

(
dl + ρ

)]
dFH(v)− c

∫ vH

vH

(
v −max{v, dl + ρ}

)
dFH(v)

≤
∫ vL

vL

[
v −

(
dl + ρ

)]
dFL(v)− c

∫ vL

vL

(
v −max{v, dl + ρ}

)
dFL(v)

=

∫ vL

vL

[
(1− c)

(
v −max{v, dl + ρ}

)
+
(
v −min{v, dl + ρ}

)]
dFL(v).

Furthermore, the left-hand side of equation (20) is strictly decreasing in d∗∗g . Hence, d∗∗H ≤ d∗∗L .

Let n∗∗L (ρ, c) be defined by

1− FL(d∗∗L + ρ)n
∗∗
L (ρ,c)

1− FL(d∗∗L + ρ)
=
FL(d∗∗L + ρ)n

∗∗
L (ρ,c)−1

1− c
, (21)

Theorem 6 gives an optimal mechanism when the number of agents is sufficiently small and

sufficiently large, respectively:

Theorem 6 Suppose that Assumption 2 holds and FL is a mean-preserving spread of FH .

1. If nH(1− c)FH(d∗H + ρ)FL(vH)nL +nL(1− c)FL(d∗H + ρ) ≤ FH(d∗H + ρ)nHFL(d∗H + ρ)nL,

then the optimal

ϕ∗ =

(
FH(d∗H + ρ)nHFL(d∗H + ρ)nL − nLϕ∗LFL(d∗L + ρ)

nHFH(d∗H + ρ)
, 1− c

)
,

the optimal inspection rule satisfies Q∗ = ((1− ϕ∗H/P ∗H) /c, (1− ϕ∗L/P ∗L) /c) and the
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following allocation rule is optimal:

P ∗g (v) =

{
Fg(v)ng−1Fg′(v − ρ+ ρg′)

n′g if v − ρ ≥ d∗H
ϕg if v − ρ < d∗H

, for g, g′ ∈ {H,L} and g 6= g′.

2. If nH(1− c)FH(d∗H + ρ)FL(vH)nL +nL(1− c)FL(d∗H + ρ) > FH(d∗H + ρ)nHFL(d∗H + ρ)nL,

ng′(1 − c)Fg′(d∗∗g + ρ) + ng
[
1− cFg(d∗∗g + ρ)

]
≥ Fg′(d

∗∗
g + ρ)ng′ for g, g′ ∈ {H,L} and

g 6= g′, and nL ≥ n∗∗L (ρ, c), then the optimal

ϕ∗ =

(
0,

1− c
nL [1− cFL(d∗∗L + ρ)]

)
,

the optimal inspection rule satisfies Q∗ = (0, (1− ϕ∗L/P ∗L) /c) and the following alloca-

tion rule is optimal: P ∗H = 0 and

P ∗L(v) =

{
ϕ∗L
1−c if v − ρ ≥ d∗∗L
ϕ∗L if v − ρ < d∗∗L

.

Note that the result in part 1 of Theorem 6 is identical to that in part 1 of Theorem 5.

The inequality in part 1 of Theorem 6 is satisfied if nH and nL are small. If the number of

agents is small, then part 1 of Theorem 6 proves that a one-threshold mechanism is optimal.

The analysis in Section 5.1.1 shows that in an one-threshold mechanism it is optimal to

choose dl = d∗g when group g is favored. Furthermore, the group with the highest d∗g is

the principal’s choice for the favored group. Since FL is a mean-preserving spread of FH ,

d∗H ≥ d∗L. This implies that the principal’s optimal choice of favored group is group H. This

result is consistent with Ben-Porath et al. (2014).12 They argue that the reason “why less

risky agents are favored is that there is less benefit from checking an agent if there is less

uncertainty about his type”.

However, part 2 of Theorem 6 proves that if the number of agents is sufficiently large, a

shortlisting procedure is optimal and group L is favored.

Specifically, there exists d̂ such that the following shortlisting procedure is optimal:

Agents whose net values are above d̂ are shortlisted with probability one, and agents whose

net values are below d̂ are shortlisted with some probability. The principal then randomly

selects an agent from the shortlist. The selected agent is inspected if and only if his net

value is above d̂. Among all the shortlisted agents, the principal may benefit from selecting

one group more frequently than another. We say group g is favored if for g, g′ ∈ {H,L} and

12Note that mean-preserving spread is a special case of second-order stochastic dominance.
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Figure 3: A group L agent’s probability of receiving the good can increase as the number of
agents increases.

g 6= g′,

ϕg =
1− c

ng

[
1− cFg(d̂+ ρ)

] , ϕg′ = 0.

Note that group g is favored in the sense that the principal select only group g agents who

are shortlisted. The analysis in Section 3 and Section 5.1.1 implies that it is optimal to

choose d̂ = d∗∗g when group g is favored. A simple comparison tells us that the group with

the highest d∗∗g is the principal’s choice for the favored group.

Since FL is a mean-preserving spread of FH , d∗∗H ≤ d∗∗L . This implies the the principal’s

optimal choice of favored group is group L. This is in contrast to Ben-Porath et al. (2014).

Why are more risky agents favored now? The intuition is that when the number of agents

is sufficiently large, randomization at the top is introduced to sustain IC. In this case, if a

group is favored, the agents in that group are more likely to be selected both when their net

values are above and below the threshold d̂. In contrast, when the number of agents is small

and one-threshold mechanisms are optimal, a favored group is selected more frequently only

when all agents’ net values are below the threshold. Since it is more likely to select an agent

with high type from the right tail if his value distribution is more spread, the more risky

group becomes the principal’s favorite.

If we turn to the payoffs of group L agents, they may get better off as the number of their

competitors increases and group L becomes the principal’s favored group. This possibility

is illustrated by the following numerical example.

Example 3 Consider a numerical example in which the verification cost is k = 0.464 and

the punishment is c = 0.93. Assume that the value of a group H agent is uniformly distributed
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on [1/2, 3/2] (i.e. FH(v) = v − (1/2) for v ∈ [1/2, 3/2]) and the value of a group L agent

follows the cumulative distribution FL(v) = v2/2 for v ∈ [0, 1] and FL(v) = −v2/2 + 2v − 1

for v ∈ [1, 2]. Note that FL has the same distribution as the sum of FH and a uniform

random variable on [−1/2, 1/2]. Clearly, FL is a mean-preserving spread of FH .

Assume that there is nH = 1 agent in group H. If nL = 5, part 1 of Theorem 6 applies.

If nL = 9, part 2 of Theorem 6 applies. Figure 2 plots a group L agent’s interim allocation

rules (P ∗L) when nL = 5 and nL = 9, respectively. Observe that when the number of group L

agents increases from nL = 5 to nL = 9, the interim probability with which a group L agent

(P ∗L(v)) receives the object increases for v ∈ [1.62, 1.65].

5.2 Symmetric environment revisited

In this subsection, I revisit the symmetric environment. Firstly, I argue that, in the

symmetric environment, an optimal mechanism must satisfy: du1 = · · · = dun. To understand

the intuition behind this result, note first that in the symmetric environment dui ≥ duj only

if ϕi ≥ ϕj. Assume, without loss of generality, that du1 ≥ · · · ≥ dun. Consider, for simplicity,

a mechanism in which maxj{vj − kj/cj} > du1 > du2 > du3 , which implies that ϕ1 > ϕ2. A

new mechanism can then be constructed in which ϕ∗1 = ϕ∗2 =
∑2

i=1 ϕi/2 and ϕi = ϕ∗i for all

i ≥ 3. In this new mechanism, agents 1 and 2 share the same upper threshold du∗ ∈ (du1 , d
u
2)

and the upper thresholds of the other agents remain the same. If agents 1 and 2 are ex ante

identical, then this new mechanism improves the principal’s payoff by allocating the good

between agents 1 and 2 more efficiently when their net values, vi−ki/ci, lie between (du1 , d
u
2).

This property of optimal mechanisms facilitates our analysis of optimal ϕ. Theorem 7

below characterizes the set of all optimal ϕ. Let v∗, v∗∗ and v\ be defined by (10), (11) and

(12), respectively.

Theorem 7 Suppose that Assumption 1 holds. There are three cases.

1. If F (v∗)n−1 ≥ n(1− c), then the set of optimal ϕ is the convex hull of

{
ϕ
∣∣ϕi∗ = F (v∗)n−1 − (n− 1)(1− c), ϕj = 1− c ∀j 6= i∗, i∗ ∈ I

}
.

For each optimal ϕ∗ and each agent i, the optimal inspection rule satisfies Q∗i =

(1− ϕ∗i /P ∗i ) /ci and the following allocation rule is optimal:

P ∗i (vi) :=

{
F (vi)

n−1 if vi ≥ v∗

ϕ∗i if vi < v∗
.
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2. If F (v∗)n−1 < n(1− c) and v∗∗ ≤ v\, then the set of optimal ϕ is the convex hull of{
ϕ

∣∣∣∣∣ ϕij = (1− c)F (v∗∗)j−1 if j ≤ h− 1, ϕih = 1−c
1−cF (v∗∗)

−
∑h−1

j=1 (1− c)F (v∗∗)j−1,

ϕij = 0 if j ≥ h+ 1 and (i1, . . . , in) is a permutation of (1, . . . , n)

}
,

where 1 ≤ h ≤ n is such that

1− F (v∗∗)h−1

1− F (v∗∗)
≤ 1

1− cF (v∗∗)
<

1− F (v∗∗)h

1− F (v∗∗)
.

For each optimal ϕ∗ and each agent i, the optimal inspection rule satisfies Q∗i =

(1− ϕ∗i /P ∗i ) /ci and the following allocation rule is optimal:

P ∗i (vi) :=

{
ϕ∗i
1−c if vi ≥ v∗∗

ϕ∗i if vi < v∗∗
.

3. If F (v∗)n−1 < n(1− c) and v∗∗ > v\, then the the set of optimal ϕ is the convex hull of

{
ϕ
∣∣ϕij = (1− c)F (vu(ϕ∗))j−1 ∀j and (i1, . . . , in) is a permutation of (1, . . . , n)

}
,

where ϕ∗ is defined by (13) and, for each ϕ, vl is such that F (vl)n−1 = ϕ and vu

is defined by (7). For each optimal ϕ∗ and each agent i, the optimal inspection rule

satisfies Q∗i = (1− ϕ∗i /P ∗i ) /ci and the following allocation rule is optimal:

P ∗i (vi) :=


ϕ∗i
1−c if vi ≥ vu(ϕ∗)

F (vi)
n−1 if vl(ϕ∗) < vi < vu(ϕ∗)

ϕ∗i if vi ≤ vl(ϕ∗)

.

Theorem 7 illustrates how limiting the principal’s ability to punish agents restricts her

ability to treat agents differently. Supposing that F (v∗)n−1 ≥ n(1 − c), the upper-bounds

on Pi do not bind in an optimal mechanism. This inequality is trivially satisfied if c = 1

as in Ben-Porath et al. (2014). In their study, there is a class of optimal mechanisms called

favored-agent mechanisms. In a favored-agent mechanism, there exists a favored-agent i∗

whose ϕi∗ = F (v∗)n−1 while ϕi = 0 for any other agent i 6= i∗. However, if c < 1, then in an

optimal mechanism it must be that ϕi ≥ 1−c for all i because otherwise some upper-bounds

on Pi would be violated. Intuitively, the worse an agent is treated when he reports a low type,

the stronger incentive he has to exaggerate his type. As a result, as the level of punishment

declines, the extent to which the principal can favor one agent at the cost of others without

violating IC also declines. Fix the ratio of ρ = k/c so that v∗ remains the same. The optimal
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set of ϕ shrinks as c becomes smaller. When c is such that F (v∗)n−1 = n(1− c), the unique

optimal ϕ∗ is such that ϕ∗1 = · · · = ϕ∗n. These results are summarized in Corollary 4.

Corollary 4 Suppose that Assumption 1 holds. Let Φ(ρ, c) denote the set of optimal ϕ∗. If

c ≥ 1− F (v∗)n−1/n, then c < c′ implies that Φ(ρ, c) ( Φ(ρ, c′) and

lim
c↘1−F (v∗)n−1/n

Φ(ρ, c) =

{(
F (v∗)n−1

n
, . . . ,

F (v∗)n−1

n

)}
,

where v∗ is given by (10).

If c is small enough so that F (v∗)n−1 < n(1−c), then the comparison is less clear because

the sets of optimal mechanisms are disjoint for different levels of punishment. In this case,

the principal can again treat agents differently but only to the extent that they share the

same upper threshold. Assume, without loss of generality, that an agent with a smaller index

is more favored by the principal in terms of a larger ϕi. Then, in an optimal mechanism, the

first h agents cannot be favored too much in the sense that
∑h

i=1 ϕi ≤ (1− c)
∑h

i=1 F (vu)i−1

for all h = 1, . . . , n.

6 Concluding remarks

I conclude by comparing the results in this paper with those in previous papers regarding

the role played by the number of agents. In this paper, I study the problem of a principal

who has a single indivisible object to allocate among a finite number of agents. Each agent

has private information regarding the principal’s payoff of allocating the object to him.

There are no monetary transfers. The principal can inspect agents’ reports at a cost and

punish them, but punishments are sufficiently limited. As the number of agents increases,

the form of optimal mechanisms changes and the comparative statics results can be reversed.

Specifically, if the number of agents is small, the optimal mechanism only involves a pooling

area at the bottom of value distribution as in Ben-Porath et al. (2014). As the number of

agents increases, pooling at the top is required to guarantee incentive compatibility as in

Mylovanov and Zapechelnyuk (2017). One implication of this result is that the principal

favors “less risky” agents when the number of agents is small, but “more risky” agents when

the number of agents is large.

Earlier mechanism design papers studying an allocation problem have often focused on

mechanisms with monetary transfers and ignored the possibility of the principal verifying

agents’ information. In these papers, a robust feature of optimal mechanisms is that they are

independent of the number of agents. For example, in the seminal work of Myerson (1981),
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under some regularity conditions, the revenue-maximizing mechanism can be implemented

by a first-price or second-price auction with a reserve price. In particular, this optimal

reserve price is independent of the number of agents. This difference can be explained by

the difference in binding IC constraints in the two settings. In Myerson (1981), the binding

IC constraints are between adjacent types, and the difference between two adjacent types’

allocation rules is insensitive to a change in the number of agents. However, in this paper, the

binding IC constraints correspond to those of the lowest possible type misreports as higher

types. Note that, as the number of agents increases, the lowest possible type’s probability

of receiving the object declines much faster than that of a much higher type.

In Ben-Porath et al. (2014), the optimal mechanisms are also independent of the number

of agent.13 What makes the difference? The analysis in this paper implies that, although

verification is costly, given the rationing area at the bottom of the value distribution, the

principal prefers to guarantee IC by verifying an agent’s information and punishing him

rather than by introducing rationing area to the top. If the level of punishment is sufficiently

limited as in this paper, rationing at the top becomes indispensable as the number of agents

increases. Furthermore, the size of the rationing area at the top required to sustain IC

increases as the number of agents increases. This is why the optimal mechanisms depend

on the number of agents. In contrast, if the level of punishment is high enough so that

the principal can always guarantee IC by verification as in Ben-Porath et al. (2014), the

optimal mechanisms are independent of the number of agents. In this sense, introducing

limited punishment is important for us to understand the role played by the number of

agents in shaping the optimal mechanisms. This channel is also present in Mylovanov and

Zapechelnyuk (2017) in which verification is free. The difference between Mylovanov and

Zapechelnyuk (2017) and this paper is that, since verification is free in their paper, an

optimal mechanism contains a smaller rationing area at the bottom and rationing at the top

is required to sustain IC regardless of the number of agents.

Finally, the change in the form of optimal mechanism also affects the principal’s choice of

favored agents. Recall that whenever the principal chooses an agent randomly, she can favor

one agent by selecting him more frequently than the others. When the number of agents

is small, the principal favors “less risky” agents because she benefits less from checking an

agent if there is less uncertainty about his type. When the number of agents is large, the

principal favors “more risky” agents because now there is also rationing at the top and it is

more likely to select an agent with high type if there is more uncertainty about his type.

13Recall that when punishment is large enough, a one-threshold mechanism is optimal and the threshold
is independent of the number of agents by the third part of Corollary 2.
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A Omitted proofs in Sections 3

A polymatroid is a polytope of the following type

P (g) :=

{
x ∈ RE

∣∣∣∣∣x ≥ 0,
∑
e∈A

xe ≤ g(A) for all A ⊂ E

}
, (22)

where E is a finite set and g : 2E → R+ is a submodular function.

Lemma 2 There exists a monotone and submodular function g : 2E → R+ with g(∅) = 0

and P (g) = P (g).

Proof. Let g(∅) := 0 and g(X) := minA⊃X g(A) for X 6= ∅. Let X ⊂ Y ⊂ E. If X = ∅,
then g(X) = 0 ≤ g(Y ). If X 6= ∅, then A ⊃ Y implies that A ⊃ X, and therefore we have

g(X) = min
A⊃X

g(A) ≤ min
A⊃Y

g(A) = g(Y ).

Hence, g is monotone. Let e ∈ E\Y . To show that g is submodular, it suffices to show that

g(Y ∪ {e})− g(Y ) ≤ g(X ∪ {e})− g(X).

Because g(∅) = 0 ≤ minA g(A), it suffices to show that

min
C⊃Y ∪{e}

g(C) + min
D⊃X

g(D) ≤ min
A⊃X∪{e}

g(A) + min
B⊃Y

g(B).

Let A∗ ∈ arg minA⊃X∪{e} g(A) and B∗ ∈ arg minB⊃Y g(B). Then A∗ ∪ B∗ ⊃ Y ∪ {e} and

A∗ ∩B∗ ⊃ X. Hence,

min
A⊃X∪{e}

g(A) + min
B⊃Y

g(B) = g(A∗) + g(B∗)

≥ g(A∗ ∪B∗) + g(A∗ ∩B∗)

≥ min
C⊃Y ∪{e}

g(C) + min
D⊃X

g(D),

where the first inequality holds because g is submodular. Hence, g is submodular. Finally, I

want to show that P (g) = P (g). Because g(A) ≥ g(A) for all A ⊂ E, we have P (g) ⊂ P (g).

Suppose that there exists x ∈ RE such that x ∈ P (g) and x /∈ P (g). Then there exists A 6= ∅
such that

∑
e∈A xe > g(A). By construction, there exists B ⊃ A such that g(A) = g(B).

However, then we have
∑

e∈B xe ≥
∑

e∈A xe > g(A) = g(B), which is a contradiction to that

x ∈ P (g). Hence, P (g) = P (g).
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Proof of Lemma 1. First, because H(∅) = 0, and H is non-decreasing and submodular,

ẑt is feasible. Next, I show that ẑt is optimal.

I begin the analysis by characterizing H. Clearly, there exists a unique t ∈ {1, . . . ,m}
such that

1

n

(
t−1∑
τ=1

f τ

)n−1

< ϕ ≤ 1

n

(
t∑

τ=1

f τ

)n−1

.

Here, t is the minimum t such that if all agents whose values are weakly less than vt are

pooled together and ranked below any other agents with higher values, then they receive the

object with probability of at least ϕ. It is easy to verify that14

H(St) =

{
1−

(∑t−1
τ=1 f

τ
)n − nϕ∑m

τ=t f
τ if t > t

1− nϕ if t ≤ t
. (23)

Let ∆(t) := H(St) − n
∑m

τ=t
cϕfτ

1−c for t = 1, . . . ,m + 1. Then ∆(m + 1) = 0 and ∆(t) =

∆̃
(∑t−1

τ=1 f
τ
)
, where ∆̃(x) := 1− nϕ

1−c−x
n− nϕx

1−c is concave in x. If ∆(1) = 1−nϕ/(1−c) ≥ 0,

then let t := 0; otherwise, there exists a unique t ∈ {1, . . . ,m+ 1} such that

H(St) ≤ n
m∑
τ=t

cϕf τ

1− c
and H(St+1) > n

m∑
τ=t+1

cϕf τ

1− c
.

Let λ := (λ1, . . . , λm) and µ := (µ1, . . . , µm) denote the dual variables corresponding to

the upper-bounds and lower-bounds in (IC′m1), and β := (β(S))S denote the dual variables

corresponding to (F2m1) in problem (OPTm1−ϕ). Consider the dual to problem (OPTm1−
ϕ), denoted by (DOPTm1− ϕ),

min
λ,β,µ

m∑
t=1

cϕf tλt

1− c
+
∑
S

β(S)H(S) + ϕ

m∑
t=1

f tvt,

subject to

vt − k

c
− λt + µt − n

∑
S3t

β(S) ≥ 0,∀t,

λ ≥ 0, β ≥ 0, µ ≥ 0.

Let ẑ be define in (5), and (λ̂, β̂, µ̂) be the corresponding dual variables. Let t0 be such that

14This result can be seen as a corollary of Lemmas 8 and 9 in Appendix C.
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vt ≥ k/c if and only if t ≥ t0.

Case 1: vt < k
c

or t < t0. In this case, we have

ẑt :=

{
cϕf t

1−c if t > t

0 if t ≤ t
.

Let β̂(S) = 0 for all S. If vt < k/c, then let λ̂t = 0 and µ̂t = k/c − vt > 0; if vt ≥ k/c,

then let µ̂t = 0 and λ̂t = vt − k/c ≥ 0. It is easy to verify that this is a feasible solution

to (DOPTm1 − ϕ), and the complementary slackness conditions are satisfied. Finally, the

dual objective is equal to the primal objective:

m∑
t=t0

cϕf t

1− c

(
vt − k

c

)
+ ϕ

m∑
t=1

f tvt.

By the duality theorem, ẑ is an optimal solution to (OPTm1− ϕ).

Case 2: vt ≥ k
c

or t ≥ t0. In this case, we have

ẑt :=


cϕf t

1−c if t > t
1
n
H(St)−

∑m
τ=t+1

cϕf t

1−c if t = t
1
n

[
H(St)−H(St+1)

]
if t0 ≤ t < t

0 if t < t0

,

Let β̂(S) > 0 if S = St for t0 ≤ t ≤ t; and β̂(S) = 0 otherwise. If t < t0, then let λ̂t = 0 and

µ̂t = k/c − vt ≥ 0. If t0 ≤ t ≤ t, then let λ̂t = µ̂t = 0, β̂(St) = (vt − vt−1)/n for t > t0 and

β̂(St
0
) = (vt

0 − k/c)/n. If t > t, then let λ̂t = vt − vt and µ̂t = 0. It is easy to verify that

this is a feasible solution to (DOPTm1 − ϕ), and the complementary slackness conditions

are satisfied. Finally, the dual objective is equal to the primal objective:

1

n
H(St

0

)

(
vt

0 − k

c

)
+

t∑
t=t0+1

1

n
H(St)

(
vt − vt−1

)
+

m∑
t=t+1

cϕf t

1− c

(
vt − k

c

)
+ ϕ

m∑
t=1

f tvt.

By the duality theorem, ẑ is an optimal solution to (OPTm1− ϕ).

Lemma 3 An optimal solution to (OPT − ϕ) exists.

Proof. Let D denote the set of feasible solutions, i.e., solutions satisfying (IC′) and (F2).

Consider D as a subset of L2, the set of square integrable functions with respect to the prob-

ability measure corresponding to F . Topologize L2 with its weak∗, or σ(L2, L2), topology.

It is straightforward to verify that D is σ(L2, L2) compact. See, for example, Border (1991).
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Let V (ϕ) := supP∈D Ev
[
P (v)

(
v − k

c

)]
+ ϕk

c
. Let {Pν} be a sequence of feasible solutions

to (OPT − ϕ) such that ∫
Pν(v)

(
v − k

c

)
dF (v) +

ϕk

c
→ V (ϕ).

By Helly’s selection theorem, after taking subsequences, I can assume that there exists P

such that {Pν} converges pointwise to P . Because D is σ(L2, L2) compact, after taking

subsequences again, I can assume that there exists P ∈ D such that {Pν} converges to P in

σ(L2, L2) topology. Because v − k/c ∈ L2, the weak convergence of {Pν} implies that∫
P (v)

(
v − k

c

)
dF (v) +

ϕk

c
= V (ϕ).

Proof of Theorem 1. Let {Pm} be the sequence of optimal solutions to (OPTm − ϕ)

defined in Corollary 1. Let P
t

m := zt/f t + ϕ for all t. Then

P t
m :=

{
P
t

m if vt > k
c

ϕ if vt < k
c

.

Recall that H is given by (23). Thus, there are three cases. If t > t, then

P
t

m =



ϕ
1−c if t > t
1
n
− 1
n

(∑t
τ=1 f

τ
)n
−
∑m
τ=t+1

ϕft

1−c

f t
if t = t

1
n(
∑t
τ=1 f

τ)
n
− 1
n(
∑t−1
τ=1 f

τ)
n

f t
if t < t < t

1
n(
∑t
τ=1 f

τ)
n
−ϕ

∑t−1
τ=1 f

τ

f t
if t = t

ϕ if t < t

.

If t = t, then

P
t

m =


ϕ

1−c if t > t
1
n
−ϕ

∑t−1
t=1 f

t−
∑m
τ=t+1

ϕft

1−c
f t

if t = t

ϕ if t < t

.

If t < t, then

P
t

m =

{
ϕ

1−c if t > t

ϕ if t < t
.

37



I can extend Pm to V by setting

Pm(v) := P t
m for v ∈

[
v +

(t− 1)(v − v)

m
, v +

t(v − v)

m

]
, t = 1, . . . ,m.

Extend Pm to V in a similar fashion. Compare Pm and Pϕ. It is easy to see that {Pm}
converges pointwise to Pϕ. Hence, {Pm} converges pointwise to P ∗ϕ, which is a feasible

solution to (OPT − ϕ).

To show the optimality of P ∗ϕ, let P̂ be an optimal solution to (OPT − ϕ), which exists

by Lemma 3 in the appendix. Define P̂m be such that

P̂ t
m :=

1

f t

∫ v+
t(v−v)
m

v+
(t−1)(v−v)

m

P̂ (v)dF (v) for t = 1, . . . ,m,

and it can be extended to V by setting

P̂m(v) := P̂ t
m for v ∈

[
v +

(t− 1)(v − v)

m
, v +

t(v − v)

m

]
, t = 1, . . . ,m.

By the Lebesgue differentiation theorem, {P̂m} converges pointwise to P̂ . It is easy to verify

that P̂m defined on {v1, . . . , vm} is a feasible solution to (OPT − ϕ). Hence

m∑
t=1

f tP̂ t
m

(
vt − k

c

)
+
ϕk

c
≤

m∑
t=1

f tP t
m

(
vt − k

c

)
+
ϕk

c

By the dominated convergence theorem,

m∑
t=1

f tP̂ t
m

(
vt − k

c

)
=

∫
V

P̂m(v)

(
v − k

c

)
dF (v)→

∫
V

P̂ (v)

(
v − k

c

)
dF (v),

and

m∑
t=1

f tP t
m

(
vt − k

c

)
=

∫
V

Pm(v)

(
v − k

c

)
dF (v)→

∫
V

P ∗ϕ(v)

(
v − k

c

)
dF (v).

Hence, ∫
V

P ∗ϕ(v)

(
v − k

c

)
dF (v) =

∫
V

P̂ (v)

(
v − k

c

)
dF (v),

which implies that P ∗ϕ is optimal.

Lemma 4 Suppose that (1−c)/n ≤ ϕ ≤ min{1/n, 1−c}. Then vl ≥ vu if and only if vl ≤ v\,

where v\ is defined by (12). Furthermore, if n(1− c) < 1, then v\ is strictly increasing in n
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and strictly decreasing in c.

Proof. Because (1− c)/n ≤ ϕ ≤ min{1/n, 1− c}, vl and vu satisfies:

1− F (vu)n

1− F (vu)
=
F (vl)n−1

1− c
. (24)

Define

∆(v) :=
F (v)n−1(1− F (v))

1− c
− 1 + F (v)n.

Then ∆(v) = −1 < 0 and ∆(v) = 0. Then

∆′(v) =
F (v)n−2f(v)

1− c
[−cnF (v) + n− 1] .

Clearly, the term in the brackets is strictly decreasing in v. Moreover, ∆′(v) = n − 1 > 0

and ∆′(v) = n(1− c)− 1.

If n(1 − c) ≥ 1, then ∆′(v) ≥ 0 for all v. Hence, ∆(v) is non-decreasing, and therefore

∆(v) ≤ 0 for all v. Hence,

1− F (vu)n

1− F (vu)
=
F (vl)n−1

1− c
≤ 1− F (vl)n

1− F (vl)
,

which implies vl ≥ vu.

If n(1 − c) < 1, then there exists v[ such that ∆′(v) > 0 for v ∈ [v, v[] and ∆′(v) < 0

for v ∈ [v[, v]. Hence, ∆(v) in strictly increasing in [v, v[], and strictly decreasing in [v[, v].

Hence, there exists a unique v\ ∈ (v, v) such that ∆(v) ≤ 0 if and only if v ≤ v\. By (24),

this implies that vl ≥ vu if and only if vl ≤ v\. Finally, for any v, ∆(v) is strictly decreasing

in n and strictly increasing in c. Hence, v\ is strictly increasing in n and strictly decreasing

in c.

Proof of Theorem 3. First, if ϕ ≤ (1− c)/n, then vu = v̂ = v, and

P ∗ϕ(v) :=

{
ϕ

1−c if v ≥ k
c

ϕ if v < k
c

.

The principal’s objective becomes

cϕ

1− c

∫ v

k
c

(
v − k

c

)
dF (v) + ϕ

∫ v

v

vdF (v),

which is strictly increasing in ϕ. Hence, in optimum, ϕ ≥ (1− c)/n.
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Given ϕ, let Z(ϕ) denote the principal’s optimal payoff. Suppose that ϕ ≥ 1 − c or

equivalently F (vl)n−1 ≥ n(1−c). Then vu = v and the principal’s payoff is Z(ϕ) = Z1(vl(ϕ)),

where

Z1(vl) :=

∫ v

max{vl, kc}

(
v − k

c

)
F (v)n−1dF (v)

+
1

n
F (vl)n−1

∫ max{vl, kc}

v

(
v − k

c

)
dF (v) +

1

n
F (vl)n−1k

c
.

If vl < k/c, then Z1(vl) is strictly increasing in vl. If vl ≥ k/c, then

Z ′1(vl) =
n− 1

n
F (vl)n−2f(vl)

{
Ev[v]− Ev[max{v, vl}] +

k

c

}
.

Clearly, the term inside the braces is strictly decreasing in vl. Recall that v∗ ≥ k/c is defined

by (10). Hence, Z ′1(vl) ≥ 0 if and only if vl ≤ v∗, and Z1 achieves its maximum at vl = v∗. I

show in Lemma 5 below that, for any ϕ and the corresponding vl, we have Z(ϕ) ≤ Z1(vl(ϕ)).

Hence,

Z(ϕ) ≤ Z1(vl(ϕ)) ≤ Z1(v∗).

Thus, if F (v∗)n−1 ≥ n(1 − c), then it is optimal to set ϕ∗ = F (v∗)n−1/n and vl = v∗. This

proves the first part of Theorem 3.

Suppose that F (v∗)n−1 < n(1 − c). Then in optimum ϕ ≤ 1 − c. Because (1 − c)/n ≤
ϕ ≤ 1/n, there is a one-to-one correspondence between v̂ and ϕ. Given ϕ, v̂(ϕ) is uniquely

pinned down by

1− nϕF (v̂)− nϕ

1− c
[1− F (v̂)] = 0.

If ϕ is such that vl ≥ vu, then Z(ϕ) = Z2(v̂(ϕ)), where

Z2(v̂) :=
1− c

n(1− cF (v̂))

∫ max{v̂, kc}

v

(
v − k

c

)
dF (v)

+
1

n(1− cF (v̂))

∫ v

max{v̂, kc}

(
v − k

c

)
dF (v) +

1− c
n(1− cF (v̂))

k

c
.
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If v̂ < k/c, then Z2(v̂) is strictly increasing in v̂. If v̂ ≥ k/c, then

Z ′2(v̂) =
cf(v̂)

n(1− cF (v̂))2

{
Ev[v]− Ev[min{v, v̂}] + (1− c)

[
Ev[v]− Ev[max{v, v̂}] +

k

c

]}
.

Clearly, the term inside the braces is strictly decreasing in v̂. Recall that v∗∗ > v∗ ≥ k/c is

defined by (11). Hence, Z ′2(v̂) ≥ 0 if and only if v̂ ≤ v∗∗, and Z2 achieves its maximum at

v̂ = v∗∗. I show in Lemma 6 below that, for any ϕ ≤ 1− c and the corresponding v̂, we have

Z(ϕ) ≤ Z2(v̂(ϕ)). Hence,

Z(ϕ) ≤ Z2(v̂(ϕ)) ≤ Z2(v∗∗).

Finally, by Lemma 4, vl ≥ vu if and only if vl ≤ v\. Thus, if v∗∗ ≤ v\, then it is optimal to

set ϕ∗ = (1− c)/n(1− cF (v∗∗)) and v̂ = v∗∗. This proves the second part of Theorem 3.

Suppose that F (v∗)n−1 < n(1− c) and v∗∗ > v\. Then

Z(ϕ) =ϕ

∫ max{vl, kc}

v

(
v − k

c

)
dF (v) +

∫ max{vu, kc}

max{vl, kc}

(
v − k

c

)
F (v)n−1dF (v)

+
ϕ

1− c

∫ v

max{vu, kc}

(
v − k

c

)
dF (v) +

ϕk

c
.

If ϕ is such that vl < k/c, then Z(ϕ) is strictly increasing in ϕ. If vl ≥ k/c, then

Z ′(ϕ) =
1

1− c
[Ev[v]− Ev[min{v, vu}]] + Ev[v]− Ev[max{v, vl}] +

k

c
.

Because both vl and vu are strictly increasing in ϕ, Z ′(ϕ) is strictly decreasing in ϕ. Let ϕ∗

be such that

Ev[v]− Ev[min{v, vu(ϕ∗)}] + (1− c)
[
Ev[v]− Ev[max{v, vl(ϕ∗)}] +

k

c

]
= 0. (13)

Compare (13) with (11) and (10). It is easy to see that vu(ϕ∗) > v∗∗ > vl(ϕ∗) > v∗. Hence,

Z ′(ϕ) ≥ 0 if and only if ϕ ≤ ϕ∗, and Z achieves its maximum at ϕ = ϕ∗. This proves the

third part of Theorem 3.

Definition 1 (Karamardian and Schaible (1990)) A function g(v) is quasi-monotone

if v′ > v and g(v) > 0 imply g(v′) ≥ 0.

Lemma 5 Let Z and Z1 be defined as in the proof of Theorem 3. Then Z(ϕ) ≤ Z1(vl(ϕ)).

Proof. Fix ϕ and the corresponding vl. Note that Z1(vl) is attained by the following

41



allocation rule

P1(v) :=

{
F (v)n−1 if v ≥ max

{
vl, k

c

}
ϕ if v < max

{
vl, k

c

} .

It is easy to see that P1 − P ∗ϕ is quasi-monotone and

∫ v

v

P1(v)dF (v) =

∫ v

v

P ∗ϕ(v)dF (v) =
1

n
.

Moreover, v − k/c is non-decreasing in v. Hence, by Lemma 1 in Persico (2000), Z(ϕ) ≤
Z1(vl(ϕ)).

Lemma 6 Let Z and Z2 be defined as in the proof of Theorem 3. If ϕ ≤ 1 − c, then

Z(ϕ) ≤ Z2(v̂(ϕ)).

Proof. Fix ϕ and the corresponding v̂. Note that Z2(v̂) is attained by the following allocation

rule

P2(v) :=

{
ϕ

1−c if v ≥ max
{
v̂, k

c

}
ϕ if v < max

{
v̂, k

c

} .

It is easy to see that P2 − P ∗ϕ is quasi-monotone and

∫ v

v

P2(v)dF (v) =

∫ v

v

P ∗ϕ(v)dF (v) =
1

n
,

Moreover, v − k/c is non-decreasing in v. Hence, by Lemma 1 in Persico (2000), Z(ϕ) ≤
Z1(v2(ϕ̂)).

Proof of Theorem 2. Let Z and Z1 be defined as in the proof of Theorem 3. If

v − k/c ≤ Ev[v], then Z1(v) is strictly increasing in vl and achieves its maximum when

vl = v. By Lemma 5, Z(ϕ) ≤ Z1(vl(ϕ)) ≤ Z1(v). Note that Z1(v) can be achieved via pure

randomization. This completes the proof.

B Omitted proofs in Section 4

Proof of Corollary 2. The analysis in Section 4 has proved most results of Corollary 2.

What is left to prove is that if n∗(ρ, c) < n < n∗∗(ρ, c), then vl(n, ρ, c) is strictly increasing

in n, ρ and c and vu(n, ρ, c) is strictly decreasing in n and strictly increasing in ρ and c. If

n∗(ρ, c) < n < n∗∗(ρ, c), then vl and vu satisfy (24). By (24), vu is strictly increasing in vl

and vice versa.
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To prove the properties of vl, let

∆l(v
l, n, ρ, c) := Ev[v]− Ev[min{v, vu}] + (1− c)

[
Ev[v]− Ev[max{v, vl}] + ρ

]
,

where vu is a function of vl, n and c defined by (24). Then ∆l(v
l, n, ρ, c) ≡ 0 by (13).

Furthermore, we have

∂∆l

∂vl
= −[1− F (vu)]

∂vu

∂vl
− (1− c)F (vl) < 0,

∂∆l

∂n
= −[1− F (vu)]

∂vu

∂n
> 0,

∂∆l

∂ρ
= 1− c > 0,

∂∆l

∂c
= −

[
Ev[v]− Ev[max{v, vl}] + ρ

]
> 0.

(25)

Hence, by the implicit function theorem, we have ∂vl/∂n > 0, ∂vl/∂ρ > 0 and ∂vl/∂c > 0.

To see that ∂vu/∂n < 0 in the second line in (25), let

∆(vu, vl, n) :=
F (vl)n−1(1− F (vu))

1− c
− 1 + F (vu)n.

Then ∆(vu, vl, n) ≡ 0 by (24). Furthermore, we have

∂∆

∂vu
=

[
−F (vl)n−1

1− c
+ nF (vu)n−1

]
f(vu) =

[
−1− F (vu)n

1− F (vu)
+ nF (vu)n−1

]
f(vu) < 0,

∂∆

∂n
=
F (vl)n−1[1− F (vu)] logF (vl)

1− c
+ F (vu)n logF (vu) < 0.

Hence, by the implicit function theorem, ∂vu/∂n = −(∂∆/∂n)/(∂∆/∂vu) < 0.

To prove the properties of vu, let

∆u(v
u, n, ρ, c) := Ev[v]− Ev[min{v, vu}] + (1− c)

[
Ev[v]− Ev[max{v, vl}] + ρ

]
,

where vl is a function of vu, n and c defined by (24). Then ∆u(v
u, n, ρ, c) ≡ 0 by (24).
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Furthermore, we have

∂∆u

∂vu
= −[1− F (vu)]− (1− c)F (vl)

∂vl

∂vu
< 0,

∂∆u

∂n
= −(1− c)F (vl)

∂vl

∂n
< 0,

∂∆u

∂ρ
= 1− c > 0,

∂∆u

∂c
= −

[
Ev[v]− Ev[max{v, vl}] + ρ

]
> 0.

(26)

Hence, by the implicit function theorem, we have ∂vu/∂n < 0, ∂vu/∂ρ > 0 and ∂vu/∂c > 0.

To see that ∂vl/∂n > 0 in the second line in (26), note that

∂∆

∂vl
=

(n− 1)F (vl)n−2f(vl)[1− F (vu)]

1− c
> 0.

Hence, by the implicit function theorem, ∂vl/∂n = −(∂∆/∂n)/(∂∆/∂vl) > 0.

C Asymmetric environment

C.1 Finite case

Let D := ∪i[vi − ki/ci, vi − ki/ci]. Let d := inf D and d := supD. Fix an integer m ≥ 2.

For t = 1, . . .m, let

dt :=d+
(2t− 1)(d− d)

2m
,

f ti :=Fi

(
d+

t(d− d)

m
+
ki
ci

)
− Fi

(
d+

(t− 1)(d− d)

m
+
ki
ci

)
, i = 1, . . . , n.

Consider the finite model in which, for each agent i, vi − ki/ci can take only m possible

different values (i.e. vi − ki/ci ∈ {d1, . . . , dm}) and the probability mass function satisfies

fi(d
t) = f ti for t = 1, . . . ,m. It is possible that f ti = 0 for some t. The corresponding problem

of (OPTA− ϕ) in the finite model, denoted by (OPTAm− ϕ), is given by:

max
P

n∑
i=1

[
m∑
t=1

f tiP
t
i d

t +
ϕiki
ci

]
,
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subject to

ϕi ≤ P t
i ≤

ϕi
1− ci

,∀t, (AIC′m)

n∑
i=1

∑
t∈Si

f tiP
t
i ≤ 1−

n∏
i=1

∑
t/∈Si

f ti ,∀Si ⊂ {1, . . . ,m}. (AF2m)

Define H(S) := 1 −
∏n

i=1

∑
t/∈Si f

t
i −

∑n
i=1

∑
t∈Si ϕif

t
i for all S := (S1, . . . , Sn) and Si ⊂

{1, . . . ,m} for all i. Define H(S) := minS′⊃S H(S ′) for all S. Let zti := f ti (P t
i − ϕi) for all i

and t. By Lemma 2, (OPTAm− ϕ) can be rewritten as (OPTAm1− ϕ)

max
z

n∑
i=1

m∑
t=1

ztid
t +

n∑
i=1

ϕi

(
m∑
t=1

f ti d
t +

ki
ci

)
,

subject to

0 ≤ zti ≤
ciϕif

t
i

1− ci
, ∀i, ∀t, (AIC′m1)

n∑
i=1

∑
t∈Si

zti ≤ H(S),∀S ⊂ {1, . . . ,m}n. (AF2m1)

Note that if f ti = 0, then zti = 0 by definition and therefore satisfies (AIC′m1) automatically.

Algorithm 1 below describes an algorithm that finds a feasible solution to (OPTAm−ϕ).

I start by giving a verbal overview of the algorithm. It is in the spirit of greedy algorithms. It

begins by assigning values to {zmi }i who have the largest weight dm in the objective function.

Let the set Im0 collect all the agents whose highest net values are below dm. If i ∈ Im0 , then

fmi = 0 by definition and zmi = 0 by (AIC′m1). Next check whether there exists some agent

i /∈ Im0 such that if zmi is assigned the highest value allowed by (AF2m1), the upper-bound on

zmi in (AIC′m1) is respected. If so, assign zmi this highest value. Continue until no such agent

can be found. Then, among all the agents whose zmi have not been assigned values yet, check

whether there exists a pair of agents, a triple of agents and etc. until there does not exist a

group of agents I ′ such that we can assign
∑

i∈I′ z
m
i the highest value allowed by (AF2m1)

while respecting the upper-bounds in (AIC′m1). If now there still exists an agent i whose zmi

has not been assigned a value yet, then let zmi = ciϕif
t
i /(1− ci) (the upper-bound on zmi in

(AIC′m1)). Let the set Im1 collect all the agents not in Im0 and for whom the upper-bounds

on zmi in (AIC′m1) do not bind. Continue to assign values to {zm−1
i }i, {zm−2

i }i, . . . {z1
i }i in

the same fashion.

In order to define the algorithm formally, I introduce some notations. Let Sti := {t, . . . ,m}
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and Sm+1
i := ∅ for all i and t, St := {t, . . . ,m}n for all t and Sm+1 := ∅. Define S + (t, i) :=

(S1, . . . , Si−1, Si ∪ {t}, Si+1 . . . , Sn) and S − (t, i) := (S1, . . . , Si−1, Si\{t}, Si+1 . . . , Sn).

Algorithm 1 Let Im0 := {i |fmi = 0} and zmi := 0 for all i ∈ Im0 . Define Im1 ⊂ I\Im0 , nm,{
πm,1, . . . , πm,n

m}
,
{
Sm,1, . . . ,Sm,nm

}
and zmi for all i /∈ Im0 recursively as follows.

1. Let Im1 = ∅ and ν = 1.

2. If Im1 = I\Im0 , then go to step 5. Otherwise, let ι = 1 and go to step 2.

3. If there exists I ′ 6= ∅ such that |I ′| = ι, I ′ ∩ (Im0 ∪ Im1 ) = ∅ and

H

(
S +

∑
i∈I′

(m, i)

)
−H(S) ≤

∑
i∈I′

ciϕif
m
i

1− ci
,

where Sj = Smj if j ∈ Im1 and Sj = Sm+1
j otherwise, then let zmi ≤ ciϕif

m
i /(1− ci) for

i ∈ I ′ be such that

∑
i∈I′

zmi = H

(
S +

∑
i∈I′

(m, i)

)
−H(S).

Let πm,ν := I ′ and Sm,ν := S. Redefine ν as ν + 1 and Im1 as I ′ ∪ Im1 , and go to step

2. If there does not exist such an I ′, go to step 4.

4. If ι < n − |Im0 ∪ Im1 |, then redefine ι as ι + 1 and go to step 3. If ι = n − |Im0 ∪ Im1 |,
then go to step 5.

5. Let nm := ν − 1 and zmi := ciϕif
m
i /(1− ci) for all i ∈ I\ (Im0 ∪ Im1 ).

Let 1 ≤ t ≤ m − 1. Suppose that we have defined Iτ0 , Iτ1 , nτ ,
{
πτ,1, . . . , πτ,n

τ}
,{

Sτ,1, . . . ,Sτ,nτ
}

and {zτi }i for all τ ≥ t + 1. Let It0 := {i|f ti = 0} and zti := 0 for all

i ∈ It0. Define It1 ⊂ I\It0,
{
πt,1, . . . , πt,n

t}
,
{
St,1, . . . ,St,nt

}
and zti for all i /∈ It0 recursively

as follows.

1. Let It1 := ∅ and ν = 1.

2. If It1 = I\It0, then go to step 5. Otherwise, let ι = 1 and go to step 2.

3. If there exists I ′ 6= ∅ such that |I ′| = ι, I ′ ∩ (It0 ∪ It1) = ∅ and

min
S
H

(
S +

∑
i∈I′

(t, i)

)
−

n∑
j=1

∑
τ∈Sj

zτj ≤
∑
i∈I′

ciϕif
t
i

1− ci
,
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where S = (St11 , . . . , S
tn
n ) with tj ≥ t if j ∈ πt,1 ∪ · · · ∪ πt,ν−1, tj = t + 1 if j ∈ I ′ and

tj ≥ t+ 1 otherwise, then let zti ≤ ciϕif
t
i /(1− ci) for i ∈ I ′ be such that

∑
i∈I′

zti = min
S
H

(
S +

∑
i∈I′

(m, i)

)
−

n∑
i=1

∑
τ∈Si

zτi .

Let πt,ν := I ′ and St,ν as a minimizer of the right-hand side of the above equation such

that there is no S ) St,ν which is also a minimizer. Redefine ν as ν + 1 and It1 as

I ′ ∪ It1, and go to step 2. If there does not exist such an I ′, then go to step 4.

4. If ι < n− |It0 ∪ It1|, then redefine ι as ι+ 1 and go to step 3. If ι = n− |It0 ∪ It1|, then

go to step 5.

5. Let nt := ν − 1 and zti := ciϕif
t
i /(1− ci) for all i ∈ I\ (It0 ∪ It1).

Note that {St,ν +
∑

i∈πt,ν (t, i)} is the collection of sets for which (AF2m1) bind.

Let z be a solution found by Algorithm 1. I first prove that z is a feasible solution to

(OPTAm1−ϕ). For each i and t, let P
t

i := zti/f
t
i +ϕi if f ti > 0 and P

t

i := 0 otherwise. Then z

is a feasible solution to (OPTAm1−ϕ) if and only if P is a feasible solution to (OPTAm−ϕ).

Lemma 11 below proves that P is non-decreasing. By Theorem 2 in Mierendorff (2011), P

is a feasible solution to (OPTAm− ϕ) if and only if for all t1, . . . , tn ∈ {1, . . . ,m}

n∑
i=1

∑
t∈Si

P
t

i ≤ 1−
n∏
i=1

∑
t/∈Stii

f ti .

By construction, this is true if and only if for all t1, . . . , tn ∈ {1, . . . ,m},

n∑
i=1

∑
t∈Si

zti ≤ H(S), (27)

where S = (St11 , . . . , S
tn
n ). Lemma 10 below proves that z satisfies (27).

Hence, P is a feasible solution to (OPTAm− ϕ), or equivalently, z is a feasible solution

to (OPTAm1− ϕ). For each i and t, let

ẑti :=

{
zti if dt ≥ 0

0 if dt < 0
. (28)

Clearly, ẑ is also a feasible solution to (OPTAm1− ϕ). Furthermore, one can verify that ẑ

is an optimal solution to (OPTAm1− ϕ) by the duality theorem:
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Lemma 7 ẑ define in (28) is an optimal solution to (OPTAm1− ϕ).

The formal proof of Lemma 7 can be found in Appendix C.1.3. Finally, let Pm := (Pm,t
i )i,t,

where

Pm,t
i :=

{
P
m,t

i if dt ≥ 0

ϕi if dt < 0
. (29)

The following corollary directly follows from Lemma 7:

Corollary 5 Pm defined in (29) is an optimal solution to (OPTAm− ϕ).

The rest of this subsection is organized as follows. In Appendix C.1.1, I prove two

technical lemmas on H and H, which are useful for later proofs. In Appendix C.1.2, I prove

that z is a feasible solution to (OPTAm− ϕ) by proving Lemmas 10 and 11. In Appendix

C.1.3, I prove that ẑ is an optimal solution to (OPTAm − ϕ). In Appendix C.1.4, I prove

two technical lemmas that are useful in characterizing the limit of {Pm}.

C.1.1 Properties of H and H

Here, I introduce two technical lemmas on H and H. Lemma 8 proves a useful property

of H. Lemma 9 characterizes H.

Lemma 8 If H(S) < 1−
∑n

i=1 ϕi and S ′ ⊂ S, then H(S ′) ≤ H(S).

Proof. Consider S = (S1, . . . , Sn). We have

H(S)− 1 +
n∑
i=1

ϕi =
n∑
i=1

ϕi
∑
τ /∈Si

f τi −
n∏
i=1

∑
τ /∈Si

f τi .

Let Ssuppi := {t|f ti > 0}. If Si = Ssuppi for some i, then
∑

τ /∈Si f
τ
i = 0 and therefore H(S) ≥

1 −
∑n

i=1 ϕi. Hence, H(S) < 1 −
∑n

i=1 ϕi implies that Si 6= Ssuppi or
∑

τ /∈Si f
τ
i > 0 for all i.

Thus, ϕi ≤
∏

j 6=i
∑

τ /∈Sj f
τ
j for all i. Let S ′ := (S1, . . . , Si−1, Si\{t}, Si+1 . . . , Sn). Then

H(S)−H(S ′) = f ti

∏
j 6=i

∑
τ /∈Sj

f τj − ϕi

 ≥ 0.

Hence, H(S ′) ≤ H(S). By induction, H(S ′) ≤ H(S) for all S ′ ⊂ S.

Lemma 9 H(S) = min {H(S), 1−
∑n

i=1 ϕi}.
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Proof. Recall that H(S) = minS′′⊃S H(S). Recall that S1 := {1, . . . ,m}n. Because S1 ⊃ S
and H(S1) = 1−

∑n
i=1 ϕi, we have H(S) ≤ 1−

∑n
i=1 ϕi.

Suppose that H(S) ≤ 1−
∑n

i=1 ϕi. Let S ′′ ⊃ S. If H(S ′′) ≥ 1−
∑n

i=1 ϕi, then H(S) ≤
1 −

∑n
i=1 ϕi ≤ H(S ′′). If H(S ′′) < 1 −

∑n
i=1 ϕi, then H(S) ≤ H(S ′′) by Lemma 8. Hence,

H(S) = H(S).

Suppose that H(S) > 1 −
∑n

i=1 ϕi. I claim that H(S) = 1 −
∑n

i=1 ϕi. Suppose not,

then there exists S ′′ ⊃ S such that H(S ′′) < 1 −
∑n

i=1 ϕi. Then, by Lemma 8, H(S) ≤
H(S ′′) < 1−

∑n
i=1 ϕi, which is a contradiction to the fact that H(S) > 1−

∑n
i=1 ϕi. Hence,

H(S) = 1−
∑n

i=1 ϕi.

C.1.2 Proofs of feasibility

Lemma 10 For all t1, . . . , tn ∈ {1, . . . ,m},

n∑
i=1

∑
t∈Si

zti ≤ H(S), (27)

where S = (St11 , . . . , S
tn
n ).

Proof. For each t, let πt,0 := ∅ and πt,n
t+1 := I\(It0 ∪ It1). Suppose that S ⊂ Sm, i.e.,

ti ≥ m for all i. By Algorithm 1, we have

∑
i∈πm,1

zmi = H

(
∅+

∑
i∈πm,1

(m, i)

)
,

∑
i∈I′′

zmi ≤
∑
i∈I′′

ciϕif
m
i

1− ci
≤ H

(
∅+

∑
i∈I′′

(m, i)

)
,∀∅ 6= I ′′ ( πm,1,

where the second inequality in the second line holds because otherwise |πm,1| ≤ |I ′′| by

Algorithm 1, which is a contradiction to I ′′ ( πm,1. Thus, (27) holds if ti = m+ 1 for all i /∈
πm,1. Suppose that we have shown that (27) holds if ti = m+1 for all i /∈ πm,1∪· · ·∪πm,ν−1 and

ν ≥ 2. Suppose that ti = m+1 for all i /∈ πm,1∪· · ·∪πm,ν . Let S ′ := ∅+
∑

i∈πm,1∪···∪πm,ν−1(m, i)

and I ′′ := {i ∈ πm,ν |ti = m} ⊂ πm,ν . By Algorithm 1, we have

∑
i∈I′′

zmi = H

(
S ′ +

∑
i∈I′

(m, i)

)
−H(S ′) if I ′′ = πm,ν and ν ≤ nm,

∑
i∈I′′

zmi ≤
∑
i∈I′′

ciϕif
m
i

1− ci
≤ H

(
S ′ +

∑
i∈I′′

(m, i)

)
−H(S ′) if I ′′ ( πm,ν or ν = nm + 1.
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Because S −
∑

i∈πm,ν (m, i) ⊂ S ′, we have

n∑
i=1

∑
t∈S′i\Si

zti =
n∑
i=1

∑
t∈S′i

zti −
∑
i/∈πm,ν

∑
t∈Si

zti

≥ H(S ′)−H

(
S −

∑
i∈πm,ν

(m, i)

)

≥ H

(
S ′ +

∑
i∈I′

(m, i)

)
−H(S),

where the last inequality holds because H is submodular. Hence,

n∑
i=1

∑
t∈Si

zti ≤
n∑
i=1

∑
t∈S′i

zti −
n∑
i=1

∑
t∈S′i\Si

zti +H

(
S ′ +

∑
i∈I′

(m, i)

)
−H(S ′)

≤ H(S ′)−H

(
S ′ +

∑
i∈I′

(m, i)

)
+H(S) +H

(
S ′ +

∑
i∈I′

(m, i)

)
−H(S ′)

= H(S).

By induction, (27) holds for all S ⊂ Sm.

Suppose that S ⊂ St+1 +
∑

i∈πt,1∪···∪πt,ν (t, i) for t ≤ m − 1 and 1 ≤ ν ≤ nt + 1. Let

I ′ := {i ∈ πt,ν |ti = t} and S ′ := S −
∑

i∈I′(t, i). Suppose, w.l.o.g., that I ′ 6= ∅. If I ′ = πt,ν ,

then, by Algorithm 1, we have

∑
i∈I′

zτi ≤ H

(
S ′ +

∑
i∈I′

(t, i)

)
−

n∑
i=1

∑
τ∈S′i

zτi = H (S)−
n∑
i=1

∑
τ∈S′i

zτi .

If I ′ ( πt,ν , then, by Algorithm 1, we have

∑
i∈I′

zτi ≤
∑
i∈I′

ciϕif
t
i

1− ci
≤ H

(
S ′ +

∑
i∈I′

(t, i)

)
−

n∑
i=1

∑
τ∈S′i

zτi = H (S)−
n∑
i=1

∑
τ∈S′i

zτi ,

where the second inequality holds because otherwise |πt,ν | ≤ |I ′| by Algorithm 1, which is a

contradiction to I ′ ( πt,ν . Hence, (27) holds for S.

Lemma 11 P
t

i is non-decreasing in t on {t |f ti > 0}.

To prove Lemma 11, I first prove the following lemma which says that if the upper-bound

in (AIC′m1) does not bind for zt+1
i , then it does not bind for zti .
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Lemma 12 Suppose that f ti , f
t+1
i > 0. Then zt+1

i ∈ It+1
1 implies that zti ∈ It1.

Proof. Suppose that f ti , f
t+1
i > 0 and zt+1

i ∈ It+1
1 . Then, by Algorithm 1, there exists S

with Sj = S
tj
j ⊂ St+1

j for all j 6= i and Si = St+1
i such that

n∑
j=1

∑
τ∈Sj

zτj = H(S).

Suppose that H(S) < 1−
∑n

j=1 ϕj. Because, by Lemma 10,∑
j 6=i

∑
τ∈Sj

zτj +
∑

τ∈Si\{t+1}

zτi ≤ H(S − (t+ 1, i)),

we have

ciϕif
t+1
i

1− ci
≥ zt+1

i ≥ H(S)−H(S − (t+ 1, i)) = f t+1
i

∏
j 6=i

∑
τ∈Sj

f τj − ϕi

 ,

where the last equality holds by Lemmas 8 and 9. This implies that
∏

j 6=i
∑

τ∈Sj f
τ
j ≤

ϕi
1−ci .

Hence,

zti ≤H(S + (t, i))−
n∑
j=1

∑
τ∈Sj

zτj

≤H(S + (t, i))−H(S)

=f ti

∏
j 6=i

∑
τ∈Sj

f τj − ϕi

 ≤ ciϕif
t
i

1− ci
,

where the equality holds by Lemmas 8 and 9.

Suppose that H(S) ≥ 1 −
∑n

j=1 ϕj, then by Lemmas 8 and 9, H(S) = H(S + (t, i)) =

1−
∑n

j=1 ϕj. Hence,

zti ≤H(S + (t, i))−
n∑
j=1

∑
τ∈Sj

zτj

≤H(S + (t, i))−H(S)

=0 ≤ ciϕif
t
i

1− ci
.

Hence, zti ∈ It1.
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Proof of Lemma 11. Suppose that f ti , f
t+1
i > 0. Recall that P

t

i = zti/f
t
i + ϕi if f ti > 0 .

Suppose that zt+1
i /∈ It+1

1 , then P
t

i ≤
ϕi

1−ci = P
t+1

i . Suppose that zt+1
i ∈ It+1

1 . Then there

exists S with Sj = S
tj
j ⊂ St+1

j for all j 6= i and Si = St+1
i such that

n∑
j=1

∑
τ∈Sj

zτj = H(S).

Suppose that H(S) < 1 −
∑n

j=1 ϕj. In the proof of Lemma 12, we have shown that

zt+1
i ≥ f t+1

i

(∏
j 6=i
∑

τ∈Sj f
τ
j − ϕi

)
and zti ≤ f ti

(∏
j 6=i
∑

τ∈Sj f
τ
j − ϕi

)
. Hence,

P
t

i ≤
∏
j 6=i

∑
τ∈Sj

f τj ≤ P
t+1

i .

Suppose that H(S) ≥ 1−
∑n

j=1 ϕj. By the proof of Lemma 12, we have P
t

i = ϕi ≤ P
t+1

i .

C.1.3 Proofs of optimality

Before proving Lemma 7, I first prove some useful properties of St,ν and z. Recall that

{St,ν +
∑

i∈πt,ν (t, i)} is the collection of sets for which (AF2m1) bind. The result in Lemma

13 implies that this collection is a nested sequence of sets. In fact, Lemma 13 proves a

stronger statement.

Lemma 13 St,1 ⊃ St+1,nt+1
+
∑

i∈πt+1,nt+1 (t + 1, i) for 1 ≤ t ≤ m − 1; and St,ν+1 ⊃ St,ν +∑
i∈πt,ν (t, i) for 1 ≤ t ≤ m.

Proof. By Algorithm 1, Sm,ν+1 ⊃ Sm,ν +
∑

i∈πm,ν (m, i). Let t ≤ m − 1 and I ′ = πt,1. Let

S := St+1,nt+1
+
∑

i∈πt+1,nt+1 (t+ 1, i). Then
∑n

j=1

∑
τ∈Sj z

τ
j = H(S). Suppose St,1 6⊃ S. Let

S ′ := S ∪ St,1. Then S ′j = S
tj
j for some tj ≥ t+ 1 for all j. By Lemma 10, we have

n∑
j=1

∑
τ∈S′j\S

t,1
j

zτj

=
n∑
j=1

∑
τ∈Sj

zτj −
n∑
j=1

∑
τ∈St,1j ∩Sj

zτj

≥H(S)−H(S ∩ St,1).
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Hence,

H

(
S ′ +

∑
i∈I′

(t, i)

)
−

n∑
j=1

∑
τ∈S′j

zτj −H

(
St,1 +

∑
i∈I′

(t, i)

)
+

n∑
j=1

∑
τ∈St,1j

zτj

=H

(
S ′ +

∑
i∈I′

(t, i)

)
−H

(
St,1 +

∑
i∈I′

(t, i)

)
−

n∑
j=1

∑
τ∈S′j\S

t,1
j

zτj

≤

[
H

(
S ′ +

∑
i∈I′

(t, i)

)
−H(S)

]
−

[
H

(
St,1 +

∑
i∈I′

(t, i)

)
−H(S ∩ St,1)

]
≤0,

where the last inequality holds because H is submodular, which is a contradiction to the

definition of St,ν . Hence, St,1 ⊃ St+1,nt+1
+
∑

i∈πt+1,nt+1 (t+ 1, i). By a similar argument, one

can show that St,ν+1 ⊃ St,ν +
∑

i∈πt,ν (t, i) for all t ≤ m− 1.

By Lemmas 8, 9 and 13, there exists t and ν such that

H

(
St,ν +

∑
i∈πt,ν

(t, i)

)
=

{
1−

∑
i ϕi if t < t or ν ≥ ν, t = t

H
(
St,ν +

∑
i∈πt,ν (t, i)

)
< 1−

∑
i ϕi otherwise

.

(30)

The definition of t is analogous to that in the symmetric case. By a similar argument to

that in Lemma 12, we have

Lemma 14 If t < t, or t = t and i /∈ πt,1 ∪ · · · ∪ πt,ν, then zti = 0.

Proof of Lemma 7. Consider the dual to problem (OPTAm1− ϕ), which is denoted by

(DOPTAm1− ϕ),

min
λ,β,µ

n∑
i=1

m∑
t=1

λticiϕif
t
i

1− ci
+
∑
S

β(S)H(S) +
n∑
i=1

ϕi

(
m∑
t=1

f ti d
t +

ki
ci

)
,

subject to

dt − λti + µti −
∑
Si3t

β(S) ≥ 0 if f ti > 0,∀i, ∀t,

λ ≥ 0, µ ≥ 0, β ≥ 0.

Let ẑ be defined by (28) and (β̂, λ̂, µ̂) be the corresponding dual variables. Let t0 be such

that dt
0 ≥ 0 if and only if t ≥ t0.
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Let β̂
(
St,nt +

∑
i∈πt,nt (t, i)

)
≥ 0 for t ≥ max{t0, t} and β̂(S) = 0 otherwise. (i) If

t < max{t0, t}, then let λ̂ti = 0 and µ̂ti = −dt ≥ 0. (ii) If t = max{t0, t}, then let

β̂
(
St,nt +

∑
j∈πt,nt (t, j)

)
= dt ≥ 0 and µ̂ti = 0. If i ∈ It1, then let λ̂ti = 0. If i /∈ It0 ∪ It1,

let λ̂ti = dt ≥ 0. (iii) If t > max{t0, t}, let β̂
(
St,nt +

∑
j∈πt,nt (t, j)

)
= dt − dt−1 ≥ 0 and

µ̂ti = 0. If i ∈ It1, then let λ̂ti = 0. If i /∈ It0 ∪ It1 and i ∈ Imax{t0,t}
1 , then let λ̂ti = dt − dt∗ ≥ 0

where t∗ = min{t′ ≥ max{t0, t}|It′1 3 i}. If i /∈ Imax{t0,t}
1 , then let λ̂ti = 0. Hence, (λ̂, µ̂, β̂)

is a feasible solution to (DOPTAm1 − ϕ) and the complementary slackness conditions are

satisfied. Finally, it is easy to verify that the dual objective is equal to the primal objective.

By the duality theorem, ẑ is an optimal solution to (OPTAm1− ϕ).

C.1.4 Properties of St,ν

Before moving on to the continuum case, I prove the following two lemmas which are

useful in characterizing the limit of {Pm}.

Lemma 15 Suppose St,ν = (S
t∗1
1 , . . . , S

t∗n
n ). Then t∗i = t if i ∈ πt,1 ∪ · · · ∪ πt,ν−1, t∗i = t + 1

if i ∈ It+1
1 ∪ πt,ν\ (πt,1 ∪ · · · ∪ πt,ν−1), and t∗i ∈ {t + 1,m + 1} otherwise. Furthermore, for

h /∈ It+1
1 ∪ πt,1 ∪ · · · ∪ πt,ν, we have

1. If ϕh
1−ch
−
∏

i 6=h
∑t∗i−1

τ=1 f
τ
i ≥ 0, then t∗h = t+ 1.

2. If ϕh
1−ch
−
∏

i 6=h
∑t∗i−1

τ=1 f
τ
i < 0 and H

(
St,ν +

∑
i∈πt,ν (t, i)

)
< 1−

∑n
i=1 ϕi, then t∗h = m+1.

Proof. By Algorithm 1, t∗i = t+ 1 if i ∈ πt,ν . By Lemma 13, t∗i = t if i ∈ πt,1 ∪ · · · ∪ πt,ν−1

and t∗i = t + 1 if i ∈ It+1
1 \ (πt,1 ∪ · · · ∪ πt,ν−1). If t = m, then, by Algorithm 1, t∗i = m + 1

for i /∈ πt,1 ∪ · · · ∪ πt,ν−1.

Let t ≤ m− 1. For the ease of notation, let I ′ = πt,ν and S = (St11 , . . . , S
tn
n ) be such that

ti = t if i ∈ πt,1 ∪ · · · ∪ πt,ν−1, ti = t+ 1 if i ∈ It+1
1 ∪ πt,ν\ (πt,1 ∪ · · · ∪ πt,ν−1) and ti ≥ t+ 1

otherwise. Fix h /∈ It+1
1 ∪ πt,1 ∪ · · · ∪ πt,ν and ti for all i 6= h. Define

∆(th) := H

(
S +

∑
i∈I′

(t, i)

)
−

n∑
i=1

∑
τ∈Si

zτi .

By Lemma 14 and the fact that h /∈ It+1
1 , there exists t ≤ t∗ ≤ m + 1 such that if t + 1 ≤

th ≤ t∗, then ∆(th) = 1−
∑n

i=1 ϕi −
∑n

i=1

∑
τ∈Si z

τ
i ; and if t∗ < th ≤ m+ 1, then

∆(th) = 1−

(∏
i/∈I′

ti−1∑
τ=1

f τi

)(∏
i∈I′

t−1∑
τ=1

f τi

)
−
∑
i/∈I′

m∑
τ=ti

f τi ϕi −
∑
i∈I′

m∑
τ=t

f τi ϕi −
n∑
i=1

m∑
τ=ti

zτi .
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Because h /∈ It+1
1 , we have zthh = chϕhf

th
h /(1− ch) for all th ≥ t+ 1. If th < t∗, then we have

∆(th+ 1)−∆(th) = chϕhf
th
h /(1− ch) ≥ 0. Hence, ∆(t+ 1) ≤ ∆(th) for all th ≤ t∗. If th > t∗,

we have

∆(th + 1)−∆(th)

=f thh

 ϕh
1− ch

−

 ∏
i/∈I′,i 6=h

ti−1∑
τ=1

f τi

(∏
i∈I′

t−1∑
τ=1

f τi

) .

If th = t∗, we have

∆(th + 1)−∆(th)

≥f thh

 ϕh
1− ch

−

 ∏
i/∈I′,i 6=h

ti−1∑
τ=1

f τi

(∏
i∈I′

t−1∑
τ=1

f τi

) .

Hence, if ϕh
1−ch
−
(∏

i/∈I′,i 6=h
∑ti−1

τ=1 f
τ
i

) (∏
i∈I′
∑t−1

τ=1 f
τ
i

)
≥ 0, then ∆(th + 1) ≥ ∆(th) for

all th ≥ t∗. Furthermore, because ∆(t+ 1) ≤ ∆(th) for all th ≤ t∗, we have ∆(t+ 1) ≤ ∆(th)

for all th ≥ t+ 1, hence t∗h = t+ 1.

If ϕh
1−ch
−
(∏

i/∈I′,i 6=h
∑ti−1

τ=1 f
τ
i

) (∏
i∈I′
∑t−1

τ=1 f
τ
i

)
< 0, then ∆(th+1) ≤ ∆(th) for all th > t∗.

Hence, ∆(m+ 1) ≤ ∆(th) for all th > t∗. Recall that ∆(t+ 1) ≤ ∆(th) for all th ≤ t∗. Hence,

t∗h ∈ arg min {∆(t+ 1),∆(m+ 1)}. If H
(
St,ν +

∑
i∈πt,ν (t, i)

)
< 1−

∑n
i=1 ϕi, then t∗ = t by

definition, which implies that t∗h = m+ 1.

Lemma 16 Suppose St,ν = (S
t∗1
1 , . . . , S

t∗n
n ) and h /∈ It+1

1 ∪ πt,1 ∪ · · · ∪ πt,ν, then t∗h = t + 1

implies that h ∈ It1.

Proof. Suppose H
(
St,ν +

∑
i∈πt,ν (t, i)

)
= 1−

∑n
i=1 ϕi, then by Lemma 14, h ∈ It1. Suppose

H
(
St,ν +

∑
i∈πt,ν (t, i)

)
< 1−

∑n
i=1 ϕi. By Lemma 15, ϕh

1−ch
≥
∏

i 6=h
∑t∗i−1

τ=1 f
τ
i . Hence,

H

(
St,ν +

∑
i∈πt,ν

(t, i) + (t, h)

)
−H

(
St,ν +

∑
i∈πt,ν

(t, i)

)

≤f th

∏
i 6=h

t∗i−1∑
τ=1

f τi − ϕh


≤f th

(
ϕh

1− ch
− ϕh

)
=
chϕhf

t
h

1− ch
.

By Algorithm 1, h ∈ It1.
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C.2 Continuum case

I characterize an optimal solution in the continuum case by taking m to infinity. Let

Im,t1 denote It1, and tm be defined by (30) when D is discretized by m grid points. Clearly,

if i ∈ Im,t1 then i ∈ I2m,2t−1
1 . For each m and i, let t

m
i := max

{
t|i ∈ Im,t1

}
and d

m

i :=

d+ (t
m
i −1)(d−d)

m
. Then the sequence of

{
d

2κ

i

}
κ

is non-decreasing and bounded from above by

d. Hence, the sequence converges and let dui := limκ→∞ d
2κ

i denote its limit. For each κ, let

d2κ := d+ (t2
κ−1)(d−d)

2κ
, which is bounded. After taking subsequences, we can assume

{
d2κ
}
κ

converges and let dl := limκ→∞ d
2κ denote its limit. Let

P i(vi) :=


ϕi

1−ci if vi > dui + ki
ci∏

j 6=i,duj≥vi−
ki
ci

Fj

(
vi − ki

ci
+

kj
cj

)
if dl + ki

ci
< vi < dui + ki

ci

ϕi if vi < dl + ki
ci

.

Finally, let P ∗ := (P ∗i )i where

P ∗i (vi) :=

{
P i(vi) if vi >

ki
ci

ϕi if vi <
ki
ci

. (17)

We are now ready to prove Theorem 4.

Proof of Theorem 4. We can extend P
m

i (Pm
i ) to [vi, vi] by setting, for each t = 1, . . . ,m,

P
m

i (vi) := P
m,t

i (Pm
i (vi) := Pm,t

i ) for vi ∈
[
d+

(t− 1)(d− d)

m
+
ki
ci
, d+

t(d− d)

m
+
ki
ci

]
.

I show that, after taking subsequences, P
m

i converges to P i pointwise.

First, by construction and Lemma 14, P
2κ

i (vi) = ϕi for all vi < d2κ + ki
ci

, we have

limκ→∞ P
2κ

i (vi) = P i(vi) for all vi < dl + ki
ci

. Similarly, by construction, P
2κ

i (vi) = ϕi
1−ci for

all vi > d
2κ

i + ki
ci

, we have limκ→∞ P
2κ

i (vi) = P i(vi) for all vi > dui + ki
ci

.

Suppose dl < vi − ki
ci
< dui . Assume without loss of generality that du1 ≥ · · · ≥ dun ≥ dl.

If dui = dl, then we are done. Assume for the rest of the proof that dui > dl. Let dun+1 := dl.

Consider vi such that dui ≥ duj > vi− ki
ci
> duj+1 for some j ≥ i. For m sufficiently large, there

exists t such that

duj+1 < d+
(t− 1)(d− d)

m
< d+

t(d− d)

m
< vi −

ki
ci
< d+

(t+ 1)(d− d)

m
< duj ≤ dui .

Hence, by construction, we have Im,t1 = Im,t+1
1 = {1, . . . , j}. By Lemmas 15 and 16, there

exists S = (St11 , . . . , S
tn
n ) such that ti = t + 1, th ∈ {t, t + 1} if h ≤ j and h 6= i, th = m + 1
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if h > j, and

f ti

(
P
m,t

i − ϕi
)

= zm,ti = H(S + (t, i))−H(S).

Because H is submodular, we have

f ti

(
P
m,t

i − ϕi
)
≤ H(S ′ + (t, i))−H(S ′)

= f ti

( ∏
h≤j,h6=i

t∑
τ=1

f τh − ϕi

)
,

where S ′ = (St+1
1 , . . . , St+1

j , Sm+1
j+1 , . . . , S

m+1
n ); and

f ti

(
P
m,t

i − ϕi
)
≥ H(S ′′ − (t, i))−H(S ′)

= f ti

( ∏
h≤j,h6=i

t−1∑
τ=1

f τh − ϕi

)
,

where S ′′ = (St1, . . . , S
t
j, S

m+1
j+1 , . . . , S

m+1
n ). Hence,

∏
h≤j,h6=i

t−1∑
τ=1

f τh ≤ P
m,t

i ≤
∏

h≤j,h6=i

t∑
τ=1

f τh .

Take m = 2κ to infinity and we have limκ→∞ P
2κ

i (vi) = P i(vi).

It follows that, after taking subsequences, Pm
i converges to P ∗i pointwise. P ∗ is feasible

by a similar argument to that in the proof of Lemma 3, and optimal by a similar argument

to that in the proof of Theorem 1.

C.3 Optimal one-threshold mechanism

If dui = vi − ki
ci

for all i, then dl ≥ maxj
{
vj − kj/cj

}
satisfies that

n∑
i=1

ϕiFi

(
dl +

ki
ci

)
=

n∏
i=1

Fi

(
dl +

ki
ci

)
. (31)

Lemma 17 below shows that there exists a unique dl satisfying (31). Note that unless ϕi = 0

for all i, we have dl > maxj
{
vj − kj/cj

}
. Clearly, in optimum, ϕi > 0 for some i. Hence,

dl > maxj
{
vj − kj/cj

}
. Let d∗i (i = 1, . . . , n) be defined by

Evi [vi]− Evi
[
max

{
vi, d

∗
i +

ki
ci

}]
+
ki
ci

= 0, (32)
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and dl∗ := maxi d
∗
i . Now we are ready to state the main result in this subsection which

characterizes the set of optimal ϕ:

Theorem 8 Suppose that Assumption 2 holds. If

n∑
i=1

(1− ci)Fi
(
dl∗ +

ki
ci

)∏
j 6=i

Fj

(
vi −

ki
ci

+
kj
cj

)
≤

n∏
i=1

Fi

(
dl∗ +

ki
ci

)
, (33)

then the set of optimal ϕ is the convex hull ofϕ
∣∣∣∣∣∣∣∣
i∗ ∈ arg maxi d

∗
i , ϕi = (1− ci)

∏
j 6=i Fj

(
vi − ki

ci
+

kj
cj

)
∀i 6= i∗,

ϕi∗ =

∏n
i=1 Fi

(
dl∗+

ki
ci

)
−
∑
i 6=i∗ (1−ci)

∏
j 6=i Fj

(
vi−

ki
ci

+
kj
cj

)
Fi

(
d∗+

ki
ci

)
Fi∗
(
dl∗+

ki∗
ci∗

)

 .

For each optimal ϕ∗, the following allocation rule is optimal:

P ∗∗i (vi) :=

{ ∏
j 6=i Fj

(
vi − ki

ci
+

kj
cj

)
if vi ≥ dl + ki

ci

ϕ∗i if vi < dl + ki
ci

.

Proof. Let Φ(dl, du1 , . . . , d
u
n) ⊂ {ϕ|

∑
ϕi ≤ 1} denote the feasible set of ϕ given dl and

du1 , . . . , d
u
n. I often abuse notation and use Φ to denote the feasible set when its meaning is

clear. Fix dl > maxj
{
vj − kj/cj

}
and dui = vi− ki

ci
for all i. Then ϕ is feasible if and only if

n∑
i=1

ϕiFi

(
dl +

ki
ci

)
=

n∏
i=1

Fi

(
dl +

ki
ci

)
,

∏
j 6=i

Fj

(
vi −

ki
ci

+
kj
cj

)
≤ ϕi

1− ci
,∀i.

Hence, Φ is non-empty if and only if

n∑
i=1

(1− ci)Fi
(
dl +

ki
ci

)∏
j 6=i

Fj

(
vi −

ki
ci

+
kj
cj

)
≤

n∏
i=1

Fi

(
dl +

ki
ci

)
.

Suppose that Φ is non-empty. It is not hard to see that Φ is convex. Because the objective

function is linear in ϕ and the feasible set is convex, there is an optimal ϕ which is an

extreme point.
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Clearly, ϕ is an extreme point of Φ if and only if there exists i∗ such that

n∑
i=1

ϕiFi

(
dl +

ki
ci

)
=

n∏
i=1

Fi

(
dl +

ki
ci

)
,

ϕj = (1− cj)
∏
i 6=j

Fi

(
vj −

kj
cj

+
ki
ci

)
,∀j 6= i∗.

In this case, denote the principal’s payoff by Z1,i∗(d
l). For ease of notation, let i∗ = 1. Let

ϕ̄j := (1− cj)
∏

i 6=j Fi

(
vj − kj

cj
+ ki

ci

)
for all j. Then the principal’s payoff is given as follows:

Z1,1(dl) :=
n∑
i=1

∫ vi

max
{
dl+

ki
ci
,
ki
ci

}
(
vi −

ki
ci

)∏
j 6=i

Fj

(
vi −

ki
ci

+
kj
cj

)
dFi(vi)

+
∑
i 6=1

∫ max
{
dl+

ki
ci
,
ki
ci

}
vi

(
vi −

ki
ci

)
ϕidFi(vi)

+

∫ max
{
dl+

k1
c1
,
k1
c1

}
v1

(
v1 −

k1

c1

) ∏n
i=1 Fi

(
dl + ki

ci

)
−
∑

i 6=1 Fi

(
dl + ki

ci

)
ϕi

F1

(
dl + k1

c1

) dF1(v1)

+
∑
i 6=1

ϕiki
ci

+
k1

c1

∏n
i=1 Fi

(
dl + ki

ci

)
−
∑

i 6=1 Fi

(
dl + ki

ci

)
ϕi

F1

(
dl + k1

c1

) .

If dl < 0, then it is not hard to show that Z1,1 is strictly increasing in dl. If dl ≥ 0, then,

after some algebra, we have

Z ′1,1(dl)

=

∑
i 6=1

fi(dl +
ki
ci

) ∏
j 6=i,1

Fj

(
dl +

kj
cj

)
− ϕi

fi

(
dl + ki

ci

)
F1

(
dl + k1

c1

)
− Fi

(
dl + ki

ci

)
f1

(
dl + k1

c1

)
F 2

1

(
dl + k1

c1

)


·

[∫ dl+
k1
c1

v1

(
v1 − dl −

k1

c1

)
dF1(v1) +

k1

c1

]
.

Because ϕi ≤
∏

j 6=i Fj

(
dl +

kj
cj

)
, the first-term in the above equation is strictly positive.

The second-term is strictly decreasing in dl. Let d∗1 be such that

∫ d∗1+
k1
c1

v1

(
v1 − d∗1 −

k1

c1

)
dF1(v1) +

k1

c1

= 0. (34)
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Then Z ′1,1(dl) > 0 if dl < d∗1 and Z ′1,1(dl) < 0 if dl > d∗1. Hence, Z1,1(dl) achieves its maximum

at dl = d∗1.

Define d∗i for all i ≥ 2 as in (34). Suppose that d∗1 ≥ d∗2. By a similar argument to that in

Lemma 17, Φ
(
d∗2, v1 − k1

c1
, . . . , vn − kn

cn

)
6= ∅ implies that Φ

(
d∗1, v1 − k1

c1
, . . . , vn − kn

cn

)
6= ∅.

Suppose that both Φ
(
d∗2, v1 − k1

c1
, . . . , vn − kn

cn

)
and Φ

(
d∗1, v1 − k1

c1
, . . . , vn − kn

cn

)
are non-

empty. Then

Z1,1(dl)− Z1,2(dl)

=

[
n∏
i=1

Fi

(
dl +

ki
ci

)
−
∑
i=1

Fi

(
dl +

ki
ci

)
ϕi

]

·

 1

F1

(
dl + k1

c1

) [∫ dl+
k1
c1

v1

(
v1 −

k1

c1

)
dF1(v1) +

k1

c1

]

− 1

F2

(
dl + k2

c2

) [∫ dl+
k2
c2

v2

(
v1 −

k2

c2

)
dF2(v2) +

k2

c2

]
If dl = d∗2, then by definition we have

Z1,1(d∗2)− Z1,2(d∗2)

=

[
n∏
i=1

Fi

(
d∗2 +

ki
ci

)
−
∑
i=1

Fi

(
d∗2 +

ki
ci

)
ϕi

]

·

 1

F1

(
d∗2 + k1

c1

) [∫ d∗2+
k1
c1

v1

(
v1 −

k1

c1

)
dF1(v1) +

k1

c1

]
− d∗2


≥

[
n∏
i=1

Fi

(
d∗2 +

ki
ci

)
−
∑
i=1

Fi

(
d∗2 +

ki
ci

)
ϕi

]
(d∗2 − d∗2) = 0,

where the last inequality holds because d∗1 ≥ d∗2, and the inequality holds strictly if d∗1 > d∗2.

Hence, Z1,1(d∗1) ≥ Z1,2(d∗2) and the inequality holds strictly if d∗1 > d∗2.

Let dl∗ := maxi d
∗
i . If

n∑
i=1

(1− ci)
∏
j 6=i

Fj

(
vj −

ki
ci

+
kj
cj

)
Fi

(
d∗ +

ki
ci

)
≤

n∏
i=1

Fi

(
dl∗ +

ki
ci

)
,

then Φ
(
dl∗, v1 − k1

c1
, . . . , vn − kn

cn

)
is feasible. Given ϕ, let Z(ϕ) denote the principal’s opti-
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mal payoff. By Lemma 18, Z(ϕ) ≤ Z1(ϕ), where Z1 is defined by

Z1(ϕ) :=
n∑
i=1

∫ vi

max
{
dl+

ki
ci
,
ki
ci

}
(
vi −

ki
ci

)∏
j 6=i

Fj

(
vi −

ki
ci

+
kj
cj

)
dFi(vi)

+
n∑
i=1

∫ max
{
dl+

ki
ci
,
ki
ci

}
vi

(
vi −

ki
ci

)
ϕidFi(vi) +

n∑
i=1

ϕiki
ci

,

and dl = dl(ϕ) is given by (31). By the arguments above, for any ϕ,

Z(ϕ) ≤ Z1(ϕ) ≤ max
i
Z1,i(d

l(ϕ)) ≤ Z1,i∗(d
l∗),

where d∗i∗ = dl
∗
. This completes the proof.

Lemma 17 There exists a unique dl ≥ maxj
{
vj − kj/cj

}
such that

n∑
i=1

ϕiFi

(
dl +

ki
ci

)
=

n∏
i=1

Fi

(
dl +

ki
ci

)
. (31)

Proof. If ϕi = 0 for all i, then dl = maxj
{
vj − kj/cj

}
is the unique solution to (31).

Assume, for the rest of the proof, that ϕi > 0 for some i. Let

∆(dl) :=
n∑
i=1

ϕiFi

(
dl +

ki
ci

)
−

n∏
i=1

Fi

(
dl +

ki
ci

)
.

Then

∆′(dl) =
n∑
i=1

fi

(
dl +

ki
ci

)[
ϕi −

∏
j 6=i

Fj

(
dl +

kj
cj

)]
.

Because ∆l

(
maxj

{
vj − kj/cj

})
> 0, a solution to (31) must satisfy that dl >

maxj
{
vj − kj/cj

}
. Assume, for the rest of the proof, that dl > maxj

{
vj − kj/cj

}
. Then

Fi

(
dl + ki

ci

)
> 0 for all i. If ∆(dl) ≤ 0, then ϕi ≤

∏
j 6=i Fj

(
dl +

kj
cj

)
for all i, and the strict

inequality holds for some i, which implies that ∆′(dl) < 0. Hence, ∆(dl) crosses zero at

most once, in which case it does so from above. Because ∆l

(
maxj

{
vj − kj/cj

})
> 0 and

∆l (maxj {vj − kj/cj}) =
∑

i ϕi − 1 ≤ 0, there exists a unique dl satisfying (31).

Lemma 18 Let Z and Z1 be defined as in the proof of Theorem 8. Then Z(ϕ) ≤ Z1(ϕ).

Proof. Fix ϕ and the corresponding dl = dl(ϕ), which is given by (31). Assume, without

loss of generality, that dl ≥ 0. Note that Z1 is attained by the following interim allocation
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rule P :

Pi(vi) =

{ ∏
j 6=i Fj

(
vi − ki

cj
+

kj
cj

)
if vi − ki

ci
> dl

ϕi if vi − ki
ci
≤ dl

.

P can be implemented by the following ex post allocation rule p:

pi(v) =



1∣∣∣∣{j∣∣∣∣vj− kjcj =vi−
ki
ci

}∣∣∣∣ if vi − ki
ci
> dl and vi − ki

ci
= maxj

{
vj − kj

cj

}
ϕi∏

j 6=i Fj

(
dl+

kj
cj

) if maxj

{
vj − kj

cj

}
≤ dl

0 otherwise

.

Let P ∗ denote the optimal mechanism given ϕ. By Theorem 4, there exists dl∗ and du∗i

for i = 1, . . . , n such that P ∗ is given by (17). Let p∗ denote the corresponding ex post

allocation rule that implements P ∗.

First, we show that dl∗ ≤ dl. If min{du∗i } > dl, then dl
∗

= dl by construction. Otherwise,

dl
∗

is defined by the following equation

n∑
i=1

ϕiFi

(
dl
∗

+
ki
ci

)
+

∑
{i:du∗i =dl∗}

ϕi
1− ci

[
1− F

(
dl
∗

+
ki
ci

)]
=

∏
{i:du∗i >dl∗}

Fi

(
dl
∗

+
ki
ci

)
.

Because (AF2) requires that15

∑
{i:du∗i =dl∗}

ϕi
1− ci

[
1− F

(
dl
∗

+
ki
ci

)]
≤

∏
{i:du∗i >dl∗}

Fi

(
dl
∗

+
ki
ci

)
−

n∏
i=1

Fi

(
dl
∗

+
ki
ci

)
,

we have
n∑
i=1

ϕiFi

(
dl
∗

+
ki
ci

)
≥

n∏
i=1

Fi

(
dl
∗

+
ki
ci

)
.

Compare the inequality with (31) and it is easy to see that dl∗ ≤ dl.

15Let Si =
[
dl + ki

ci
, vi

]
for all i = 1, . . . , n.
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By construction, Pi(vi) = ϕi ≤ P ∗i (vi) if vi ≤ dl + ki
ci

for all i = 1, 2, . . . , n. Hence,

Z1 (ϕ)− Z(ϕ)

=
n∑
i=1

∫ vi

vi

(
vi −

ki
ci

)
[Pi(vi)− P ∗i (vi)] dFi(vi)

=
n∑
i=1

∫ dl+
ki
ci

vi

(
vi −

ki
ci

)
[Pi(vi)− P ∗i (vi)] dFi(vi) +

n∑
i=1

∫ vi

dl+
ki
ci

(
vi −

ki
ci

)
[Pi(vi)− P ∗i (vi)] dFi(vi)

≥
n∑
i=1

∫ dl+
ki
ci

vi

dl [Pi(vi)− P ∗i (vi)] dFi(vi) +
n∑
i=1

∫ vi

dl+
ki
ci

(
vi −

ki
ci

)
[Pi(vi)− P ∗i (vi)] dFi(vi)

=

∫ vi

v1

· · ·
∫ vi

vn

n∑
i=1

(
max

{
vi −

ki
ci
, dl
})

[pi(v)− p∗i (v)] dF1(v1) . . . dFn(vn) ≥ 0.

This completes the proof.

C.4 Omitted proofs in Section 5.1

Proof of Theorem 5. Part 1 of Theorem 5 follows from Theorem 8 immediately. Assume

for the rest of the proof that nH(1 − c)FH(d∗H + ρ) + nL(1 − c)FL(d∗H + ρ) > FH(d∗H +

ρ)nHFL(d∗H + ρ)nL . Hence, in optimum, min{ϕL, ϕH} ≤ 1− c.
Let

v\H := sup

{
v

∣∣∣∣FH(v)nH−1(1− FH(v))

1− c
− 1 + FH(v)nH ≤ 0

}
.

Given ϕH , let vlH(ϕH) be such that F
(
vlH(ϕH)

)nH−1
= nϕH and

vuH(ϕH) := inf

{
v

∣∣∣∣1− FH(v)nH − nHϕH
1− c

[1− FH(v)] ≥ 0

}
.

I prove part 2 of Theorem 5 by proving the following claims:

1. If FH(d∗H+ρ)nH−1 ≥ nH(1−c), the optimal ϕ∗ = (FH(d∗H + ρ)nH−1/nH , 0), the optimal

inspection rule satisfies Q∗ = ((1− ϕ∗H/P ∗H) /c, 0) and the following allocation rule is

optimal:

P ∗H(v) =

{
FH(v)nH−1 if v − ρ ≥ d∗H
ϕ∗H if v − ρ < d∗H

and P ∗L(v) = 0.

2. If FH(d∗H + ρ)nH−1 < nH(1 − c) and d∗∗H + ρ ≤ v\H , the optimal ϕ∗ =

((1− c)/nH(1− cFH(d∗∗H + ρ)), 0), the optimal inspection rule satisfies Q∗ =
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((1− ϕ∗H/P ∗H) /c, 0) and the following allocation rule is optimal:

P ∗H(v) :=

{
ϕ∗H
1−c if v ≥ d∗∗H + ρ

ϕ∗H if v < d∗∗H + ρ
.

and P ∗L(v) = 0.

3. If FH(d∗H + ρ)nH−1 < nH(1− c) and d∗∗H + ρ > v\H , the optimal ϕ∗H is defined by∫ v

v

(v −min{v, vuH(ϕ∗H)}) dFH(v)+(1−c)
[∫ v

v

(
v −max

{
v, vlH(ϕ∗H)

})
dFH(v) + ρ

]
= 0

and the optimal ϕ∗L = 0, the optimal inspection rule satisfies Q∗ = ((1− ϕ∗H/P ∗H) /c, 0)

and the following allocation rule is optimal:

P ∗H(v) :=


ϕ∗H
1−c if v ≥ vuH(ϕ∗H)

FH(v)nH−1 if vlH(ϕ∗H) < v < vuH(ϕ∗H)

ϕ∗H if v ≤ vlH(ϕ∗H)

,

and P ∗L(v) = 0.

Here, I only provide a proof for the first claim. The proofs of the rest two claims are

similar and neglected here.

I abuse notation a bit and let ng, g ∈ {H,L} denote the set of agents in group g as well.

Since we focus on group symmetric mechanisms, duL and duH exist such that dui = dug for all

i ∈ ng and g ∈ {H,L}. Given dl, duL and duH , let Φ(dl, duL, d
u
H) ⊂ {ϕ|nLϕL + nHϕH ≤ 1}

denote the feasible set of ϕ. I often abuse notation and use Φ to denote the feasible set when

its meaning is clear. We consider two cases in turn: ϕL ≤ 1− c and ϕH ≤ 1− c.
Case 1: Suppose that ϕL ≤ 1− c. Suppose that duH = v− ρ and duL = dl. By a similar

argument to that of Lemma 20, ϕ ∈ Φ if and only if

ϕH
1− c

≥ 1, (35)

nLϕLFL(dl + ρ) + nHϕHFH(dl + ρ) +
nLϕL
1− c

[
1− FL(dl + ρ)

]
= FH(dl + ρ)nH , (36)

nLϕL
1− c

≤ 1− FL(dl + ρ)nL

1− FL(dl + ρ)
FH(dl + ρ)nH . (37)

Then Φ is non-empty if and only if

FH(dl + ρ)nH−1 ≥ nH(1− c). (38)
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Let Φ′(dl, duL, d
u
H) denote the set of ϕ that satisfies (35) and (36). Clearly, Φ ⊂ Φ′, and Φ′ is

non-empty if and only if (38) holds. It is not hard to see that Φ′ is convex.

Given ϕ, let Z(ϕ) denote the principal’s optimal payoff. Consider the principal’s relaxed

problem of maxϕ∈Φ′ Z(ϕ). Because the principal’s objective function is linear in ϕ and Φ′ is

convex, there is an optimal ϕ which is an extreme point of Φ′. The set Φ′ has two extreme

points: ϕH := (FH(dl+ρ)nH−1

nH
, 0) and

ϕL :=

(
1− c, 1− c

nL

FH(dl + ρ)nH − nH(1− c)FH(dl + ρ)

1− cFL(dl + ρ)

)
.

Next we calculate the principal’s optimal payoffs at the two extreme points in turn.

Case 1.1: ϕ = ϕH . In this case, the principal’s optimal payoff is given by Z(ϕH) =

Z2,H(dl(ϕH)), where dl(ϕH) is given by (36) and

Z1,H(dl) =FH(dl + ρ)nH

[∫ max{ρ,dl+ρ}

v

(v − ρ)dFH(v) + ρ

]

+ nH

∫ v

max{ρ,dl+ρ}
(v − ρ)FH(v)nH−1dFH(v).

If dl < 0, then it is not hard to see that Z1,H is strictly increasing in dl. If dl ≥ 0, then, after

some algebra, we have

Z ′1,H(dl) = (nH − 1)FH(dl + ρ)nH−2fH(dl + ρ)

[∫ v

v

(
v −max{v, dl + ρ}

)
dFH(v) + ρ

]
.

Note that the term in front of the brackets is strictly positive, and the term inside the bracket

is strictly decreasing in dl and is equal to zero if and only if dl = d∗H , where d∗H is given by

(19). Hence, Z1,H achieves its maximum at d∗H .

Case 1.2: ϕ = ϕL. If (38) holds with equality, then the two extreme points coincide and

Z(ϕL) = Z(ϕH). Suppose that (38) holds with strictly inequality so that the two extreme

points do not coincide, then the principal’s optimal payoff is given by Z(ϕL) = Z2,L(dl(ϕL)),

65



where dl(ϕL) is given by (36), and, for g ∈ {H,L} and g 6= g′,

Z2,g(d
l) =ng′(1− c)

[∫ max{ρ,dl+ρ}

v

(v − ρ)dFg′(v) + ρ

]

+ ng′

∫ v

max{ρ,dl+ρ}
(v − ρ)Fg′(v)ng′−1dFg′(v)

+ (1− c)Fg
′(dl + ρ)ng′ − ng′(1− c)Fg′(dl + ρ)

1− cFg(dl + ρ)

·

[∫ max{ρ,dl+ρ}

v

(v − ρ)dFg(v) + ρ+
1

1− c

∫ v

max{ρ,dl+ρ}
(v − ρ)dFg(v)

]
.

Clearly, if dl < 0, then Z2,L is strictly increasing in dl. If dl ≥ 0, then, after some algebra,

we have

Z ′2,L(dl) =
FH(v + dl)nH−1 − nH(1− c)

[1− cFL(dl + ρ)]2

·
{
cFH(dl + ρ)fL(dL + ρ) + [1− cFL(dl + ρ)]fH(dL + ρ)

}
·

[
(1− c)

∫ v
v

(
v −max{v, dl + ρ}

)
dFL(v) + (1− c)ρ

+
∫ v
v

(
v −min{v + dl + ρ}

)
dFL(v)

]
.

Cleary, the second line in the above equation is also strictly positive. If (38) holds with

strictly inequality, then the first line in the above equation is strictly positive. Furthermore,

the third line is strictly decreasing in dl and is equal to zero if and only if dl = d∗∗L , where

d∗∗L is given by (20). Hence, Z2,L achieves its maximum at d∗∗L .

Because the left-hand side of (38) is strictly increasing in dl, Φ′(dl, dl, v − ρ) 6= ∅ implies

that Φ′(dl
′
, dl
′
, v − ρ) 6= ∅ for all dl

′ ≥ dl. Fix dl such that Φ′(dl, dl, v − ρ) 6= ∅, then

Z2,H(dl)− Z2,L(dl)

=
[
FH(dl + ρ)nH−1 − nH(1− c)

] [∫ v

v

(
v −max{v, dl + ρ}

)
dFH(v) + ρ

]
−
[
FH(dl + ρ)nH−1 − nH(1− c)

]
FH(dl + ρ)

1− cFL(dl + ρ)

·

[
(1− c)

∫ v
v

(
v −max{v, dl + ρ}

)
dFL(v) + (1− c)ρ

+
∫ v
v

(
v −min{v, dl + ρ}

)
dFL(v)

]
.

Suppose that Φ′(max{d∗∗L , d∗H},max{d∗∗L , d∗H}, v − ρ) 6= ∅. Since d∗H ≥ d∗∗L , then by construc-
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tion Z2,H(d∗∗L )− Z2,L(d∗∗L ) ≥ 0. Hence,

Z2,H(d∗H)− Z2,L(d∗∗L ) = Z2,H(d∗H)− Z2,H(d∗∗L ) + Z2,H(d∗∗L )− Z2,L(d∗∗L ) ≥ 0.

By Lemma 19, if ϕL ≤ 1− c, then Z(ϕ) ≤ Z2(ϕ), where Z2 is defined by

Z2(ϕ) =nHϕH

[∫ max{ρ,dl+ρ}

v

(v − ρ)dFH(v) + ρ

]

+ nH

∫ v

max{ρ,dl+ρ}
(v − ρ)FH(v)nH−1dFH(v)

+ nLϕL

[∫ max{ρ,dl+ρ}

v

(v − ρ)dFL(v) + ρ+
1

1− c

∫ v

max{ρ,dl+ρ}
(v − ρ)dFL(v)

]
,

and dl = dl(ϕ) is defined by (36). Hence,

Z(ϕ) ≤ Z2(ϕ) ≤ max
{
Z1,H(dl(ϕ)), Z2,L(dl(ϕ))

}
≤ max {Z1,H(d∗H), Z2,L(d∗∗L )} ≤ Z1,H(d∗H).

Finally, note that ϕH ∈ Φ′ implies that ϕH ∈ Φ. Hence, if ϕH ∈ Φ′ or FH(d∗H +ρ)nH−1 ≥
nH(1− c), it is optimal to set ϕ1∗ = (FH(d∗H + ρ)nH−1/nH , 0).

Case 2: Suppose that ϕH ≤ 1 − c. Since d∗∗H ≥ d∗H ≥ d∗L, by a similar argument to

that in Case 1, we can show that if ϕH ≤ 1− c, then Z(ϕ) ≤ Z2,H(d∗∗H ), where the maximum

is achieved if

ϕ2∗ =

(
1− c
nH

FL(d∗∗H + ρ)nL − nL(1− c)FL(d∗∗H + ρ)

1− cFH(d∗∗H + ρ)
, 1− c

)
.

Note that in this case ϕ2∗
L ≤ 1− c. Hence, by Lemma 19, Z(ϕ) ≤ Z(ϕ2∗) ≤ Z(ϕ1∗).

Hence, it is optimal to set ϕ∗ = ϕ1∗ = (FH(d∗H +ρ)nH−1/nH , 0). This completes the proof

of the first claim.

Lemma 19 Let Z and Z2 be defined as in the proof of Theorem 5. If ϕL ≤ 1 − c, then

Z(ϕ) ≤ Z2(ϕ).

Proof. Fix ϕ and the corresponding dl. Assume, without loss of generality, that dl ≥ 0.

Note that Z2(dl) is attained by the following interim allocation rule P :

PH(v) =

{
FH (v − ρ)nH−1 if v − ρ > dl

ϕH if v − ρ ≤ dl
,
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and

PL(v) =

{
ϕL
1−c if v − ρ > dl

ϕL if v − ρ ≤ dl
.

P can be implemented by the following ex post allocation rule p: For i ∈ nH ,

pi(v) =


1

|{j∈nH |vj=vi }|
if vi − ρ ≥ dl and vi = maxj∈nH {vj}

ϕH∏
j 6=i Fj(dl+ρj)

if maxj {vj − ρj} < dl

0 otherwise

,

and, for i ∈ nL,

pi(v) =


1

|{j∈nL|vj−ρ≥dl}| if vi − ρ ≥ dl and maxj∈nH {vj − ρ} < dl

ϕL∏
j 6=i Fj(dl+ρj)

if maxj {vj − ρj} ≤ dl

0 otherwise

.

Let P ∗ denote an optimal interim allocation rule given ϕ. By Theorem 4, there exists dl∗

and du∗i for i = 1, . . . , n such that P ∗ is given by (17). Let p∗ denote the corresponding ex

post allocation rule that implements P ∗.

By construction, Pg(v) = ϕg ≤ P ∗g (v) for all v ≤ dl + ρ and g ∈ {H,L}, and PL(v) =
ϕL
1−c ≥ P ∗L(v) for all v ≥ dl + ρ. Hence,

Z2

(
dl(ϕ)

)
− Z(ϕ)

=nH

∫ vH

vH

(v − ρ) [PH(v)− P ∗H(v)] dFH(v) + nL

∫ vL

vL

(v − ρ) [PL(v)− P ∗L(v)] dFL(v)

≥nH
∫ vH

vH

(
max{dl, v − ρ}

)
[PH(v)− P ∗H(v)] dFH(v) + nL

∫ vL

vL

dl [PL(v)− P ∗L(v)] dFL(v)

=

∫ v1

v1

· · ·
∫ vn

vn

{∑
i∈nH

(
max

{
vi − ρ, dl

})
[pi(v)− p∗i (v)] +

∑
i∈nL

dl [pi(v)− p∗i (v)]

}
dF1(v1) . . . dFn(vn)

≥0.

This completes the proof.

Proof of Theorem 6. Part 1 of Theorem 6 follows from Theorem 8 immediately. It

remains to prove part 2 of Theorem 6. Assume for the rest of the proof that nH(1−c)FH(d∗H+

ρ)FL(vH)nL + nL(1 − c)FL(d∗H + ρ) > FH(d∗H + ρ)nHFL(d∗H + ρ)nL , ng′(1 − c)Fg′(d∗∗g + ρ) +

ng
[
1− cFg(d∗∗g + ρ)

]
≥ Fg′(d

∗∗
g + ρ)ng′ for g, g′ ∈ {H,L} and g 6= g′, and nL ≥ n∗∗L (ρ, c). By
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a similar argument to that of Corollary 2, nL ≥ n∗∗L (ρ, c) if and only if

1− FL (d∗∗L + ρ)

1− cFL (d∗∗L + ρ)
≤ 1− FL (d∗∗L + ρ)nL . (39)

Hence, in optimum min{ϕL, ϕH} ≤ c. I abuse notation a bit and let ng, g ∈ {H,L}
denote the set of agents in group g as well. Since we focus on group symmetric mechanisms,

duL and duH exist such that dui = dug for all i ∈ ng and g ∈ {H,L}. Let Φ(dl, duL, d
u
H) ⊂

{ϕ|nLϕL + nHϕH ≤ 1} denote the feasible set of ϕ given dl, duL and duH . I often abuse

notation and use Φ to denote the feasible set when its meaning is clear. We consider three

cases in turn: max{ϕL, ϕH} ≤ 1− c, ϕL ≤ 1− c, ϕH ≤ 1− c.
Case 1: Suppose that max{ϕL, ϕH} ≤ 1− c. Suppose that dl = duH = duL = d̂. Fix d̂.

Then ϕ is feasible if and only if it satisfies:

nHϕHFH

(
d̂+ ρ

)
+ nLϕLFL

(
d̂+ ρ

)
+
nHϕH
1− c

[
1− FH

(
d̂+ ρ

)]
+
nLϕL
1− c

[
1− FL

(
d̂+ ρ

)]
= 1. (40)

ngϕg
1− c

[
1− Fg

(
d̂+ ρ

)]
≤ 1− Fg

(
d̂+ ρ

)ng
, ∀g ∈ {H,L}, (41)

nHϕH
1− c

[
1− FH

(
d̂+ ρ

)]
+
nLϕL
1− c

[
1− FL

(
d̂+ ρ

)]
≤ 1− FH

(
d̂+ ρ

)nH
FL

(
d̂+ ρ

)nL
.

(42)

Let Φ′(dl, duH , d
u
L) denote the set of φ that satisfies (40). Clearly, Φ ⊂ Φ′. It is not hard

to see that Φ′ is non-empty and convex. Given ϕ, let Z(ϕ) denote the principal’s optimal

payoff. Consider the principal’s relaxed problem of maxϕ∈Φ′ Z(ϕ). Because the principal’s

objective function is linear in ϕ and Φ′ is convex, there is an optimal ϕ which is an extreme

point of Φ′. Φ′ contains two extreme points: for g ∈ {H,L}, ϕg is given by

ngϕg
1− c

=
1

1− cFg
(
d̂+ ρ

) , ϕg′ = 0, g 6= g′.

If ϕ = ϕg, then Z(ϕg) = Z3,g(d̂(ϕg)), where d̂(ϕg) is given by (40) and Z3,g is defined by

Z3,g(d̂) :=
1

1− cFg
(
d̂+ ρ

) {(1− c)

[∫ max{ρ,d̂+ρ}

vg

(v − ρ)dFg(v) + ρ

]
+

∫ vg

max{ρ,d̂+ρ}
(v − ρ)dFg(v)

}
.

By the same argument as that in Theorem 3, Z3,g is maximized at d∗∗g ≥ 0.
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For d̂ ≥ 0, we have

Z3,H(d̂)− Z3,L(d̂)

=
1

1− cFH
(
d̂+ ρ

)
 (1− c)

[∫ vH
vH

(
v −max{v, d̂+ ρ}

)
dFH(v) + ρ

]
+
∫ vH
vH

(
v −min{v, d̂+ ρ}

)
dFH(v)


− 1

1− cFL
(
d̂+ ρ

)
 (1− c)

[∫ vL
vL

(
v −max{v, d̂+ ρ}

)
dFL(v) + ρ

]
+
∫ vL
vL

(
v −min{v, d̂+ ρ}

)
dFL(v)

 .

By construction, if d∗∗H ≤ d∗∗L , then Z3,H(d∗∗H )−Z3,L(d∗∗H ) ≤ 0. Hence, Z3,H(d̂∗∗H ) ≤ Z3,L(d̂∗∗H ) ≤
Z3,L(d̂∗∗L ).

It is easy to show that if ϕg ≤ 1− c for all g ∈ {H,L}, then Z(ϕ) ≤ Z3(ϕ), where

Z3(ϕ) :=
∑

g∈{H,L}

1

1− cFg
(
d̂(ϕ) + ρ

)
 (1− c)

[∫ max{ρ,d̂(ϕ)+ρ}
vg

(v − ρ)dFg(v) + ρ
]

+
∫ vg

max{ρ,d̂(ϕ)+ρ}(v − ρ)dFg(v)

 ,

and d̂(ϕ) is defined by (40). Hence, if ϕg ≤ 1− c for all g ∈ {H,L}, then

Z(ϕ) ≤ Z3(ϕ) ≤ max{Z3,H(d̂(ϕ)), Z3,L(d̂(ϕ))} ≤ max{Z3,H(d∗∗H ), Z3,L(d∗∗L )} ≤ Z3,L(d∗∗L ).

Finally, note that if ϕH = 0, then (41) implies that (42). Hence, ϕL ∈ Φ (d∗∗L , d
∗∗
L , d

∗∗
L )

if and only if ϕLL satisfies inequality (41). Furthermore, ϕLL satisfies inequality (41) if

and only if d∗∗L satisfies (39). Hence, if d∗∗L satisfies (39), it is optimal to set ϕ1∗ =

(0, (1− c)/{nL[1− cFL(d∗∗L + ρ)]}).
Case 2: ϕL ≤ 1− c. Since d∗∗L ≥ d∗∗H ≥ d∗H ≥ d∗L, by a similar argument to that of Case

1 in the proof of Theorem 5, Z(ϕ) ≤ Z2,L(d∗∗L ), where the maximum is achieved at

ϕ2∗ =

(
1− c, 1− c

nL

FH(d∗∗L + ρ)nH − nH(1− c)FH(d∗∗L + ρ)

1− cFL(d∗∗L + ρ)

)
.

Case 3: ϕH ≤ 1− c. Since d∗∗L ≥ d∗∗H ≥ d∗H ≥ d∗L, by a similar argument to that of Case

1 in the proof of Theorem 5, Z(ϕ) ≤ Z2,H(d∗∗H ), where the maximum is achieved at

ϕ3∗ =

(
1− c
nH

FL(d∗∗H + ρ)nL − nL(1− c)FL(d∗∗H + ρ)

1− cFH(d∗∗H + ρ)
, 1− c

)
.

By assumption, ϕ2∗
g ≤ 1 − c and ϕ3∗

g ≤ 1 − c for g ∈ {H,L}. Hence, Z(ϕ2∗) ≤ Z(ϕ1∗)

and Z(ϕ3∗) ≤ Z(ϕ1∗). Hence, it is optimal to set ϕ∗ = ϕ1∗. This completes the proof.
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C.5 Omitted proofs in Section 5.2

Fix ϕ and let {dui }i and dl be the associated optimal thresholds. Assume, without loss of

generality, that du1 ≥ · · · ≥ dun ≥ dl. Let 1 ≤ ξ1 < · · · < ξL ≤ n be such that du1 = · · · = duξ1 ,

duξι > duξι+1 = · · · = duξι+1
for ι = 1, . . . , L − 1 and duξL > duξL+1 = · · · = dun = dl. Note that

in the symmetric environment dui ≥ duj only if ϕi ≥ ϕj. The proof of Theorem 7 uses the

following properties of dl and dui :

Lemma 20 If ϕi
1−c ≥ 1 for all i ≤ ξ1, then duξ1 = v − k

c
; otherwise ϕi

1−c < 1 for all i ≤ ξ1 and

duξ1 satisfies

1− F
(
duξ1 +

k

c

)ξ1
=

ξ1∑
i=1

ϕi
1− ci

[
1− F

(
duξ1 +

k

c

)]
,

1− F (v)ξ1 ≶
ξ1∑
i=1

ϕi
1− c

[1− F (v)] if v ≶ duξ1 +
k

c
,

ϕi
1− c

≥ F

(
duξ1 +

k

c

)ξ1−1

,∀i = 1, . . . , ξ1.

For ι = 1, . . . , L− 1, ϕi
1−c < 1 for ξι + 1 ≤ i ≤ ξι+1 and duξι+1

satisfies

F

(
duξι+1

+
k

c

)ξι
− F

(
duξι+1

+
k

c

)ξι+1

=

ξι+1∑
i=ξι+1

ϕi
1− ci

[
1− F

(
duξι+1

+
k

c

)]
,

F (v)ξι − F (v)ξι+1 ≶
ξι+1∑
i=ξι+1

ϕi
1− c

[1− F (v)] if v ≶ duξι+1
+
k

c
,

ϕi
1− c

≥ F

(
duξι+1

+
k

c

)ξι+1−1

, ∀i = ξι + 1, . . . , ξι+1.

Finally, dl satisfies

F

(
dl +

k

c

)ξL
=

n∑
i=1

ϕiF

(
dl +

k

c

)
+

n∑
i=ξL+1

ϕi
1− c

[
1− F

(
dl +

k

c

)]
,

F (v)ξL ≶
n∑
i=1

ϕiF (v) +
n∑

i=ξL+1

ϕi
1− c

[1− F (v)] if v ≶ dl +
k

c
.

The arguments used to prove Lemma 20 are similar to that used to show that P
m

i

converges to P i if dl < vi − ki
ci
< dui , and are neglected here.

Proof of Theorem 7. The first part of the theorem directly follows from Theorem 8.
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Assume, for the rest of the proof, that F (v∗)n−1 < n(1 − c). Consider an optimal ϕ. Let

{dui }i and dl be the associated optimal thresholds. Assume, without loss of generality, that

du1 ≥ · · · ≥ dun ≥ dl. Let ξι (ι = 1, . . . , L) be defined as in the beginning of this subsection.

First, I show that L = 1. Suppose, to the contrary, that L ≥ 2. Suppose that duξ2 < 0,

then the principal’s objective function is strictly increasing in ϕi for i > ξ2. Hence, in

optimum, it must be that duξ2 ≥ 0. Construct a new ϕ∗ as follows: Let

ϕ∗i =
1

ξ2

ξ2∑
j=1

ϕj, for all i = 1, . . . , ξ2,

and ϕ∗i = ϕi for all i > ξ2. Let du∗i and dl∗ be the optimal thresholds associated with ϕ∗.

Then du∗1 = . . . du∗ξ2 and du∗i = dui for all i > ξ2. There are two cases: (1) ϕi < 1 − c for all

i ≤ ξ1 and (2) ϕi ≥ 1− c for all i ≤ ξ1.

Case 1: ϕi < 1− c for all i ≤ ξ1. In this case, ϕ∗1 < 1− c. Then du∗ξ2 is defined by

[
1− F

(
du∗ξ2 +

k

c

)] ξ2∑
i=1

ϕ∗i
1− c

= 1− F
(
du
∗

ξ2
+
k

c

)ξ2
. (43)
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Hence, duξ2 < du
∗

ξ2
< duξ1 . Let Z(ϕ) denote the principal’s payoff given ϕ. Then

Z(ϕ∗)− Z(ϕ)

=

ξ2∑
i=1

[∫ v

du∗ξ2
+ k
c

(
vi −

k

c

)
ϕ∗i

1− c
dF (vi) +

∫ du
∗
ξ2

+ k
c

duξ2
+ k
c

(
vi −

k

c

)
F (vi)

ξ2−1dF (vi)

]

−
ξ2∑

i=ξ1+1

∫ v

duξ2
+ k
c

(
vi −

k

c

)
ϕi

1− c
dF (vi)

−
ξ1∑
i=1

[∫ duξ1
+ k
c

duξ2
+ k
c

(
vi −

k

c

)
F (vi)

ξ1−1dF (vi) +

∫ v

duξ1
+ k
c

(
vi −

k

c

)
ϕi

1− c
dF (vi)

]

=

∫ du∗ξ2
+ k
c

duξ2
+ k
c

(
v − k

c

)
ξ2F (v)ξ2−1dF (v) +

∫ v

du
∗
ξ2

+ k
c

(
v − k

c

) ξ2∑
i=1

ϕ∗i
1− c

dF (v)

−
∫ duξ1

+ k
c

duξ2
+ k
c

(
v − k

c

)( ξ2∑
i=ξ1+1

ϕi
1− c

+ ξ1F (v)ξ1−1

)
dF (v)−

∫ u

duξ1
+ k
c

(
v − k

c

) ξ2∑
i=1

ϕi
1− c

dF (v)

=

∫ du∗ξ2
+ k
c

duξ2
+ k
c

(
v − k

c

)
ξ2F (v)ξ2−1dF (v) +

∫ duξ1
+ k
c

du
∗
ξ2

+ k
c

(
v − k

c

) ξ2∑
i=1

ϕi
1− c

dF (v)

−
∫ duξ1

+ k
c

duξ2
+ k
c

(
v − k

c

)( ξ2∑
i=ξ1+1

ϕi
1− c

+ ξ1F (v)ξ1−1

)
dF (v)

=duξ1

[
F

(
duξ1 +

k

c

) ξ1∑
i=1

ϕi
1− c

− F
(
duξ1 +

k

c

)ξ1]
+ du∗ξ2

[
F

(
du∗ξ2 +

k

c

)ξ2
− F

(
du∗ξ2 +

k

c

) ξ2∑
i=ξ1+1

ϕi
1− c

]

− duξ2

[
F

(
duξ2 +

k

c

)ξ2
− F

(
duξ2 +

k

c

) ξ2∑
i=ξ1+1

ϕi
1− c

− F
(
duξ2 +

k

c

)ξ1]

−
∫ du∗ξ2

+ k
c

duξ2
+ k
c

[
F (v)ξ2 − F (v)

ξ2∑
i=ξ1

ϕi
1− c

− F (v)ξ1

]
dv −

∫ duξ1
+ k
c

du
∗
ξ2

+ k
c

[
F (v)

ξ1+1∑
i=1

ϕi
1− c

− F (v)ξ1

]
dv,

where the third equality holds because
∑ξ2

i=1 ϕi =
∑ξ2

i=1 ϕ
∗
i , and the last equality holds by

integration by parts. Because du∗ξ2 satisfies (43), duξ1 satisfies that

1− F
(
duξ1 +

k

c

)ξ1
=

[
1− F

(
duξ1 +

k

c

)] ξ1∑
i=1

ϕi
1− c

1− F (v)ξ1 < [1− F (v)]

ξ1∑
i=1

ϕi
1− c

,∀v < duξ1 +
k

c
,
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and duξ2 satisfies that

1− F
(
duξ2 +

k

c

)ξ2
=

[
1− F

(
duξ2 +

k

c

)] ξ2∑
i=ξ1+1

ϕi
1− c

+ 1− F
(
duξ2 +

k

c

)ξ1

1− F (v)ξ2 > [1− F (v)]

ξ2∑
i=ξ1+1

ϕi
1− c

+ 1− F (v)ξ1 ,∀v > duξ2 +
k

c
,

we have

Z(ϕ∗)− Z(ϕ)

>
(
dξ1 − du

∗

ξ2

)( ξ1∑
i=1

ϕi
1− c

− 1

)
−
(
du∗ξ2 − dξ2

) ξ2∑
ξ1+1

ϕi
1− c

+

∫ du∗ξ2
+ k
c

duξ2
+ k
c

ξ2∑
i=ξ1+1

ϕi
1− c

dv −
∫ duξ1

+ k
c

du
∗
ξ2

+ k
c

(
ξ1∑
i=1

ϕi
1− c

− 1

)
dv = 0,

which is a contradiction to the optimality of ϕ.

Case 2: ϕi ≥ 1− c for all i ≤ ξ1. If ϕ∗1 ≥ 1− c, then du∗ξ2 = d. In this case, we have

Z(ϕ∗)− Z(ϕ)

=

ξ2∑
i=1

∫ v

duξ2
+ k
c

(
vi −

k

c

)
F (vi)

ξ2−1dF (vi)−
ξ2∑

i=ξ1+1

∫ v

duξ2
+ k
c

(
vi −

k

c

)
ϕi

1− c
dF (vi)

−
ξ1∑
i=1

∫ v

duξ2
+ k
c

(
vi −

k

c

)
F (vi)

ξ1−1dF (vi)

=

∫ v

duξ2
+ k
c

(
v − k

c

)
ξ2F (v)ξ2−1dF (v)−

∫ v

duξ2
+ k
c

(
v − k

c

)( ξ2∑
i=ξ1+1

ϕi
1− c

+ ξ1F (v)ξ1−1

)
dF (v)

=

(
v − k

c

) [
F (v)ξ2 − F (v)

ξ2∑
i=ξ1+1

ϕi
1− c

− F (v)ξ1

]∣∣∣∣∣
v

duξ2
+ k
c

−
∫ v

duξ2
+ k
c

[
F (v)ξ2 − F (v)

ξ2∑
i=ξ1+1

ϕi
1− c

− F (v)ξ1

]
dv,
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where the last equality holds by integration by parts. Because duξ2 satisfies that

[
1− F

(
duξ2 +

k

c

)] ξ2∑
i=ξ1+1

ϕi
1− c

+ 1− F
(
duξ2 +

k

c

)ξ1
= 1− F

(
duξ2 +

k

c

)ξ2
,

[1− F (v)]

ξ2∑
i=ξ1+1

ϕi
1− c

+ 1− F (v)ξ1 < 1− F (v)ξ2 ,∀v > duξ2 +
k

c
,

we have

Z(ϕ∗)− Z(ϕ) > −
(
v − k

c
− duξ2

) ξ2∑
i=1

ϕi
1− c

+

∫ v

duξ2
+ k
c

ξ2∑
i=ξ1+1

ϕi
1− c

dv = 0,

which is a contradiction to the optimality of ϕ. If ϕ∗1 < 1 − c, then let du∗1 = · · · = du∗ξ2 be

defined by (43). Note that if ξ1 = 1 and ϕ1/(1− c) = 1, then the new mechanism using ϕ∗

coincides with the old mechanism using ϕ. In this case, we can redefine du1 := duξ2 without

changing the mechanism. Except for this case, we can show, by a similar argument to that

in Case 1, that Z(ϕ∗)− Z(ϕ) > 0, which is a contradiction to the optimality of ϕ.

Hence, by induction, we have L = 1. For ease of notation, let j := ξ1. Next, we show

that j = 0 or n. Suppose, to the contrary, that 0 < j < n. Suppose that dl < 0, then the

principal’s objective function is strictly increasing in ϕi for i > j. Hence, in optimum, it

must be that dl ≥ 0. Construct a new ϕ∗ as follows: Let

ϕ∗i =
1

n

n∑
j=1

ϕj, for all i = 1, . . . , n.

Case 1: ϕi < 1− c for all i ≤ j. In this case, ϕ∗1 < 1− c. Let du∗1 = · · · = du∗n be such

that

1− F
(
du∗j +

k

c

)n
=

n∑
i=1

ϕ∗i
1− c

[
1− F

(
du∗j +

k

c

)]
. (44)

Then du∗j < duj . Let dl∗ be such that

F

(
dl∗ +

k

c

)n
=

n∑
i=1

ϕ∗iF

(
dl∗ +

k

c

)
. (45)

Then dl < dl∗. There are two subcases to consider: (i) dl∗ ≤ du∗j and (ii) dl∗ > du∗j .
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(i) Suppose that dl∗ ≤ du∗j . Then

Z(ϕ∗)− Z(ϕ)

=
n∑
i=1

[∫ dl
∗

+ k
c

v

(
vi −

k

c

)
ϕ∗idF (vi) +

∫ du∗j + k
c

dl∗+ k
c

(
vi −

k

c

)
F (vi)

n−1dF (vi) +

∫ v

du∗j + k
c

(
vi −

k

c

)
ϕ∗i

1− c
dF (vi)

]

−
n∑
i=1

∫ dl+ k
c

v

(
vi −

k

c

)
ϕidF (vi)−

n∑
i=j+1

∫ v

dl+ k
c

(
vi −

k

c

)
ϕi

1− c
dF (vi)

−
j∑
i=1

[∫ duj + k
c

dl+ k
c

(
vi −

k

c

)
F (vi)

j−1dF (vi) +

∫ v

duj + k
c

(
vi −

k

c

)
ϕi

1− c
dF (vi)

]

=

∫ dl
∗

+ k
c

dl+ k
c

(
v − k

c

) n∑
i=1

ϕidF (v) +

∫ du∗j + k
c

dl∗+ k
c

(
v − k

c

)
nF (v)n−1dF (v) +

∫ duj + k
c

du∗j + k
c

(
v − k

c

) n∑
i=1

ϕi
1− c

dF (v)

−
∫ duj + k

c

dl+ k
c

(
v − k

c

) n∑
i=j+1

ϕi
1− c

dF (v)−
∫ duj + k

c

dl+ k
c

(
v − k

c

)
jF (v)j−1dF (v)

=duj

[
F

(
duj +

k

c

) j∑
i=1

ϕi
1− c

− F
(
duj +

k

c

)j]
+ du∗j

[
F

(
du∗j +

k

c

)n
− F

(
du∗j +

k

c

) n∑
i=1

ϕi
1− c

]

+ dl∗

[
F

(
dl∗ +

k

c

) n∑
i=1

ϕi − F
(
dl∗ +

k

c

)n]

+ dl

[
−F

(
dl +

k

c

) n∑
i=1

ϕi + F

(
dl +

k

c

) n∑
i=j+1

ϕi
1− c

+ F

(
dl +

k

c

)j]

−
∫ dl∗+ k

c

dl+ k
c

F (v)
n∑
i=1

ϕidv −
∫ du∗j + k

c

dl∗+ k
c

F (v)ndv −
∫ du∗j + k

c

duj + k
c

F (v)
n∑
i=1

ϕi
1− c

dv

+

∫ duj + k
c

dl+ k
c

[
F (v)

n∑
i=j+1

ϕi
1− c

+ F (v)j

]
dv,

where the second equality holds because
∑n

i=1 ϕ
∗
i =

∑n
i=1 ϕi and the last equality holds by

integration by parts. Because du∗j satisfies (44), dl∗ satisfies (45), duj satisfies that

1− F
(
duj +

k

c

)j
=

n∑
i=j+1

ϕi
1− c

[
1− F

(
duj +

k

c

)]
,

1− F (v)j <
n∑

i=j+1

ϕi
1− c

[1− F (v)] ,∀v < duj ,
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and dl satisfies that

1− F
(
dl +

k

c

)j
+

n∑
i=j+1

ϕi
1− c

[
1− F

(
dl +

k

c

)]
+

n∑
i=1

ϕiF

(
dl +

k

c

)
= 1,

1− F (v)j +
n∑

i=j+1

ϕi
1− c

[1− F (v)] +
n∑
i=1

ϕiF (v) < 1,∀v > dl

F (v)j − F (v)n > [1− F (v)]
n∑

i=j+1

ϕi
1− c

,∀v > dl = duj+1,

we have

Z(ϕ∗)− Z(ϕ)

>duj

(
j∑
i=1

ϕi
1− c

− 1

)
+ du∗j

(
1−

n∑
i=1

ϕi
1− c

)
+ dl

n∑
i=j+1

ϕi
1− c

−
∫ dl∗+ k

c

dl+ k
c

n∑
i=j+1

ϕi
1− c

dv −
∫ du∗j + k

c

dl∗+ k
c

n∑
i=j+1

ϕi
1− c

dv −
∫ du∗j + k

c

duj + k
c

(
j∑
i=1

ϕi
1− c

− 1

)
dv = 0,

which is a contradiction to the optimality of ϕ.

(ii) Suppose that dl∗ > du∗j . In this case, redefine dl∗ = du∗j such that

n∑
i=1

[
ϕ∗iF

(
dl∗ +

k

c

)
+

ϕ∗i
1− c

(
1− F

(
dl∗ +

k

c

))]
= 1.

Then dl < dl∗ = du∗j < duj . By a similar argument to that in case (ii), we can show that

Z(ϕ∗)− Z(ϕ) > 0, which is a contradiction to the optimality of ϕ.

Case 2: ϕi ≥ 1 − c for all i ≤ j. If ϕ∗1 ≥ 1 − c, then let du∗1 = . . . du∗n = d and dl∗ be

defined by (45). By a similar argument to that in Case 1, we can show that Z(ϕ∗)−Z(ϕ) > 0,

which is a contradiction to the optimality of ϕ.

If ϕ∗1 < 1 − c, then let du∗1 = . . . du∗n = d be defined by (44) and dl∗ be defined by (45).

Note that if j = 1 and ϕ1/(1 − c) = 1, then the new mechanism using ϕ∗ coincides with

the old mechanism using ϕ. In this case, we can redefine du1 := dl without changing the

mechanism. Except for this case, we can show, by a similar argument to that in Case 1, that

Z(ϕ∗)− Z(ϕ) > 0, which is a contradiction to the optimality of ϕ.

Hence, j = 0 or n.

77



Case 1: j = 0. In this case, for all i,

P ∗i (vi) =

{
ϕi

1−c if vi ≥ dl + k
c

ϕi if vi < dl + k
c

.

is an optimal mechanism given ϕ. Furthermore, ϕ and dl must satisfy

[
1− F

(
dl +

k

c

)] i∑
j=1

ϕj
1− c

≤ 1− F
(
dl +

k

c

)i
,∀i ≤ n, (46)

F

(
dl +

k

c

) n∑
i=1

ϕi +

[
1− F

(
dl +

k

c

)] n∑
i=1

ϕi
1− c

= 1. (47)

In particular, (46) holds for i = n, which implies

n∑
i=1

ϕi
1− c

≤
1− F

(
dl + k

c

)n
1− F

(
dl + k

c

) .
Substituting this into (47) yields

F

(
dl +

k

c

)n−1

≤
n∑
i=1

ϕi ≤
(1− c)

[
1− F

(
dl + k

c

)n]
1− F

(
dl + k

c

) .

By the proof of the second part in Theorem 3, j = 0 is optimal if v∗∗ ≤ v\, in which case

the optimal dl = du1 = · · · = dun = v∗∗− k
c
. The set of optimal ϕ is given by Φ(dl, du1 , . . . , d

u
n).

Clearly, ϕ ∈ Φ if and only if ϕ satisfies conditions (46) and (47). Because v∗∗ ≤ v\ implies

that

1 ≤ 1

1− cF (v∗∗)
≤ 1− F (v∗∗)n

1− F (v∗∗)
,

there exists 1 ≤ h ≤ n such that

1− F (v∗∗)h−1

1− F (v∗∗)
≤ 1

1− cF (v∗∗)
<

1− F (v∗∗)h

1− F (v∗∗)
.

Hence, for all i > h, (46) holds if (47) holds. Given this, it is easy to see that the set of

optimal ϕ is the convex hull of{
ϕ

∣∣∣∣∣ ϕij = (1− c)F (v∗∗)j−1 if j ≤ h− 1, ϕih = 1−c
1−cF (v∗∗)

−
∑h−1

j=1 (1− c)F (v∗∗)j−1,

ϕij = 0 if j ≥ h+ 1 and (i1, . . . , in) is a permutation of (1, . . . , n)

}
.
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Case 2: j = n. In this case, let du := du1 = · · · = dun, and

P ∗i (vi) =


ϕi

1−c if vi ≥ du + k
c

F (v)n−1 if dl + k
c
< vi < du + k

c

ϕi if vi ≤ dl + k
c

.

Furthermore, ϕ, dl and du must satisfy that

[
1− F

(
du +

k

c

)] i∑
j=1

ϕj
1− c

≤ 1− F
(
du +

k

c

)i
,∀i ≤ n− 1, (48)

[
1− F

(
du +

k

c

)] n∑
i=1

ϕi
1− c

= 1− F
(
du +

k

c

)n
, (49)

F

(
dl +

k

c

) n∑
i=1

ϕi = F

(
dl +

k

c

)n
. (50)

(49) and (50) imply that dl and du satisfy that

1− F
(
du + k

c

)n
1− F

(
du + k

c

) =
F
(
dl + k

c

)n−1

1− c
.

By the proof of the third part in Theorem 3, j = n is optimal if v∗∗ > v\, in which case the

optimal dl = vl(ϕ∗)− k
c

and the optimal du1 = · · · = dun = vu(ϕ∗)− k
c
. The set of optimal ϕ

is given by Φ(dl, du1 , . . . , d
u
n). Clearly, ϕ ∈ Φ if and only if ϕ satisfies conditions (48)-(50). It

is easy to see that Φ is the convex hull of

{
ϕ
∣∣ϕij = (1− c)F (vu(ϕ∗))j−1 ∀j and (i1, . . . , in) is a permutation of (1, . . . , n)

}
.
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