
CARESS Working Paper 99–11

Quantity Discounts for Taste–Varying Consumers

Eugenio J. Miravete†?

September 17, 1999

Abstract

When a monopolist asks consumers to choose a particular nonlinear tariff
option, consumers do not completely know their type. Their valuations of
the good and/or optimal quantity purchases are only fully realized after the
optional tariff has been subscribed. In order to characterize the menu of
optimal nonlinear tariffs when consumers demands are stochastic, I assume
that the distributions of the different components of consumers’ types are
log–concave to prove that the convolution distribution of these components is
increasing hazard rate. This result, together with very weak assumptions on
demand (common to standard nonlinear pricing), ensures that the continuum
of optional nonlinear tariffs is characterized by quantity discounts. I test
nonparametrically the model using data directly linked to consumer types
from the 1986 Kentucky telephone tariff experiment. I show that the distri-
bution of actual calls second order stochastically dominates the distribution
of expected calls, which fully supports the suggested type–varying theoretical
model. Finally, I analyze possible welfare effects of the introduction of
optional tariffs and their relative expected profitability using the empirical
distribution of consumer types in two local exchanges with differentiated
calling patterns. The evidence suggests that a menu of optional two–part
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1 Introduction
Consumers have to choose frequently among sets of class of services. For instance, tele-
phone customers have to choose among different long distance plans offered by competing
firms, or among different subscription contracts to the local telephone monopolist. Internet
access providers also allow choosing among different connection plans depending on the
expected usage of the network. Cable companies offer a variety of bundles of channels for
monthly subscription at different rates and bundling discounts. Car rental rates depend
on the duration of the lease, mileage, and/or fuel option chosen. Public transportation
systems offer the possibility of advance purchase of passes of varied duration at different
discount rates depending on the expected usage of the system. Banks ask their customers to
select one among few checking and savings accounts depending on their average expected
balance and number of monthly checks drawn. Also, insurance companies sell different
policies conditional on the health, age, and/or deductible subscribed by the client. Finally,
health clubs charge different monthly rates depending on registration fees related to the
duration of the contract.

What do all these examples have in common? All these (and surely other) cases
represent contractual situations where consumers choose a particular class of service, i.e.,
a particular payment schedule, without knowing with certainty their future consump-
tion level. Furthermore, for most of these examples (with the exception of insurance),
consumers can be considered risk neutral without loss of generality given the low share
of these expenditures on their average household income. Thus, the key issue is that
telephone customers do not know their future local or long distance telephone usage. TV
viewers do not know whether they will like future broadcasts or if they will have the time
to enjoy it. Drivers do not know exactly the mileage of their planned trip, whether they
will take a detour, or if they will face some contingency that force them to drive more or
less than what they expected, et cetera. Therefore, consumers are not signing a contingent
contract, and they are not committing to any particular purchase level in the future while
the choice among alternatives does not embody any attempt to minimize risk.

All these situations are characterized by a two–stage decision process: first con-
sumers decide which class of service they sign up for, and later, once their demand needs are
known with certainty, they decide how much to buy from the firm, contingent on the rates
of the tariff plan previously chosen. Companies, either because of reputation, repeated
interaction with consumers, or legal restrictions, are not allowed to switch customers from
one class of service to a different one, neither to take advantage of customers consumption
decisions, or to favor them. Thus, firms can only profit from the stochastic dimension of
consumers’ demand through the design of the offered options.

But furthermore, most business applications of nonlinear pricing are characterized
by quantity discounts, i.e., unit price decreases with volume purchased by consumers.
This feature is particularly convenient for natural monopolists and firms with important
fixed costs. Charging a higher price per unit for the first units sold allows covering fixed
costs, while discounts increase efficiency as large customers are priced closer to marginal
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costs. Fortunately, very general demand specifications and consumer taste distributions
(adverse selection parameter) lead to optimal nonlinear price schedules characterized by
quantity discounts. At least since the work of Maskin and Riley (1984), it is well known
that quantity discounts are present if the distribution of types is increasing hazard rate,
if consumers utility function satisfies the single–crossing property, and if some (not very
restrictive) third derivatives of the utility function have the appropriate sign. Thus, general
concave pricing mechanisms lead to quantity discounts. In fact, when the tariff function
is concave, it can be implemented using a menu or continuum of self–selecting two–part
tariffs whose marginal charge is decreasing with the volume purchased by the consumer
[Faulhaber and Panzar (1977)].

Why cannot the above examples be addressed with the existing nonlinear pricing
theory? The concept of self–selecting tariff has been wrongly used as synonym of optional
tariffs. This is particularly true in many works dealing with pricing of telecommunications
services. A common mistake present in all the related empirical literature is to neglect
the existence of two stages and assume that consumers make purchases and choose among
class of services simultaneously.1 If this were the case, the only relevant information for
consumers to make that decision would be known at the time of consumption, and therefore
the “choice” of the corresponding self–selecting tariff plan would be exactly dual to the
usage decision. Obviously, within this framework, there is no possibility of an ex–post
“mistake” in the choice of the tariff plan.

The right approach should explicitly consider this two–stage nature of the problem:
consumers first choose the tariff plan that better suit their needs given their expectation
on future consumption level or expected valuation of the good or service. Later, once their
needs or actual valuation are known, they decide how much to consume contingent on
their previous tariff choice. The difficulty of this approach is that individual consumer’
demands become stochastic since the expected consumption at the time of the tariff choice
need not necessarily coincide with the purchase in the second stage of this game. Individual
stochastic demands break the duality between consumption and choice of the corresponding
self–selecting tariff. Consumers who chose different tariffs in stage 1 may end up paying and
consuming the same at stage 2 if they receive demand shocks of opposite sign. Similarly,
the same consumption level at stage 2 could be purchased at different rates depending on
the disparate choice of tariffs of different consumers at stage 1. Thus, the optimal nonlinear
tariff is no longer the lower envelope of a set of self–selecting two–part tariffs.

General treatments of nonlinear pricing when demand is stochastic are still not
available.2 This paper provides a characterization of the ex–ante nonlinear tariff (the
one that considers two–stage decision problem) and relates it to the standard ex–post
nonlinear tariff (where consumption and tariff choice are simultaneous). The key issue

1 See for instance Hobson and Spady (1988), Kling and van der Ploeg (1990), MacKie–Mason and
Lawson (1993), and Mitchel and Vogelsang (1991, §8).

2 Only recently this topic has attracted some attention, although few and incomplete attempts to
model optional tariffs have been carried out. See for instance Clay, Sibley, and Srinagesh (1992), Courty
and Li (1998), and Miravete (1996 and 1997).
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for these two pricing problems to be properly defined is that the hazard rate properties
of the distributions of consumer types is preserved under convolution. This paper shows
that this is the case under very general conditions, and furthermore that there might be
some ordering of the hazard rates of the distributions used in each problem, ex–ante vs.
ex–post, so that unit markups could also be compared.

The main goal of this paper is to study whether optional tariffs are characterized
by quantity discounts. In all examples mentioned before, tariff plans with lower marginal
charges were also those that include higher fixed fees. In particular, this paper aims to
study whether Maskin and Riley’s (1984) conditions still suffice to characterize optional
tariffs with quantity discounts. If this is not the case, the paper explores which additional
assumptions on demand and/or distribution behavior have to be made in order to ensure
that optimal theoretical solutions are consistent with the common business practice. The
paper shows that no additional assumptions on demand need to be made, and that in fact
it suffices to assume that the distribution of taste components are log–concave to ensure
that the corresponding optional tariffs are characterized by quantity discounts.

In order to deal with the stochastic nature of consumer demand, the suggested
model assumes that consumers’ types have two components: the ex–ante type θ1, and
the type shock θ2. Together they define the ex–post type θ. The ex–ante type is always
known by consumers, and in particular it is known prior to the choice of the class of
service. This type dimension is private information and defines something similar to the
average consumption level for each consumer (or expected valuation of the product). The
type shock θ2 represents deviations from the average consumption due to unpredictable
events (or unexpected changes in valuation due to any general or individual circumstances).
The type shock is different for each individual and remains private information to each
consumer. The introduction of this second dimension captures the idea of changes in con-
sumer preferences. This construction identifies the two sources of asymmetric information
relevant at the choice and the usage decision stages. The monopolist will design each
tariff option, and within each option the corresponding quantity discounts, to maximize
his expected profits given the information set of consumers at each stage. The realization
of θ1 critically conditions the choice among tariffs, while the value of θ2 together with the
tariff plan chosen determines the actual level of usage in the second stage of the game.

Obviously, the application of this type–varying model is not limited to pricing
problems, and it could be extended to any other mechanism design problem with stochastic
demands. In particular, this paper is related to the regulation literature dealing with
the optimality of linear contracts in the presence of cost randomness.3 In terms of this
literature the present paper analyzes whether the regulator is able to design a regulatory
mechanism when there may be productivity shocks affecting the regulated firm, and
whether it prefers to contract on the ex–ante expected costs of the regulated firm rather
than on the actual ex–post costs.

3 See Caillaud, Guesnerie, and Rey (1992), Laffont and Tirole (1986), and Rogerson (1988). See
also Baron and Besanko’s (1984) analysis of agents’ type changes in a continuing regulatory relationship.
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This type–varying setup rises many side issues that are intentionally neglected in
the present paper to avoid unnecessary complexity and to limit the scope of the model in
dealing with the effects of stochastic demands. I make two explicit simplifying assumptions
here. First, the pricing game remains essentially static. Consumers first choose the optional
tariff, and later decide how much to consume. I do not consider repeated versions of this
game because it would require to model how informative is θ1 with respect to θ, how are
successive θ2’s correlated over time, and ultimately model the updating of future usage
expectations, θ1’s. The closed–loop equilibrium tariff options of this richer model will be
more difficult to characterize (if not impossible analytically), and this added complexity
will however not help answering whether optional tariffs could be properly defined or not.4

The second simplifying assumption is that types remain single–dimensional. Thus
θ “moves around” θ1 depending on the magnitude of the type shock θ2 and the single–
dimensional definition of the ex–post type as a function of the ex–ante type and the shock.
Additional dimensions should be considered if they address different attributes in the defini-
tion of consumers’ utility functions, so that the monopolist can screen consumers different
taste dimensions simultaneously. Nevertheless, in this paper I assume that consumers
have heterogeneous preferences defined on just one single dimension. However, they have
different knowledge about their preferences at each stage of the game. Consumers have a
more or less intensive expected or actual valuation of the quantity consumed, but they do
not take into account any other quality characteristic of the product. Thus, the stochastic
nature of the problem allows the monopolist to screen sequentially each component of the
ex–post type.5

An area where optional tariffs are prevalent is telecommunications. It is commonly
reported in many telecommunications demand studies that telephone customers show a
biased, even irrational, preference for flat tariff options. These studies conclude that
by remaining on this option even when usage levels repeatedly do not justify it from a
purely expense minimizing perspective, telephone customers are immensely increasing the
cash revenues of telephone companies.6 I exploit the unique data of the 1986 Kentucky
telephone tariff experiment to test the empirical implications and make policy evaluations

4 An additional but secondary reason is that I test this model with a short panel (three periods),
and therefore learning effects cannot be consistently identified.

5 Multidimensional screening is a complex but rich area itself. The main result of this literature
is that type bunching is optimal due to a conflict between participation constraints and second order
incentive compatibility conditions [Rochet and Choné (1998)]. My single–dimensional assumption also
helps focusing the analysis on the stochastic feature of demand since multidimensional nonlinear pricing
can only be solved explicitly for utility functions that are radial symmetric in type dimensions [Armstrong
(1996), Wilson (1993, §12–14)], where monotonicity of the optimal tariff does not hold in general [Wilson
(1995)]. Thus, within a multidimensional framework, it would not be possible to isolate whether the
lack of monotonicity is due to the violation of any sufficient condition (increasing hazard rate of the
distribution, single–crossing property, and sign restrictions of third derivatives of the utility function), or
to the interactions among multiple type dimensions.

6 See Hobson and Spady (1988), Kridel, Lehman, and Weisman (1993), and Srinagesh (1992). Train,
Ben–Akiva, and Atherton (1989) use the same argument to explain the choice of tariff service to pay for
domestic electricity consumption while Train, McFadden, and Ben–Akiva (1987) report that telephone
customers switch options less frequently than expected from a pure cost minimization perspective.
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using the suggested type–varying model. Since this data set includes direct instruments
for θ and θ1 (and therefore for θ2 up to a monotone transformation), I can compute
Anderson’s (1996) nonparametric test of stochastic dominance to conclude that there is
second order stochastic dominance of θ over θ1 in the two exchanges of Kentucky (Bowling
Green and Louisville) where the tariffs experiment took place. This evidence, consistent
across time and demographic strata, strongly support the significance of the suggested
type–varying model. The empirical analysis also shows that only in Louisville (the local
exchange where the monopolist introduced optional tariffs) there is significant first order
stochastic dominance (across time and demographic strata) of θ over θ1. The advantage
of using instruments directly linked to consumers’ tastes, is that the empirical analysis is
not subject to the common identification and misspecification of structural models dealing
with asymmetric information issues.7

The paper is organized as follows. Section 2 presents the solution of the standard
nonlinear pricing problem when the monopolist offers a continuum of ex–post self–selecting
two–part tariffs, and studies whether they will be characterized by quantity discounts.
Section 3 introduces optional nonlinear pricing, first through a menu of optional two–
part tariffs, and later by means of nonlinear options. Section 4 proves that under very
general assumptions the increasing hazard rate property of the distribution of consumers’
private information parameter is preserved under convolution, and thus shows that ex–post
pricing is well defined and generally characterized by quantity discounts when types include
stochastically independent components. Section 5 presents evidence in favor of the taste-
varying model using data from the 1986 Kentucky Local Telephone Tariff Experiment.
Section 6 analyzes whether the monopolist and/or consumers prefer ex–ante to ex–post
pricing, and empirically evaluates the welfare effects of the introduction of optional tariffs
by using the kernel distribution of the observed θ, θ1, and θ2 in two local exchanges of
Kentucky. Section 7 concludes.

2 Quantity Discounts in Nonlinear Pricing
This section briefly reviews the standard (ex–post) nonlinear pricing problem. I dis-
cuss the main assumptions of the pricing mechanism necessary to generate a separating
Perfect–Bayesian Nash Equilibrium for the static game of incomplete information played
by consumers and the monopolist. I also isolate sufficient constraints on demand and
distribution of consumer’s single–dimensional taste index so that screening of different
types of consumers is achieved by means of quantity discounts. Because of the introduction
of type changes in later sections of the paper, and in order to provide a reference framework
to compare the solution of the optional nonlinear pricing mechanism given in Section 3,

7 Empirical models as those of Ivaldi and Martimort (1994), Laffont, Ossard, and Vuong (1995),
Miravete (1997), and Wolak (1996) identify the effects of asymmetric information through some structural
restrictions and/or distribution assumptions, so that in fact it is difficult to acknowledge whether the
estimated parameters actually isolate the effect of asymmetry of information or misspecification of the
structural model.
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I develop the mechanism using consumer’s indirect instead of direct utility function, and
marginal tariffs instead of quantities as the monopolist’s control variable.8

I assume an environment where consumers’ preference heterogeneity is captured by
a single–dimensional index, θ. This taste indicator is private information for consumers
while the monopolist only knows the population distribution of such index, F (θ). Given
this informational constraint, the monopolist designs a fully nonlinear tariff to maximize
his expected profits given the distribution of θ, by extracting consumer surplus in a different
proportion depending of consumers’ purchase levels. Thus, consumers are given incentives
to self–select their purchase levels according to their preference intensity, θ.

The monopolist sells a single product x at a marginal charge p. Consumers’
income is taken as numeraire. In addition, and for simplicity, I assume that there are
no income effects for consumers or capacity constraints for the monopolist.9 If consumers
demand and the distribution of the private information parameter are properly behaved,
the existence of quantity discounts is equivalent to the concavity of the tariff, which is
just the lower envelope of the menu of self–selecting two–part tariffs.10 This equivalence
results guarantees the duality between the choice of any quantity under the nonlinear tariff
and the unique corresponding choice of a marginal tariff and a fixed fee characterizing a
hypothetical two–part tariff that leads to the same consumption level. Thus, for analytical
convenience, I will assume that consumers choose the pair {A(x), p(x)} instead of choosing
x directly. The assumed indirect utility function net of fixed fee payment A is:

V (p,A, θ) = v(p, θ)−A =

∞∫
p

x(z, θ)dz −A, (1)

so that Roy’s identity ensures that:

Vp(p, θ, A) = vp(p, θ) = −x(p, θ). (2)

In order to characterize the optimal nonlinear schedule, some structure has to be
imposed on the set of preferences as well as on the distribution of types. Focusing on
demand, in order to ensure the existence of a separating equilibrium, it is necessary that

8 The content of this section is however standard in the literature and a similar treatment using
the direct utility function could be found in Tirole (1989, §3.5), as well as in Wilson (1993, §II) using the
demand profile approach.

9 See Oren, Smith, and Wilson (1985), Panzar and Sibley (1978), and Wilson (1993, §11) for
treatments of capacity pricing. Goldmand, Leland, and Sibley (1984, §2), Ng and Weisser (1974), and
Wilson (1993, §7) include income effects in nonlinear pricing modeling. Dealing with income effects does not
add anything significant to the discussion of the present study while it complicates notation unnecessarily.
Furthermore, the small share of local phone bills in consumers’ incomes justifies the constant marginal
utility of income assumption for the empirical application of this paper.

10 If the number of two–part tariffs considered is discrete, this menu of two–part tariffs is equivalent
to a declining block rate tariff that leads to a piecewise linear concave revenue function for the monopolist.
See Brown and Sibley (1986, §4.4) and Faulhaber and Panzar (1977, §5).
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consumers’ demands do not cross so that consumers can be ranked by their preference
intensity, θ. This is the well known single–crossing property (SCP).

Assumption 1: The indirect utility function is convex in price and increasing in
the taste parameter. Thus Vp(·) = −x(·) ≤ 0; Vpp(·) = −xp(·) > 0; and Vθ(·) > 0; which
implies vpθ(·) = −xθ(·) < 0 (SCP).

The monopolist’s optimal tariff may be found by making use of the Revelation
Principle in order to ensure that pricing mechanism is incentive compatible (IC) so that it
induces consumers to self–select according to their true type. The IC constraint ensures
that each consumer type keeps enough informational rents to consume according to their
true preferences. This constraint of the monopolist’s pricing problem is found by solving:

θ ∈ arg max
θ′

[v(p(θ′), θ)−A(θ′)] , (3)

so that when choosing a particular two–part tariff each consumer chooses the one that
maximizes her utility given the tariff schedule offered by the monopolist, i.e., truthfull
revelation of the ex–post, consumer private information. The solution to this problem,
and thus the monopolist’s IC constraint is:

A′(θ) = −x(p(θ), θ)p′(θ). (4)

Next, by defining the rent of consumer type θ as:

V (θ) = v(p(θ), θ)−A(θ), (5)

the Envelope Theorem allows us to represent the IC condition as follows:

V ′(θ) = vθ(p(θ), θ). (6)

Finally, the monopolist also has to account for the individual rationality constraint (IR)
since increases in fixed fees may induce some consumers not to participate in this market.
Also for simplicity, I will assume that all consumers are served by the monopolist. It
therefore suffices, because of monotonicity of the optimal marginal charge p̂(θ), to ensure
that the lowest valuation consumer θ participates in the market:11

V (θ) ≥ 0. (7)

Hence, given (5) − (7) a monopolist with constant returns technology maximizes the
following profit function:

max
p(θ),V (θ)

∫
Θ

[A(θ) + (p(θ)− c)x(p(θ), θ)−K] dF (θ), (8)

11 The proof of this standard result is ommited. Because of SCP and IC, the chosen p̂(θ) is
nonincreasing in θ, and therefore it suffices that the IR constraint holds only at the lower bound of
Θ1.
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where c is the constant marginal cost, andK the fixed cost of production for the monopolist.
The solution of this problem (which is derived in Appendix 1) is a pair of functions
{Â(θ), p̂(θ)} that relates each optimal two–part tariff offered by the monopolist to each
consumer type θ:

p̂(θ) = c− 1− F (θ)
f(θ)

[
vpθ(p(θ), θ)
vpp(p(θ), θ)

]
, (9)

Â(θ) = v(p̂(θ), θ)−
θ∫
θ

vθ(p̂(z), z)dz. (10)

Equation (9) presents the classical result that only the highest consumer type,
θ is efficiently priced. Since vpθ(·) < 0 and vpp(·) > 0 by Assumption 1, all other
types of consumers pay a marginal tariff higher than the marginal cost of production.
The magnitude of the price distortion for each type θ therefore depends not only on the
characteristics of demand (to induce self–selection), but also critically on the monopolist’s
knowledge of the population distribution of tastes. The spread of this distribution is
related to the importance of the asymmetry of information between the monopolist and
his customers regarding consumers’ preferences. Therefore, conditional on the available
information, the monopolist charges the optimal mark–up over marginal cost for each
consumption level. The inverse relation between the hazard rate of the distribution of θ
and the optimal marginal tariff capture the effect of the information about consumers’
type distribution on the optimal monopoly pricing. The hazard rate of this distribution
plays an important role in defining the magnitude of the price distortion (deviation from c)
for each ex–post consumer type. Actually, in additon to SCP, I need to assume that F (θ)
is increasing hazard rate (IHR) to ensure a separating equilibrium and avoid bunching of
types at any given consumption or marginal tariff levels [Maskin and Riley (1984, §4)]. This
property characterizes most common distributions used in economics, and the assumption
should not be considered restrictive [Bagnoli and Bergstrom (1989)].

Definition 1: If a univariate random variable θ has density f(θ) and distribution
function F (θ), then the ratio:

r(θ) =
f(θ)

1− F (θ)
on {θ ∈ Θ : F (θ) < 1}, (11)

is called the hazard rate of either θ or F (θ).

Definition 2: A univariate random variable θ or its cumulative distribution
function F (θ) are said to be increasing hazard rate if r′(θ) > 0 on {θ ∈ Θ : F (θ) < 1}.

Assumption 2: The ex–post preference index θ has a continuously differentiable
probability density function f(θ) ≥ 0 on Θ = [θ, θ] ⊆ <, such that the cumulative
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distribution function given by:

F (θ) =

θ∫
θ

f(z)dz, (12)

is absolutely continuous. Furthermore while θ remains private information for each con-
sumer, F (θ) is common knowledge and IHR.

For the present model, the hazard rate function r(θ) indicates the probability that
the monopolist faces a consumer of type θ′ = θ + dθ given that he knows (e.g., through
any screening or sampling procedure) that the consumer’s type is not smaller than θ.
Therefore, if the distribution of types is IHR, the probability of finding a consumer within
an arbitrarily small increase of the considered consumer type increases with the magnitude
of the type of consumers, i.e., the probability that one particular consumer falls in the next
1% segment of the market (in terms of purchase volume or willingness to pay for the good)
is higher for the monopolist if he, in some way knows that one particular consumer belongs
to the top 10% of the distribution of consumer valuations rather than to the top 30%.

Therefore, provided that the single crossing property holds, and the hazard rate
of the distribution of ex–post types is increasing, the monopolist can discriminate among
consumers by offering a continuum of self–selecting two–part tariffs that implement the
optimal nonlinear pricing solution. Since each consumer type finds one and only one of
these tariff plans maximize her utility, each two–part tariff is the optimal solution for
only one ex–post consumer type, and therefore the equilibrium is ensured to be fully
separating. As mentioned before, a sufficient condition for this continuum of two–part
tariffs to be self–selecting is that its lower envelope be concave in consumption, i.e., a
tariff with quantity discounts. This is equivalent to the marginal tariff being decreasing in
θ which requires:

p̂′(θ) =
r′(θ)
r2(θ)

vpθ(p(θ), θ)
vpp(p(θ), θ)

− 1
r(θ)

∂

∂θ

[
vpθ(p(θ), θ)
vpp(p(θ), θ)

]
≤ 0. (13)

Since F (θ) has been assumed to be IHR, for the tariff to show quantity discounts it will
suffice that the following condition, related to the second term on the right hand side of
(13), and involving third derivatives of the indirect utility function, holds:

∂

∂θ

[
vpθ(p(θ), θ)
vpp(p(θ), θ)

]
≥ 0. (14)

Any discrete version of the model will therefore consist of a menu of two–part tariffs
where lower marginal rates p̂1 > p̂2 > . . . > p̂n, are associated to higher fixed fees Â1 <
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Â2 < . . . < Ân –because of the IC equation–, and thus, these two–part tariffs will be
self–selecting, and characterized by quantity discounts.12

3 Optional Nonlinear Tariffs

This section studies the design of optimal pricing mechanisms when consumer demand is
stochastic. I analyze two cases: optional two–part tariffs and optional nonlinear tariffs.
The sequential analysis of these two differentiated stages clearly points out the role of
the distribution of each component of the type on the features of the tariff options. But
first, before analyzing the design of tariff options, I have to define the ex–post type as a
function of the ex–ante type and the type shock and how are they jointly distributed. The
single–dimensional ex–ante type, ex–post type, and type shock are related as follows:

θ = θ1 + θ2 (15)

This definition of the preference intensity index is general. I discuss later in Section 4.3 how
other functional forms only add unnecessary complexity to the problem without changing
qualitative results. Next, as Assumption 2 defined the properties of the distribution of θ,
I now have to specify the distribution of its component as well as their relation.

Assumption 3: The ex–ante preference index θ1 and the type shock θ2 have contin-
uously differentiable probability density functions fi(θi) ≥ 0, i = 1, 2, on Θ1 = [θ1, θ1] ⊆ <
and Θ2 = [θ2, θ2] = [θ− θ1, θ− θ1] ⊆ < respectively, such that the cumulative distribution
functions given by:

Fi(θi) =

θi∫
θi

fi(z)dz ; i = 1, 2 (16)

are absolutely continuous. As in the standard case, θ1 and θ2 remain private information
for each consumer while F1(θ1) and F2(θ2) are both common knowledge and IHR.

Assumption 4: The ex–ante type θ1 and the type shock θ2 are independent random
variables.

This assumption is needed to solve the pricing problem explicitly, analyze how are
the properties of the involved distributions related, characterize the properties of optional
tariffs, and compare them to the standard nonlinear pricing solution. I also analyze in

12 For inequality (14) to hold it suffices that x(p, θ) be concave in θ and that the price elasticity of
demand be non–increasing in θ. These regularity conditions are rather technical and have little economic
content, but they are assumed to hold in order to ensure a concave nonlinear schedule. When working the
dual problem, using the direct utility function, this condition reduces to the SCP being not increasing in
θ.
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Section 4.3 how restrictive is this assumption and how would my results change if θ1 and
θ2 were correlated.

3.1 Menu of Two–Part Tariffs

Two–part tariffs are widely used. They are effective in rising the necessary revenues to
cover fixed costs and reduce the cost of monitoring customers’ cumulative purchases as well
as the incentives of arbitrage. From a marketing perspective optional two–part tariffs are
attractive because of their simplicity. It is difficult to find examples where consumers have
to choose among optional tariffs more complex than two–part tariffs per dimension of the
product characteristic space. While more nonlinear optional tariffs will address better the
differences among customers, and therefore will enhance welfare [Faulhaber and Panzar
(1977, §4); Wilson (1993, §8.3)], consumers repeatedly show a biased preference for the
simplest tariff option of the monopolist, or the competitor who offers the simplest tariff
option.

Now consumers first choose an optional tariff characterized by a fixed payment A,
and by a particular marginal tariff p. At the time of their choice, consumers are not fully
aware of their preferences. They only know θ1, and the distribution of θ2. This means that
consumers do not know how much will they consume when they choose the optional tariff
plan. The choice of the tariff plan is final, and neither the monopolist can take advantage
by switching consumers to a different plan, nor the consumer can request such a change
in the interim between the tariff subscription and the consumption decision. If there is
any tariff switching, it will only apply to future billing periods. Thus, given consumers’
private information θ1 and their expectation on type shocks, consumers choose the tariff
plan that maximizes their expected net rent:

θ1 ∈ arg max
θ′1

∫
Θ2

[
v(p̃(θ′1), θ1 + θ2)− Ã(θ′1)

]
dF2(θ2), (17)

which given equation (15) and Assumption 4 leads to the following ex–ante IC constraint
that applies to the choice of tariff options:

Ã′(θ1) = −E2[x(p̃(θ1), θ)]p̃′(θ1). (18)

Next, the expected rent for a consumer of ex–ante type θ1 is:

Ṽ (θ1) = E2[v(p̃(θ1), θ)− Ã(θ1)], (19)

so that the IC constraint can be written as:

Ṽ ′(θ1) = E2[vθ(p̃(θ1), θ)]. (20)

Once the tariff option has been chosen, consumers learn their ex–post type through
the realization of an individual type shock. Then their consumption level is decided,
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contingent on the previously chosen tariff plan {A(θ1), p(θ1)}. Since the consumption
decision involves the choice of quantities, let U [x] denote the corresponding direct utility
function. The optimal consumption decision maximizes the actual rent given the tariff
option:

θ2 ∈ arg max
θ′2

U [x(p̃(θ1), θ1 + θ′2)]− Ã(θ1)− p̃(θ1)x(p̃(θ1), θ1 + θ′2), (21)

which leads to the ex–post IC constraint, i.e., that consumers equate marginal utility to
the marginal tariff at the consumption stage:

U ′[x(p̃(θ1), θ)]xθ(p̃(θ1), θ) = p̃(θ1). (22)

The monopolist has to consider two sets of participation constraints. To make the
different solutions directly comparable, I assume that all households participate subscribing
the service regardless of whether they later buy anything or not:

Ṽ (θ1) ≥ 0, (23)

while ex–post, actual rents should be non–negative in order to consume and given the
previous choice of service:

V (θ1, θ2(θ1)) = v(p̃(θ1), θ1 + θ2(θ1))− Ã(θ1) ≥ 0. (24)

Thus, each ex–ante consumer type who chose the option {Ã(θ1), p̃(θ1)} faces a different ex–
post participation constraint. If the type shock is negative enough, θ2 ≤ θ2(θ1), consumers
with ex–ante type θ1 do not to buy anything and thus the monopolist only gets the fixed
fee Ã(θ1) from them.13 Then, given constraints (20) and (23) − (24), the monopolist
maximizes the following profit function:

max
p̃(θ1),Ṽ (θ1)

∫
Θ1

Ã(θ1) + (p̃(θ1)− c)
θ2∫

θ2(θ1)

x(p̃(θ1), θ)dF2(θ2)−K

 dF1(θ1), (25)

The solution of this problem is again a pair of functions {Ã(θ1), p̃(θ1)} that associates an
optional two–part tariff offered by the monopolist to each consumer with ex–ante type θ1:

p̃(θ1) = c− 1− F1(θ1)
f1(θ1)

[
E2[vpθ(p̃(θ1), θ) | θ2 ≥ θ2(θ1)]
E2[vpp(p̃(θ1), θ) | θ2 ≥ θ2(θ1)]

]
, (26)

Ã(θ1) = E2

v(p̃(θ1), θ)−
θ1∫
θ1

vθ(p̃(z), z + θ2)dz

∣∣∣∣∣ θ2 ≥ θ2(θ1)

 . (27)

13 The ex–ante type dependent cut–off shock θ2(θ1) is uniquely defined in (24) for each θ1 due to

continuity of all functions involved and because vθ(·) > 0 by Assumption 1.
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This solution resembles that of the ex–post pricing very closely. With the exception
of the ex–post participation constraint, the menu of optional two–part tariffs does not
screen consumers with respect to their ex–post type, since θ2 is integrated out in the
monopolist’s objective function. The monopolist just screens consumers with respect to
their ex–ante type by offering them a menu of optional two–part tariffs that accounts for
consumer differences before θ2 is realized. The type shock only determines the amount
that each consumer will purchase depending on the tariff option previously chosen. But the
present pricing mechanism does not introduce any additional incentive to sort consumers
who receive different shocks among those who chose a particular class of service. The
results are still interesting. Denoting by E?2 the conditional expectation with respect to
the shock given that the ex–post participation constraints is fulfilled, and by differentiating
(26) with respect to θ1 we have:

p̃′(θ1) =
r′1(θ1)
r2
1(θ1)

[
E?2 [vpθ1(p̃(θ1), θ)]
E?2 [vpp(p̃(θ1), θ)]

]
− 1
r1(θ1)

∂

∂θ1

[
E?2 [vpθ1(p̃(θ1), θ)]
E?2 [vpp(p̃(θ1), θ)]

]
≤ 0. (28)

Equation (28) shows that it is optimal to offer tariff options with lower marginal tariffs
for future consumption if they are associated to higher actual fixed payments. Similarly
(26) shows that only the higher ex–ante type is efficiently priced. All other ex–ante types
are charged a positive mark–up directly related to the inverse of the hazard rate of the
distribution of ex–ante types. These results are remarkable for two reasons. First, the
ex–ante tariff is characterized by quantity discounts, which means that there is a concave,
lower envelope function underlying the optional tariffs.

This concave function T̃ (θ1) is the mathematical lower envelope of the menu of
two–part tariffs denoted by {Ã(θ1), p̃(θ1)}. But this function is not the tariff lower envelope
in the traditional sense. For each ex–ante type θ1 and tariff choice {Ã(θ1), p̃(θ1)} there is a
unique type shock θ2 = θ∗2(θ1) such that total payments equal those of the lower envelope.
We know that θ∗2(θ1) is unique because the SCP requires that demand is increasing in
the type, xθ(·) > 0, and the marginal tariff p̃(θ1) is given. Thus if consumers receive any
other shock different from θ∗2(θ1) they will move along the tariff option chosen and will
always pay more under the chosen tariff regime than if the had “correctly” anticipated their
future consumption, in which case they had moved along the lower envelope by choosing
a different two–part tariff option. The monopolist may increase his revenues just because
of this lock–in effect of the optional tariff if demand is stochastic. If we now repeat the
analysis for other ex–ante types who chose different tariff options, we could easily check
that the shape of the actual ex–post payment outlay is state–dependent, and that the
payment outlay function is not ensured to be concave unless we unrealistically restrict
the behavior of θ2. However, since the distribution of θ1 is IHR, the mathematical lower
envelope T̃ (θ1) is still concave, and thus the optimal two–part tariff options are such that
they lead to quantity discounts by offering a lower marginal rate associated to higher fixed
fees.

The second reason that makes the result of equation (28) useful is because it shows
that quantity discounts do not require any additional assumption on demand relative to
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those made for the ex–post case. The reduction of the marginal tariffs for class of services
designed for high volumes of consumption is ensured because the distribution of ex–ante
types is IHR, which suffices to ensure IC of ex–ante plans.

3.2 Menu of Nonlinear Tariffs

We can now deal with the general problem of a menu of nonlinear tariffs that also induce
self–selection of consumers with respect to their type shocks. I will characterize this tariff
using a constructive approach starting from the solution of the previous section. Each tariff
option in Section 3.1 was a two–part tariff and thus, each consumer selected one among
{Ã(θ1), p̃(θ1)} depending on her ex–ante type θ1 only but there was no further incentive for
consumers to ex–post self–select according to the realization of θ2. Two consumers with
the same expected consumption or ex–ante valuation of the product would choose the same
two–part tariff option. But they will later consume different amounts depending on their
respective type shocks. Since both of them consume at the level where their marginal
utility equated their marginal tariffs chosen in advance, the monopolist extracts some rent
based on the consumer ex–ante type while consumers keep all their ex–post informational
rent exclusively due to the learned type shock.

With nonlinear tariff options the monopolist also induces ex–post self–selection by
means of quantity discounts and thus further reduces consumers’ ex–post informational
rents. Provided that each nonlinear tariff option is concave, they can also be represented
by a continuum of self–selecting two–part tariffs. Hence, at stage 1, when consumers
only know θ1 they choose a nonlinear tariff option ˜̃T (θ1, ·), or alternatively a particular
continuum of ex–post self–selecting two–part tariffs { ˜̃A(θ1, ·), ˜̃p(θ1, ·)}. Therefore, given
consumers’ private information θ1, their expectation on type shocks, and their knowledge of
the “shape” of the tariff options, they choose the tariff plan that maximizes their expected
net rent.

General characterizations of the menu of nonlinear tariffs are difficult and cumber-
some. However, the fact that types components are statistically independent from each
other proves to be very useful in obtaining the characterization of this menu of nonlinear
tariff options. Since the shock is independent of the ex–ante type, the mathematical lower
envelope, T̃ (θ1), still capture the optimal incentive mechanism to screen consumers with
respect to their ex–ante type dimension regardless of whether tariff options are two–part
tariffs or more general nonlinear functions. Thus, ˜̃T (θ1, θ2) can be considered to be
composed of two elements: one that screens consumers with respect to θ1, represented
by (26) − (27), and one that induces self–selection of ex–post types given the optimal
tariff choices of each ex–ante type θ1. This second component increases the revenue of the
monopolist by reducing consumers informational rents exclusively related to θ2. Obviously,
if θ1 and θ2 were not independent it would be impossible to separate the origin of the rent
extraction as screening for θ1 should also account for the related distribution of θ2. In
order to characterize the optimal menu of nonlinear options ˜̃T (θ1, θ2), observe that since
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tariff options are nonlinear, the ex–post IC constraint of a consumer with ex–ante type θ1

solves:
θ2 ∈ arg max

θ′2

[
v( ˜̃p(θ1 + θ′2), θ1 + θ2)− ˜̃A(θ1 + θ′2)

]
, (29)

i.e., a condition equivalent to (3). Observe also that since type components are independent
each nonlinear option should be tangent only once to T̃ (θ1) as characterized by equations
(26) − (27), so that {Ã(θ1), p̃(θ1)} remains the optimal mechanism to screen the ex–ante
type dimension θ1 as the effect of θ2 has been integrated out. Therefore, only one particular
two–part tariff of each menu of ex–post nonlinear tariffs that characterizes each nonlinear
option coincides with one of the optional two–part tariffs of the problem solved in the
previous section. Thus total and marginal payments would be the same, as well as
consumption, when the realized shock equals θ∗2(θ1). This will not be true if ex–ante
types and shocks were correlated because in such a case, the ex–ante choice of nonlinear
tariff options will account for the effect of shocks on the marginal tariff paid ex–post, and
thus p̃(θ1) and ˜̃p(θ1, θ

∗
2(θ1)) will generally differ. Under independence, the ex–ante, type

specific, critical shock is implicitly defined by:

E2[ ˜̃p(θ1 + θ2)] = ˜̃p(θ1 + θ∗2(θ1)), (30)

which reduces to:14

E?2 [vpθ( ˜̃p(θ1 + θ2), θ1 + θ2)]
E?2 [vpp( ˜̃p(θ1 + θ2), θ1 + θ2)]

=
vpθ( ˜̃p(θ1 + θ∗2(θ1)), θ1 + θ∗2(θ1))
vpp( ˜̃p(θ1 + θ∗2(θ1)), θ1 + θ∗2(θ1))

. (31)

The solution of the menu of nonlinear options builds upon the menu of optional
two–part tariffs of Section 3.1. Taking the solution of the menu of optional two–part
tariffs (26) − (27) as a boundary condition at θ∗2(θ1), the optimal screening process with
respect to θ2 results in deviations of the ex–post marginal tariff and fixed fee payment
relative to those of {Ã(θ1), p̃(θ1)}. Thus, let define:

∆ ˜̃p(θ) = ˜̃p(θ1 + θ2)− p̃(θ1), (32)

∆ ˜̃A(θ) = ˜̃A(θ1 + θ2)− Ã(θ1). (33)

The IC constraint (29) can be rewritten as follows:

θ2 ∈ arg max
θ′2

[
v(p̃(θ1) + ∆ ˜̃p(θ1 + θ′2), θ)− v(p̃(θ1), θ)−∆ ˜̃A(θ1 + θ′2)

]
, (34)

so that truthfull revelation of θ2 maximizes the expected rent increase of switching from
the “boundary, ex–ante, two–part tariff” to the corresponding ex–post two–part tariff on
the chosen nonlinear option. Next, the rent is defined as:

˜̃V (θ) = v( ˜̃p(θ), θ)− ˜̃A(θ), (35)

14 Observe that uniqueness of θ∗2(θ1) is ensured by monotonicity of the right hand side of this equation

in θ as stated in (14).
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and therefore, the IC constraint can be written as:

˜̃V ′(θ) = vθ( ˜̃p(θ), θ). (36)

In addition, there is another boundary constraint for this problem:

∆ ˜̃V (θ1 + θ∗2(θ1)) = 0, (37)

so that ˜̃p(θ1+θ∗2(θ1)) = p̃(θ1), and thus each nonlinear tariff option is ensured to be tangent
to T̃ (θ1) only once if ˜̃p(θ) is monotone.

Given all these constraints the monopolist’s problem solves, for each possible non-
linear option, the change in marginal rate that will maximize the increase in revenues from
the corresponding “boundary two–part tariff” option:

max
∆ ˜̃p,∆ ˜̃V

∫
Θ2

[
˜̃A(θ) + ˜̃p(θ)x( ˜̃p(θ), θ)− Ã(θ1)− p̃(θ1)x(p̃(θ1), θ)

]
dF2(θ2). (38)

By pointwise maximization of this optimal control problem subject to (36), the first order
necessary conditions are:

−∆ ˜̃p(θ)vpp( ˜̃p(θ), θ)f2(θ2) + λ2(θ2)vpθ( ˜̃p(θ), θ) = 0, (39a)

f2(θ2) = λ′2(θ2), (39b)

λ(θ∗2(θ1)) = 0. (39c)

Observe that the transversality condition does not exist at θ?2(θ1) since V (θ?2(θ1)) > 0
whenever θ?2(θ1) > θ2, which ensures a unique tangency of each ˜̃T (θ1, θ2) to T̃ (θ1). There-
fore:

λ2(θ2) =

θ2∫
θ∗2 (θ1)

f2(z)dz = F2(θ2)− F2(θ∗2(θ1)), (40)

and thus, the optimal changes of the marginal tariff and fixed fee relative to the optimal
two–part tariff option chosen by an ex–ante type θ1 are:

∆ ˜̃p(θ) = −F2(θ∗2(θ1))− F2(θ2)
f2(θ2)

[
vpθ( ˜̃p(θ), θ)
vpp( ˜̃p(θ), θ)

]
, (41)

∆ ˜̃A(θ) = v( ˜̃p(θ), θ)− v(p̃(θ1), θ)−
θ2∫

θ∗2 (θ1)

[vθ( ˜̃p(θ1 + z), θ1 + z)− vθ(p̃(θ1), θ1 + z)]dz. (42)

These two equations in conjunction with (26) − (27) characterize the menu of optional
nonlinear tariffs { ˜̃A(θ), ˜̃p(θ)}. Observe that equation (41) implies that consumers with
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ex–ante type θ1 will face higher marginal charges than p̃(θ1) if they receive a small shock
θ2 < θ∗2(θ1), but on the contrary, marginal tariffs would be smaller that p̃(θ1) if θ2 > θ∗2(θ1).

The final question that I have to address in this section is whether any further
assumption is necessary to ensure that each nonlinear tariff ˜̃T (θ1, θ2) is concave, so that
screening consumers with respect to their type shocks could also be achieved through
quantity discounts. As Section 3.1 proved that T̃ (θ1) is concave, there only remains to
analyze whether marginal tariffs ˜̃p(θ) is decreasing in θ2. For the purpose of interpretation,
it is convenient to rewrite (41) as follows:

∆ ˜̃p(θ) =
[

1
f2(θ2)

f2(θ∗2(θ1))
r2(θ∗2(θ1))

− 1
r2(θ2)

] [
vpθ( ˜̃p(θ), θ)
vpp( ˜̃p(θ), θ)

]
. (43)

Thus, for each particular nonlinear option { ˜̃A(θ1, θ2), ˜̃p(θ1, θ2)} to be concave it is required
that:

∂∆ ˜̃p(θ)
∂θ2

=
[
r′2(θ2)
r2(θ2)

− f ′2(θ2)
f2

2 (θ2)
f2(θ∗2(θ1))
r2(θ∗2(θ1))

] [
vpθ( ˜̃p(θ), θ)
vpp( ˜̃p(θ), θ)

]

+
[

1
f2(θ2)

f2(θ∗2(θ1))
r2(θ∗2(θ1))

− 1
r2(θ2)

]
∂

∂θ2

[
vpθ( ˜̃p(θ), θ)
vpp( ˜̃p(θ), θ)

]
≤ 0. (44)

The ratio vpθ/vpp is negative because the indirect utility function is convex in price, and
because of the SCP as stated by Assumption 1, while its derivative with respect to θ2 is
ensured to be positive by equations (14) and (15). Hence, the concavity of the nonlinear
tariff option critically depends on the signs of the terms between brackets. The proof of
the following proposition shows that the distribution of θ2 being IHR is no longer sufficient
to ensure the concavity of the nonlinear tariff options.

Proposition 1: Assumptions 1 and 2, do not suffice to ensure the concavity of

each nonlinear option ˜̃T (θ1, θ2).

Proof: The first term between brackets in equation (44) is ensured to be positive
only if:

r′2(θ2) > f ′2(θ2)
1− F2(θ∗2(θ1))
(1− F2(θ2))2

. (45)

Next, it is straightforward to show that the second term between brackets in equation (44)
is negative only as long as θ2 ≤ θ∗2(θ1).

Therefore, if f ′2(θ2) ≤ 0, it is also necessary that θ2 ≤ θ∗2(θ1) in order to ensure
that each nonlinear tariff option is still concave. If f ′2(θ2) > 0 or if θ2 > θ∗2(θ1), the IHR
assumption, r′2(θ2) > 0 does not suffice to ensure that each ˜̃T (θ1, θ2) is concave. Therefore
we need the more restrictive assumption that the hazard rate of the distribution of the
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type shock is “increasing enough”, in order to compensate the effect of large shocks or
increasing density functions.15

If we just require that r′2(θ2) > 0, we may find a curious asymmetric treatment of
consumers with different ex–ante types. Nonlinear tariff options chosen by high ex–ante
types are most likely concave. On the contrary, low ex–ante types choosing tariff options
“designed” for low consumption levels would suffer important penalties (quantity premia)
if they consume much more than what they expected.16

Hence, going from a menu of two–part tariffs to a menu of nonlinear tariffs only
requires that the distribution of the shocks is increasing enough in hazard rate (IEHR)
to ensure the existence of quantity discounts for every single nonlinear option. The basic
setup remains however unchanged: the IHR property proves to be critical for the model
to be well behaved. The following section studies how IHR properties are modified by
the existence of stochastic components, so that the relative profitability of the ex–ante vs.
ex–post pricing could be addressed.

4 Shocks, Convolutions, and Stochastic Dominance

The previous two sections have shown how to solve in isolation either the standard ex–
post nonlinear pricing problem, or the more complex ex–ante optional nonlinear pricing
problem. A most relevant question is whether these two solutions can be compared by
the monopolist in order to choose the most profitable one in expected terms. Thus, these
two problems have to be consistently defined so that the ex–post pricing solution accounts
for all the statistical properties derived from the fact that θ is actually the result of the
combination of θ1 and θ2.

In this section I focus on the relationship between properties of the distributions of
the ex–ante type θ1 and the type shock θ2, and how are they related to the features of the
distribution of the ex–post type θ. Showing that the IHR property of the distributions of
the components of the type, {θ1, θ2}, is passed through to the distribution of the ex–post
type, θ, is absolutely necessary to study the relationship between the features of the ex–
ante optional and the ex–post standard nonlinear tariffs as well as to test the empirical
implications of a model with type changes. I study these two issues in later sections of the
paper.

15 There are many cases where these conditions are fulfilled. One of such cases is when θ2 is
distributed as a standard unit beta distribution of the first kind with parameters p = 1 and q = λ2.
This standard unit Burr distribution of type 12 is IHR as long as λ2 > 0, and the density function is
always decreasing when λ2 > 1. The hazard rate of this distribution varies from λ2 when θ2 = 0 to ∞
when θ2 = 1. Thus, it is always possible to find a large enough value of λ2 to ensure that the nonlinear
tariff option is concave, even when θ2 > θ∗2(θ1).

16 Observe that to be consistent with equation (41), the marginal charges of the optional nonlinear
tariffs should not exceed that of p̃(θ1) whenever θ2 > θ∗2(θ1).
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The main result of this section is that if I focus on the class of log–concave probabil-
ity density functions (all of which are IHR) to represent the distribution of the components
of the ex–post type, then the distribution of the ex–post type is ensured to be log–concave,
and therefore IHR. Thus, the two problems will be consistently defined, and both ex–ante
and ex–post pricing will be characterized by quantity discounts as discussed in the previous
sections. The rest of the analysis will be aimed to study the relative magnitude of these
quantity discounts.

4.1 Preservation of IHR under Convolution

I should start this section by defining the distribution of the ex–post type in terms of the
distribution of its components. As the following definition shows, the distribution of the
ex–post type is just the Fourier convolution of its components.

Definition 3: Let θ1 and θ2 be independent, univariate, random variables with
cumulative distribution functions Fi(θi) : Θi → [0, 1], i = 1, 2. The cumulative distribution
function of θ = θ1 + θ2 is given by the convolution [Barlow and Proschan (1975, §4)]:

F (θ) =
∫
Θ2

F1(θ − θ2)f2(θ2)dθ2. (46)

Therefore, given any arbitrary, but well behaved, distribution function for the ex–ante type
(expected consumption or good valuation) and the type shock (unpredictable consumption
or change in valuation after learning), it is always possible to identify the distribution
of ex–post types up to a linear transformation. I will discuss in the next subsection
whether the generality of my results is limited by the ex–post type definition (15) and
Fourier convolution (46). The following property is extremely useful to identify the set of
distributions that allow me to characterize the optimal optional tariffs.

Definition 4: [Pečarič, Proschan, and Tong (1992, §13.5)]. Let fi(θi) : Θi →
[0,∞). Then fi(θi) is said to be log–concave if:

fi[αθi + (1− α)θ′i] ≥ [fi(θi)]α[fi(θ′i)]
(1−α) ∀θi, θ′i ∈ <, and ∀α ∈ [0, 1]. (47)

I am interested in showing that if both the distribution of ex–ante types and the
distribution of shocks are IHR, then the distribution of the ex–post type has to be IHR
necessarily. The preservation of the IHR property under convolution is a direct consequence
of the family of IHR distributions being totally positive functions. However, it is not
necessary to deal with total positivity in general to show the main results of this section.
I will therefore limit the scope of the analysis to a subclass of Pólya frequency functions.
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Definition 5: A function g(z) is a Pólya frequency function of order 2 (PF2) if
∀x1, x2 ∈ X ⊆ < and ∀y1, y2 ∈ Y ⊆ <, such that x1 < x2 and y1 < y2, the following
condition holds: ∣∣∣∣ g(x1 − y1) g(x1 − y2)

g(x2 − y1) g(x2 − y2)

∣∣∣∣ ≥ 0. (48)

Pólya frequency functions are just totally positive functions of order 2 in trans-
lation. Hazard rate properties of the distribution functions are easily characterized by
log–concavity of the distribution functions while convolution properties are derived from
the fact that IHR distributions are totally positive functions. The following lemma shows
the equivalence between PF2 and log–concave functions.17

Lemma 1: A twice continuously differentiable function g(z) is PF2 if and only if
g(z) > 0 ∀z ∈ < and g(z) is log–concave on <.

Proof: See Appendix 1.

The equivalence result of Lemma 1 already provides us with useful relationships
summarized in the following proposition.

Proposition 2: The following conditions are equivalent:
(a) Fi(θi) is IHR in θi on {θi ∈ Θi : Fi(θi) < 1},
(b) The survival function F i(θi) = 1− Fi(θi) is PF2,
(c) The survival function F i(θi) is log–concave.

Proof: Equivalence of (b) and (c) is a direct consequence of Lemma 1. From
Definition 1 it follows that:

ri(θi) =
−F ′i(θi)
F i(θi)

on {θi ∈ Θi : Fi(θi) < 1}, (49)

which has to be increasing on Θi because by Lemma 1 the quotient F
′
i(θi)/F i(θi) is

decreasing on Θi as F i(θi) is log–concave. Thus (a) and (c) are equivalent.

Therefore, if I can identify that the survival function of θi is log–concave, Proposition
2 ensures that its distribution Fi(θi) is IHR. This result suffices to ensure the existence of
a separating equilibrium with quantity discounts in an optimal nonlinear pricing problem
(provided that appropriate demand conditions summarized in Assumption 1 and Assump-
tion 3 hold). The following lemma proves that IHR is preserved under convolution so
that both, the ex–ante and the ex–post nonlinear pricing problems are consistent and well
defined.

Lemma 2: Let F1(θ1) and f2(θ2) be PF2, then the convolution (46) is also PF2.

17 Total positivity can be understood as a generalization of convexity of functions. Many density
functions, e.g., all those of the exponential family, are totally positive, and are characterized by nice
smoothness, sign regularity, and differentiability properties. Pólya frequency functions are single–peaked
and have bounded rate of decay, what makes them particularly useful in reliability theory.
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Proof: Straightforward application of the Basic Composition Formula.18 See
Appendix 1.

So far, I have shown that the convolution of log–concave functions is also log–
concave, and that if the involved function is the survival function, the convolution distribu-
tion is IHR. However, this result is of limited application because in most cases neither the
hazard rate or the survival function have a simple closed form expression, and thus checking
for log–concavity of survival functions or whether r′i(θi) > 0 is not generally feasible.19

This is not the case with probability density functions since most of them have closed form
expressions and log–concavity can be verified directly. The following result shows that the
integral of log–concave functions is also log–concave, and therefore, a sufficient condition
to ensure that Fi(θi) is IHR is to require log–concavity on the corresponding probability
density function, fi(θi).

Proposition 3: If fi(θi) is PF2, then the corresponding cumulative distribution
function Fi(θi) and survival function F i(θi) = 1− Fi(θi) are PF2.

Proof: See Appendix 1.

This result is very useful because it links the log–concavity of the probability density
function fi(θi) to the log–concavity of its distribution and survival functions. Then, as
Corollary 1 shows, for the problem studied in this paper, it suffices to assume that the
appropriate probability density function is log–concave to ensure that the corresponding
nonlinear pricing problem is well behaved.20 The following corollaries summarize the
operative results that help characterizing the appropriate distribution of the asymmetric
information parameters.

Corollary 1: If the probability density function fi(θi) is at least twice continu-
ously differentiable and log–concave, the following properties are all equivalent:

(a) fi(θi) is PF2,
(b) Fi(θi) is log–concave,
(c) F i(θi) = 1− Fi(θi) is log–concave,
(d) Fi(θi) is IHR in θi on {θi ∈ Θ : Fi(θi) < 1}.

18 The Basic Composition Formula is the continuous version of the Binet–Cauchy formula that
expresses any minor of order k of the product of two rectangular matrices as the product of all possible
minors of factors of order k. See Gantmacher (1959, §1.2.4–1.2.5) and Karlin (1968, §1.2).

19 Some exceptions to this rule are the uniform, exponential, Weibull, and modified extreme value
distribution, for all of which there exist closed form expressions for the hazard rate ri(θi) in terms of the
indexing parameters of each distribution. See Johnson, Kotz, and Balakrishnan (1995).

20 The first part of Proposition 3 relating log–concavity of fi(θi) and Fi(θi) is originally due to
Prékova (1971) in a much more abstract setting not restricted to reliability operations. It is also possible
to ensure that the optimal nonlinear pricing solution is well behaved by adopting the weaker assumption
that the involved cumulative distribution function Fi(θi) is log–concave instead of fi(θi) [Karlin (1968,
§3.5)]. This weaker assumption is however of limited application because while shifting the log–concavity
assumption from the density to the distribution function excludes few distributions from being considered
[Barlow, Marshall, and Proschan (1963)], it makes operationally more difficult to identify monotonicity
properties as explained before.
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Proof: Part (a) is a direct consequence of Lemma 1. Parts (b) and (c) follow
from Lemma 1 and Proposition 3. Finally part (d) combines the results of Lemma 1,
Proposition 2, and Proposition 3.

Corollary 2: The cumulative convolution distribution function, F (θ), of two
log–concave probability distribution functions, fi(θi), i = 1, 2, is IHR.

Proof: By Lemma 1, if the distribution function fi(θi) is log–concave, it is also PF2

whenever it is positive and twice continuously differentiable, which holds by Assumption
2. Lemma 2 establishes that the convolution:

f(θ) =
∫
Θ2

f1(θ − θ2)f2(θ2)dθ2, (50)

is PF2. Then by parts (a) and (d) of Corollary 1, F (θ) is IHR.

Provided that the probability density functions of θ1 and θ2 are log–concave, Corol-
lary 1 and Corollary 2 ensure that the cumulative convolution distribution function of the
ex–post type is IHR. Given Assumption 3 on the distributions of θ1 and θ2, the properties of
the distribution of θ required by Assumption 2 in order to characterize the optimal standard
nonlinear pricing schedule in Section 2 are ensured to hold and are no longer necessary to
be considered as an assumption, but rather as a direct consequence of Assumption 3 and
Definition 3. I state here this sufficient condition as an assumption.

Assumption 5: The probability density functions fi(θi) ≥ 0, i = 1, 2, are log–
concave on Θ1 ⊆ < and Θ2 ⊆ < respectively.

Thus, both the ex–ante and ex–post pricing problems are consistent, well defined,
and have a separating equilibrium involving quantity discounts. Observe that this result
has been achieved with minimum additional assumptions relative to the standard nonlinear
pricing problem. In the standard case, it is necessary to assume a common knowledge IHR
distribution for the asymmetric information parameter that is unknown to the monopolist.
Since for the optional tariffs case there are two components of the type, I have already
shown that it suffices to assume that both common knowledge distributions are also IHR.

4.2 Implications

The definition of the ex–post type given in equation (15) together with the regularity
conditions of the distributions of the type components discussed so far ensure that θ
second order stochastically dominate θi, i.e., θi ≤st θ. This is a direct testable implication
of the type–varying model. However, as we will see in Section 6.1, second order stochastic
dominance does not generally suffice to compare the relative expected efficiency of ex–
ante and ex–post nonlinear tariffs as higher or lower markups are inversely related to the
magnitude of the hazard rate of the involved type distribution. Second order stochastic
dominance allows non–uniform orderings of the markups of the ex–ante tariff relative to
those of the ex–post tariff, depending on particular consumption ranges.
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A sufficient condition to compare the optimal solutions of the ex–ante and ex–post
nonlinear pricing mechanisms is to find and/or require a particular hazard rate ordering of
the involved distributions. Since optimal nonlinear solutions critically depend on the value
of the hazard rate of the corresponding distribution I have to establish how large is the
hazard rate of the convolution distribution F (θ) relative to those of the components of the
ex–post type. Proposition 4 shows that for the present type–varying model, θ dominates
in hazard rate to θi if the support of the distributions is restricted to <+.

Proposition 4: Let Fi(θi) be IHR, i.e., r′i(θi) > 0 in θi on {θi > 0 : Fi(θi) < 1},
for i = 1, 2. Let F (θ) denote the cumulative convolution distribution of θ = θ1 + θ2, with
hazard rate r(θ). Then r(θ) ≤ min{r1(θ), r2(θ)} on {θ > 0 : F (θ) < 1, Fi(θ) < 1; i = 1, 2}.

Proof: See Appendix 1.

The result of Proposition 4 implies that the distribution of θ always puts more
weight on higher values than the distribution of θ1. Therefore given some value θ̂, the
probability that θ > θ̂ always exceeds the probability that θ1 > θ̂. This intuitive result is
formalized in the following corollary.

Corollary 3: If r(θ) ≤ ri(θ) on {θ > 0 : F (θ) < 1, Fi(θ) < 1; i = 1, 2}, then θ
first order stochastically dominates θi.

Proof: Since r(θ) = −d log[1− F (θ)]/dθ it follows that ∀θ > 0:

1− F (θ) = exp

− θ∫
0

r(z)dz

 ≥ exp

− θ∫
0

ri(z)dz

 = 1− Fi(θ), (51)

and therefore F (θ) ≤ Fi(θ) ∀θ > 0, which is the definition of first order stochastic
dominance, of θ over θi, i.e., θi ≤st θ [Marshall and Olkin (1979, §17.A)].

Following Laffont and Tirole’s interpretation (1993, §1.4–1.5), Proposition 4 means
that the distribution of θ is more favorable than the distribution of θ1. Corollary 3
shows that this result could be obtained within the type–varying framework because of the
existence of an independent, but systematically positive, type shock ensures that the actual
purchase (or valuation) is always higher in stochastic sense than the expected purchase (or
valuation). Similarly, Maskin and Riley (1984, §4) already considered the effect of changes
in the distribution of consumer types on the shape of the nonlinear tariffs. As I show in
Section 6.1, a nonlinear schedule based on F (θ) generally involves higher markups than the
nonlinear tariff based on F1(θ1) for all consumption levels, which is a direct consequence
of the hazard rate dominance of θ over θ1 in a model with type varying consumers if the
support of the distributions are restricted to <+.

The testable implications of Proposition 4 and Corollary 3 are, strictly speaking,
limited to situations where θ, θi ∈ <+, which exclude the empirical application of this
paper. There is no reason to expect that consumers always underestimate their future
local telephone usage, and thus the type shock θ2 is not restricted to take only positive
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values. However, a strong empirical evidence of first stochastic dominance will be consistent
with the underlying hazard rate dominance of θ over θ1. Thus, in such a case, an ex–
post nonlinear tariff could lead to higher expected profits than an ex–ante nonlinear tariff
because the markups of T̂ (θ) uniformly dominates those of T̃ (θ1, θ2) for every consumption
level.

Some other pricing or agency problems could however define environments where the
support of type components is constrained in a natural way. For instance, we could think
of θ1 ∈ <+ as general skills of workers before being hired (e.g., acquired through education
and/or working experience in other jobs). If hired, workers could develop some specific
skills and abilities due to learning by doing, and therefore increase their productivity. It is
not unreasonable within this framework to exclude the possibility of negative learning, and
thus θ2 could also be restricted to take only positive values. Consumption of electricity
also provides a related example. While households consume according to their habits
and location, i.e., the base load θ1 ∈ <+, changes in temperature (public information and
common to all consumers) may induce additional seasonal demand: whenever it is too cold
or too warm, consumers increase their demand for electricity by turning on the heating or
the air conditioner. Thus, θ2 could also be restricted to take only positive values, and the
model will produce stronger empirical implications.21

4.3 General Distributions and Type Definitions

In this subsection I discuss whether the generality of my results depends on the assumption
of independence of type components and/or on the additive definition of the ex–post type.

Equation (46) establishes that given the distribution of θ1 and θ2 it is always possible
to identify the distribution of θ up to a linear transformation of the distributions of the
type components. This identification issue rises the question of whether the results of the
model are limited to a particular definition of the ex–post type in terms of the ex–ante
type and the type shock. It might be useful to discuss briefly the implications of this
functional form identification constraint because in principle we could be interested in
other specifications for the distribution functions of the form Gi(θ, θi) where contrary to
what happens in (46), θ is not necessarily a translation parameter. I find two types of
arguments to ignore this alternative.

First, Statistics does not provide us with robust results concerning composition
distributions. Eaton and Perlman (1991) show that even considering Schur–concave distri-
bution functions Gi(θ, θi), composition distribution are only well behaved depending on the
system of coordinates chosen (e.g., logarithmic vs. linear type definiton).22 Furthermore,
although for some products and quotients of random variables composition distributions

21 On state contingent tariffs of this nature see Panzar and Sibley (1978) and Spulber (1992).
22 For simplicity, assume that θ, θi ∈ <. Then, a distribution function Gi(θ, θi) is said to be Schur–

concave if and only if (i) it is permutation symmetric, i.e., Gi(θ, θi) = Gi(θi, θ); and (ii) (θ−θi)[∂Gi(θ, θi)/
∂θ − ∂Gi(θ, θi)/∂θi] ≤ 0. See Marshall and Olkin (1979, §1.C and §3.A).
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are well defined, there are no general results relating the hazard rate properties of the
composed distributions.23

Second, and more importantly, in Consumer Theory the distinction between con-
volution and composition distribution is mostly irrelevant because it does not rely on
particular functional forms of the utility function. It is well known that any monotone
transformation of a quasi–concave utility function represents the same set of preferences
and provides with exactly the same comparative statics analysis. Similarly, the Economics
of Information has dealt mostly with a single–dimensional parameter to index agents’
preferences, and assumed that the distribution of this index is common knowledge in
order to characterize (as a Perfect Bayesian–Nash Equilibrium) the principal’s optimal
mechanism in the presence of adverse selection and/or moral hazard. Within the framework
of the present paper, all this implies that the functional form that relates the ex–ante type
and the shock with the ex–post type is not independently identifiable from the assumed
distributions and/or the utility function that represents consumers’ preferences. Since
the preference index that represents consumer’s types is just a theoretical construction to
describe situations of asymmetric information, we can always define a monotone transfor-
mation of the utility function that scale the index and its distribution appropriately to
represent the same preferences, which ensures the generality of the results of the present
model.24 In the end, types shocks, regardless of whether they are linearly related to the
ex–ante type or not, are only identifiable as non–price related shifts in consumer demand.
Therefore, I can focus on the convolution case to analyze, without loss of generality, the
implications of the existence of type shocks for the design of optimal pricing mechanisms.

Let me finally address the issue of the independence of θ1 and θ2. From an economic
point of view it is interesting to consider cases where the ex–ante type and the shock are
correlated. It is not difficult to envision situations where large consumers also make more
or less mistakes than small consumers. In principle we should expect that households with
many members are more difficult to monitor and that intensive users of telephone services
also experience more significant consumption variations over time than small consumers
with more stable consumption patterns. Although the present paper does not suggest any
theory to explain the positive or negative correlation between the ex–ante type and the

23 See Marshall and Olkin (1979, §3.J) and also Springer (1979) for a general treatment of products,
quotients, and algebraic functions of random variables using the Mellin integral transform. Miravete (1997)
develops an empirical application based on the product of two beta distributed variables.

24 For instance, assume that the utility function of consumers is multiplicatively separable in the
ex–post type, θ, and consumption. Assume also that the ex–post type is the product of the ex–ante
type, θ1, and the shock, θ2, each of which is beta distributed with appropriate parameters so that the
composition distribution is uniform (a particular case of beta distribution). Observe that the same set
of preferences can be represented by a logarithmic transformation of that utility function. But in that
case, the asymmetric information parameter and consumption are additively separable in the new utility
function and the ex–post type –now distributed according to a χ2(2)– becomes a linear combination of
the ex–ante type and the shock, now both distributed as exponential generalized beta of the second kind.
For the model to work, these latter distributions should also be log–concave. See Hogg and Craig (1995,
§4.3), Kotlarski (1962), and McDonald and Xu (1995).
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shock, it might be interesting to analyze how would those cases be related to the results
presented here.

For example, consider the reference case where θ1 and θ2 are independent and
θ ≤st θ1, or equivalently, F (θ) ≤ F1(θ) ∀θ ∈ Θ ⊆ <. Assume now that the ex–ante type
and the shock are negatively correlated, and denote by F ?(·) the cumulative distribution
of θ = θ1 + θ2 under negative correlation. The distribution of θ is now less dispersed, with
less mass of probability at the tails of the distribution than if θ1 and θ2 were independent.
In some sense the monopolist is now “less uncertain” about the value that consumer types
may take, because there is a larger mass of probability around the mean of θ. Thus,
for low values of θ (below the mean), the probability of finding values of the type above
a given θ is higher under negative correlation than under independence. This is just
because the probability distribution function of θ1 + θ2 is more concentrated around the
mean. Thus, as the survival function is higher, the hazard rate function is lower under
negative correlation than under independence for low values of θ. Just the contrary holds
for high values of θ (above the mean). Under negative correlation there is less mass of
probability left above the mean than under independence of type components. Thus, for
high types, the hazard rate of the distribution with negative correlation will exceed that of
the distribution of independent type components. If r?(θ) ≤ r(θ) only for low values of θ,
then for large customers ex–post nonlinear pricing markups will be lower under negative
correlation of type components than under the assumption of independence as markups
and hazard rate of the distribution of θ are inversely related.25 Consumer types are more
concentrated around the mean under negative correlation than under independence, and
thus it is necessary to introduce important distortions to distinguish among low consumers
and preserve the IC property of the mechanism.26 Thus, the results of this paper in
general, and of this section in particular need to be qualified for particular cases where
type components are allowed to be correlated.

The results of this section could still hold for a modified version of the problem.
The modified problem requires a change of basis for the space of asymmetric information
parameters, Θ1 ×Θ2. The new basis Θ′1 ×Θ′2 should be defined through spectral decom-
position of the covariance matrix of types (θ1, θ2), so that the covariance matrix of the
new types (θ′1, θ

′
2) is diagonal. Technically, the Basic Composition Formula could then be

applied and the results of this section would remain valid using the new types (θ′1, θ
′
2).

However, this new tractable problem has not obvious economic interpretation because

25 See Section 6.1 below.
26 These intuitive results are however difficult to prove except, maybe, for particular distributions.

The reason is that under correlation, the probability density function of θ = θ1 +θ2 cannot be factorized as
the product of the components’ probability density functions, and thus F (θ) is no longer the convolution
distribution of θ1 and θ2. The distribution of the sum of non–independent random variables is generally
difficult to obtain in closed form. Most cases have to be approximated by quadrature methods [Polyanin
and Manzhirov (1998, §8.7)]. One of the cases where F ?(θ) can be written explicitly is that of θ = θ1 + θ2
where (θ1, θ2) ∼ BV N [µ1, µ2, σ2

1 , σ
2
2 , ρ]. In this case, θ ∼ N [µ = µ1 +µ2, σ2 = σ2

1 +2ρσ1σ2 +σ2
2 ] [Springer

(1979, §3.4)]. To illustrate the argument of this paragraph, I computed the hazard rate functions of θ1 +θ2
under independence, r(θ), and under perfect negative correlation (ρ = −1), r?(θ). For the case where
µ1 = 0, σ2

1 = 1, µ2 = 1, σ2
2 = 0.5, I found that r?(θ) > r(θ) ∀θ > 0.12.
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while θ1 and θ2 clearly isolate the permanent and stochastic components of consumers’
tastes, θ′1 and θ′2 are defined as linear transformations of θ1 and θ2 and therefore both
enter the definition of the new type components in different proportions. Contrary to the
identification issues treated before, dealing with the correlation of types actually affects
the nature of the economic problem studied, and the distinction between permanent and
stochastic aspects of the types becomes meaningless when we analyze the problem through
principal component analysis.

5 Empirical Evidence

Results of Section 4 provide us with direct testable implications of the “taste–varying”
approach. The goal of this section is to test whether the distribution of ex–post types
second order stochastically dominates the distribution of ex–ante types. Contrary to many
applied works, the source of asymmetric information in the application studied here is not
identified through the specification of some distribution of unobserved characteristics, but
rather using direct observations of consumers’ taste parameters. The empirical analysis
exploits the information available from the 1986 Kentucky Local Telephone Tariff Experi-
ment.

In November of 1984, the Kentucky Public Service Commission (KPSC) established
Administrative Case #285 to study the economic feasibility of providing local measured
service telephone rates. Directly linked to Case #285, SCB carried out an extensive tariff
experiment in the second half of 1986 in two cities of Kentucky to provide the commission
with evidence in favor of introducing the optional local measured service. Prior to this
tariff experiment, in spring, when all households in Kentucky were on mandatory flat rates,
SCB collected demographic and economic information for about 5,000 households in the
local exchanges of Bowling Green and Louisville. The regulated monopolist also collected
monthly information on usage (number and duration of calls classified by time of the day,
day of the week, and distance), and payments during two periods of three months in spring
and the fall of that year.

It is remarkable that in addition to demographic and economic variables, SCB
also collected information on telephone customers’ usage expectations. SCB explicitly re-
quested customers’ own estimates of their weekly average number of calls. These individual
estimates are particularly useful because local calls were never priced before and consumers
were not aware of the tariff experiment that was going to be held in the second half of the
year. Thus, neither marginal tariffs or strategic considerations influence these estimates of
their own satiation levles. This information, available for most households of the sample
can be compared with the actual number of weekly phone calls for every month in the
study. A direct test of the suggested taste–varying model will be constructed in the next
subsection using the comparison between the expected and the actual weekly number of
phone calls. Appendix 2 describes in detail all variables used in this study and Table 1
presents basic descriptive statistics of the sample stratified by location.
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These two cities have quite different demographic structures. Residents in Bowling
Green make a significantly higher income and households are larger, including the propor-
tion of teenagers. Households with married couples and college graduates are also more
common in Bowling Green than in Louisville. In this latter city, on the contrary, it is more
common to find retired people, those who receive some kind of social benefits to support
their income, and a smaller percentage of households that have moved in the last five years.
Racial composition of these cities is also different. Only 6% of the population in Bowling
Green, but about 12% of the population in Louisville, is black.

There is also a significant difference between usage and expected usage of local
telephone service across these two local exchanges. While consumption (measured as
weekly number of calls) is higher in Louisville than in Bowling Green, the expected
consumption is much more accurate in this last exchange. On average, Bowling Green
residents underestimate telephone usage by 2%, Louisville residents underestimate their
usage by 29%. The difference in magnitude of the bias (type shock of the model) is
remarkable. Perhaps it could be explained by positive network effects of the size of the
local exchanges [Taylor (1994, §9)]. While Bowling Green barely reached 50,000 inhabitants
by the end of the 1980’s Louisville had a population that exceeded 250,000.

5.1 Are Data Consistent with the Type–Varying Model?

A common problem in estimating demand when consumers face nonlinear budgets is that
the choices of consumption and the marginal tariff are simultaneous and therefore the
relevant price is endogenous [e.g., MacKie–Mason and Lawson (1993, §3.2)]. Regarding
this point, observe that comparing the expected weekly number of calls with the actual
number of calls during the spring months is qualitatively different from comparing those
expectations with the actual number of calls during the fall months. In the second case
the number of phone calls is a function of the tariff chosen (in Louisville) and the marginal
charge per call, which varies with the time of the day and distance of the outgoing call
(both in Bowling Green and Louisville’s measured service option), as well as of customers’
accumulated monthly usage of telephone services. However, this is not the case during
the spring months because all local telephone customers were placed under a mandatory
flat rate regime. Price was a relevant economic variable for the decision to subscribe
the telephone service, but once it had been subscribed any additional call involves a zero
marginal charge, and consequently local telephone customers should consume at their
satiation levels.27

Focusing on the spring months, the present data set provides us with an uncom-
monly available direct indicator for θ1, the expected number of weekly calls, and also for θ,
the actual number of weekly calls. Provided that the mean of θ2 is finite, i.e., E[θ2] = µ2,

27 According to the 1990 U.S. Census of Population and Housing, 89.33% of the households in Bowling
Green and 92.07% of those in Louisville were subscribed to local telephone service. The assumption that
the whole market is served by the monopolist is therefore not unrealistic.
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and given that θ is additively separable in θ1 and θ2, –i.e., equation (15)–, F (·) will be
a stochastic spread of F1(·), and therefore θ1 should second order stochastically dominate
θ. The stochastic spread will be mean preserving, mean increasing, or mean decreasing
depending on whether µ2 is zero, positive, or negative. 28

The first column of Table 2 shows the average usage expectation bias, µ2, for
residents in Bowling Green and Louisville respectively. The average bias is positive for
customers of these two local exchanges, but it is about seventeen times larger in Louisville
than in Bowling Green. A more detailed analysis by demographic strata shows further
differences between residents of these two exchanges. While in Louisville the bias is always
positive and large, independently of the demographic characteristic considered, in Bowling
Green it is more balanced and in several occasions the average bias takes negative values.
In both cities consumers tend to underestimate their future usage, but in Louisville they
do this by more than an order of magnitude. The smaller average bias in Louisville (single
and male household) is still more than seven times larger than the average bias in Bowling
Green. Figures 1.5–1.6 show the empirical density function of the type shock. Although
these expectation bias are quite disperse (the standard deviation for Bowling Green is
about 37 calls per week while in Louisville reaches almost 40 calls), small mistakes around
the mean are the most frequent event. Thus, the excess of kurtosis is 51.31 for Bowling
Green and 42.98 in Louisville. But since customers in Louisville have a considerably more
biased expectation (on average 10.7 calls vs. 0.6 calls in Bowling Green), their empirical
distribution of shocks is positively skewed, 1.08, while in Bowling Green is negatively
skewed, -4.09. The “PAT” column presents further evidence in favor of the type varying
model by computing Pearson’s analog goodness of fit test for the equality of F (·) and
F1(·). That hypothesis is always strongly rejected and therefore we can conclude that
the distribution of θ2 is not degenerate and that the suggested type varying model is an
accurate representation of consumers preferences.

There is significant heterogeneity by strata for local telephone usage expectation
bias. In both cities there is evidence (stronger in Louisville) in favor of a mean increasing
spread of the distribution of θ relative to that of θ1. However, a systematic ordering of
the means of θ and θ1 (through a positive µ2) is not sufficient to ensure the stochastic
dominance of θ over θ1, since the whole distribution matters [Mas–Colell, Whinston, and
Green (1995)]. Figures 1.1–1.2 present the empirical frequency distributions of actual and
expected weekly number of local calls for the spring months of the experiment in the local
exchanges of Bowling Green and Louisville respectively. It is evident that the distribution
of expected weekly calls is characterized by the accumulation of frequencies on a few “focal
points” of the usage range. While the concentration of probability around these focal points
could partially explain that telephone customers underestimate their future consumption,
there is no reason why these “focal points” could not be shifted upwards some few units
(especially in the case of Louisville) to provide a less biased estimator. More informative

28 Second order stochastic dominance (SOSD) will occur even if the shock has a mean different from
zero. See Laffont (1993, §2.5).
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is however the empirical cumulative distribution functions shown in Figures 1.3–1.4, which
clearly indicates that in both cities telephone customers tend to underestimate their future
local telephone usage over the whole calling range, which leads to the relative ordering of
the averages of θ and θ1 discussed in Table 2.

The testable implication of the suggested type–varying model is that θ, the number
of actual weekly calls stochastically second order dominates θ1, the expected number of
weekly calls. Figure 1.4 appears to indicate that θ first order stochastically dominates
θ1 in Louisville, although Figure 1.3 fails to prove the same for Bowling Green. While
FOSD implies SOSD and therefore supports the suggested type–varying model, FOSD is
also much more restrictive than SOSD because it implies that consumers systematically
underestimate their future consumption, not only independently of their demographic
characteristics, but also independently of the magnitude of their local telephone usage.
Thus, strong FOSD of θ over θ1 will be consistent with a model where θ dominates in
hazard rate to θ1. The distribution of the actual number of calls will be more favorable
than the distribution of expected number of calls, and therefore the optimal ex–post type
based nonlinear price schedule would imply uniformly higher markups than the ex–ante
type based nonlinear price schedule for all possible local telephone usage levels.

In order to test the hypotheses of first and second stochastic dominance, I computed
Anderson’s (1996) nonparametric test of stochastic dominance. The test, whose construc-
tion is briefly summarized in Appendix 3, is based on comparing weighted differences of
frequency functions of two variables within given mutually exclusive fractiles. The null
hypothesis of FOSD of θ over θi, i.e., θi ≤st θ, requires that:

F (θ) ≤ Fi(θ), F (θ′) 6= Fi(θ′) for some θ′, ∀θ ∈ Θ. (52)

Similarly, SOSD of θ over θi requires that:

θ∫
θ

[F (z)− Fi(z)] dz ≤ 0, F (θ′) 6= Fi(θ′) for some θ′, ∀θ ∈ Θ. (53)

Test results presented in Tables 3 and 4 compare these two inequalities for a given
range of phone calls (20 fractiles). Stochastic dominance of any given order requires that
each inequality holds for every given call category, i.e., not a single test of each row can be
significantly positive. Tables 4a–4b provide with strong evidence in favor of the suggested
type–varying model, as SOSD of θ over θ1 is never rejected in neither of the two cities and
for any of the demographic strata.29

Absolute SOSD test values are systematically higher in Louisville than in Bowling
Green. This is partly due to the different behavior of F (·) relative to F1(·) in these two

29 I furthermore checked that SOSD was never rejected for neither of the two cities in any single
month, using 10 and 15 fractiles.
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cities. As Tables 3a–3b report, FOSD of θ over θ1 is rejected in Bowling Green (for
households with high income, young, and single and male head, as well as for the high
end of the calling range), but never in Louisville. This FOSD result explains why the
type shock has always a positive mean in Louisville, and its rejection in Bowling Green is
consistent with the negative average bias found for some demographic strata.

6 Welfare Analysis

In this section I study the possible welfare effects due to the introduction of optional
nonlinear tariffs. First, I explore the possibilities of obtaining general results from a
theoretical perspective. Second, I compute estimates of the welfare components using
the empirical distributions of θ and θ1 of the Louisville and Bowling Green samples.

6.1 Freedom of Choice vs. Mandatory Pricing

After the breakup of AT&T optional pricing became a common practice in Telecommu-
nications and also in other industries. Two questions at least arise. First, why do firms
find profitable to make optional tariffs available to their customers? And second, from the
Regulator’s perspective, should optional pricing be allowed in regulated industries? The
analysis of this section intends to shed some light on this complex issue.

Comparing the solution of the ex–post and ex–ante problem it is straightforward to
realize that there are two elements that characterize the solutions of the optimal marginal
tariffs: the hazard rate of the appropriate distribution for each problem, and how the
demand conditions enter the solution, i.e., for the ex–ante problem, the effects of the type
shock θ2 are integrated out while for the ex–post tariff this is not the case.

I will start by analyzing the role of asymmetric information in the solution of
the optimal ex–post nonlinear pricing problem. Suppose that consumer type θ could be
distributed with respect to either F (θ) or G(θ). Which of these two distributions is more
informative for the monopolist? In the previous sections, I have repeatedly made use of an
inverse relationship between the hazard rate of the distribution and the mark–up that the
monopolist can charge to his customers. The following Proposition shows the important
role that the hazard rate of the distribution plays in the discussion of profitability of
different pricing schemes.30

Proposition 5: Let F (θ) and G(θ) be IHR, i.e., such that r′F (θ) > 0 in θ on
{θ > 0 : F (θ) < 1}, and r′G(θ) > 0 in θ on {θ > 0 : G(θ) < 1}. Assume also that
rF (θ) ≤ rG(θ), ∀θ. Then, the price mark–up and the marginal tariff will be uniformly
higher under the F (θ) distribution than under the G(θ) distribution.

30 Different versions of this result have been previously stated by Ivaldi and Martimort (1994), Laffont
and Tirole (1993, §1.5), and Maskin and Riley (1984, §4).
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Proof: From solution (9) of the ex–post pricing problem, the price mark–up is:

p̂(θ)− c
p̂(θ)

=
−r−1(θ)

[
vpθ(p(θ), θ)
vpp(p(θ), θ)

]
c− r−1(θ)

[
vpθ(p(θ), θ)
vpp(p(θ), θ)

] . (54)

Differentiating this expression with respect to r(θ) we obtain:

∂

∂r(θ)

(
p̂(θ)− c
p̂(θ)

)
=

c

[
vpθ(p(θ), θ)
vpp(p(θ), θ)

]
r2(θ)

[
c− r−1(θ)

[
vpθ(p(θ), θ)
vpp(p(θ), θ)

]]2 < 0. (55)

Thus, evaluating these expresions at rF (θ) and rG(θ) respectively, it follows that the price
mark–up will be higher under F (θ) than under G(θ).

The monopolist will charge a higer price mark–up under F (·) than under G(·)
because F (·) dominates in hazard rate to G(·). This is because distribution F (·) puts
more weight on consumers of high type (closer to θ).31 The fact that distribution F (·) is
more favourable than G(·) implies that the optimal pricing has to create stronger incentives
for inframarginal consumers to self–select according to their true type. Proposition 6 shows
that maintenance of the IC constraint under more favourable distributions requires higer
price distortions for inframarginal consumer types. Thus, reducing consumers’ expected
informational rents, the monopolist is able to screen among the many particular type values
that a smaller proportion of his customers can reveal through their tariff choice or usage
decisions.

But in the problem analyzed in this paper, substituting one distribution for a
different one is just one factor, but not the only one, driving the welfare results. As it is
obvious from the comparison of the marginal tariffs of the optimal ex–post and ex–ante
nonlinear tariffs –equations (9) and (26)–, they will only differ on the distribution used if
the ratio vpθ/vpp is independent of θ2.32 Comparing information structures that lead to
the hazard rate ordering provides with a unique example in which different nonlinear tariffs
can be sorted. But more frequently, comparison among informational structures will not
lead to situations in which one distribution is more favorable than the other over the whole
support of the distribution of types. This is the case of the present case study. Figure 2
compares the hazard rate of the distributions of expected and actual number of calls in

31 Strictly speaking, this is true when the support of the distribution is restricted to <+, because,
as it has been shown in Corollary 3, then F (·) would first order stochastically dominate G(·). Otherwise,
hazard rate dominance is a regularity condition that has to be imposed in order obtain that markups under
F (·) uniformly dominate those under G(·) even when F (·) FOSD G(·).

32 This condition could be fulfilled by some multiplicative specifications of θ. In particular utility
functions where the ex–post type enters as a scale factor only, e.g., indirect utility functions that are
multiplicatively separable in types and prices.
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the two local exchanges. In both cases, there is an alternating dominance in hazard rate
of F (·) over F1(·) and vice versa. But in Louisville, consistent with the FOSD result, F1(·)
dominates in hazard rate to F (·) only for very small ranges: from approximately 52 to 59
and from 85 to 105 calls per week. Thus, without strict hazard rate dominance markups
can be higher under one tariff only for a given range of consumption. This result is even
more likely to happen when we also consider that demand conditions enter differently
under the optimal ex–ante and ex–post nonlinear tariffs. The question that remains to
be answered is whether, regardless of all these issues, something can be said about the
desirability of ex–ante vs. ex–post tariffs for different agents.

The results for the monopolist are conclusive. Optimal tariff functions T (θ) are
necessarily increasing, T ′(θ) = p(θ) > 0. Furthermore, if the problem is well behaved,
tariff functions will be concave (quantity discounts), T ′′(θ) = p′(θ) < 0. Therefore, the
monopolist generally expects an increase in profits by introducing optional pricing. The
result is a direct consequence of the classical conditions of Hadar and Rusell (1969) to
order outcomes under uncertainty.

Proposition 6: Expected profits are higher under ex–ante pricing if any of the
folowing conditions hold:

(i) T ′(θ) > 0 and F (·) FOSD F1(·),
(ii) T ′(θ) > 0, T ′′(·) < 0, and F (·) SOSD F1(·).

Proof: Under circumstances of part (i), the difference of expected profits between
ex–post and ex–ante tariffs is (integrating by parts):∫

Θ

T (x)[F (x)− F1(x)]dx = −
∫
Θ

T ′(x)[F (x)− F1(x)]dx ≥ 0, (56)

while for part (ii) the result is obtained integrating (56) by parts again:∫
Θ

T ′′(x)
∫
Θ

[F (y)− F1(y)]dydx− T ′(x)
∫
Θ

[F (y)− F1(y)]dy
∣∣∣x=θ

x=θ
≥ 0, (57)

which completes the proof.

Therefore, more favorable distributions (FOSD) increase expected profits even in
situation in which the pricing problem does not fulfill all required conditions to discriminate
among consumers by means of quantity discounts. But if these quantity discounts are
optimal, then less restrictive stochastic orderings (SOSD) also lead to the same conclusion.
The commonly observed practice of using optional nonlinear tariffs is therefore profit
maximizing under very general conditions, which should suffice to explain its widespread
use.

Unfortunately, I cannot affirm the same about consumers. Assumption 1 only
requires that the indirect utility function be increasing in θ. But the effect on the net
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rent v(p(θ), θ) − T (θ) will depend on many factors. If v(·) is more increasing than T (·),
then part (i) of Proposition 6 could be applied, and consumers will prefer optional pricing
to mandatory ex–post pricing. However, it is possible to observe that type shocks are so
biased that F (·) first order stochastically dominates F1(·) and consumers still prefer the
mandatory measured service. There would not be any assumption violation. Preferences
just fail to be increasing enough in θ. This actually happens for the case of Louisville
in the empirical analysis of the next section. A similar analysis could be made for the
case of SOSD in order to apply part (ii) of Proposition 6. In addition to v(·) being more
increasing than T (·), it would now require that v(·) is more concave than T (·). Thus, even
more restrictive preferences are necessary to obtain a definite ordering of pricing strategies
under increasingly less restrictive stochastic environments.

Obviously, this difficulty in ordering pricing schemes according to the expected
consumer surplus is translated to the regulator’s welfare measure. The result is more
unclear the more weight is given to consumers in the regulator’s objective function. But
still something can be said, at least in limiting cases. Consider the following family of
convoluted distributions defined according to (46) such that:

F (θ, θ1, θ2, τ) ; τ =
σ2

2

σ2
1 + σ2

2

; Fτ (θ, θ1, θ2, τ) > 0. (58)

Thus, for instance, if σ2
2 = 0 and τ = 0 then F (θ) = F1(θ1). Obviously, if the variance of

the shock is zero, all consumer differences are captured by the distribution of the ex–ante
type. Therefore, there is no real distinction between tariff choice and usage decision. All
consumers and also the monopolist would be indifferent between an ex–ante and ex–post
tariffs. A model like this is actually equivalent to one where consumers are able to commit
ex–ante to their future consumption.

Without being too precise I should conclude that the smaller is the variance of the
shock relative to the variance of the ex–ante type, the more likely is that ex–ante tariffs
are welfare increasing and vice versa. To confirm this intuition, the other extreme case
should also be analyzed. If σ2

1 = 0 and τ = 1, then F (θ) = F2(θ2). In this case, consumers
only differ ex–post. Since consumers are all alike ex–ante, the optimal ex–ante tariff will
be a two–part tariff. But that is not the welfare enhancing (neither profit maximizing)
tariff because consumers will be considerably more diverse ex–post than ex–ante, and both
welfare and profits are increasing in the number of self–selecting tariffs [Faulhaber and
Panzar (1977, §4); Wilson (1993, §8)], which implies that the optimal strategy should be
an ex–post based fully nonlinear tariff.

This discussion just indicates whether a particular type of tariff is more likely to be
welfare enhancing than another, based on the welfare increasing effect of more numerous
self–selecting options when consumers are diverse. However, the discussion falls short of
determining the threshold levels of the ratio σ2

1/σ
2
2 that make ex–ante pricing dominate

ex–post tariffs or vice versa. Determinants of this threshold are application specific, and
will critically depend on the specification of the utility function and the distributions used.
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Finally, observe that more general convolution families than those in (58) could be
defined. For instance, the correlation between θ1 and θ2 could also be considered, although
in practice we will face the problems discussed in Section 4.3.33 But consideration of
non–independent type components may also help characterizing whether ex–ante tariffs
represent a welfare improvement relative to ex–post measured services. The idea is that
there is some sort of relationship between hazard rate dominance and the dispersion of
the distributions. The net effect depends on whether the nature of the shock increases or
decreases the heterogeneity (asymmetric information) of consumers. For instance, we can
return to the example discussed in Section 4.3 to illustrate the difference between optimal
nonlinear tariffs in environments with and without correlation between type components.
If type components are positively correlated, then consumer diversity will be more intense
ex–post. This case has already been addressed before, when σ2

1 > σ2
2 (in particular the

polar case σ2
2 = 0). However, the negative correlation case add something substantial that

previous cases could not address. In the case of negative correlation consumers are more
heterogeneous ex–ante than ex–post. If shocks are such that consumers become so similar
ex–post that F (θ) is close to degenerate, it is obvious that the welfare maximizing strategy
consists in offering optional tariffs.

Thus, the stochastic nature of type shocks, whether they make the ex–post dis-
tribution more favorable (hazard rate effect) or whether consumers become more or less
heterogeneous (variance effect) appear to drive welfare effects in particular applications.
In general we can conclude that welfare effects will critically depend on the relative size
of the variance of θ1 and θ2 and how they enter the definition of the hazard rate of the
distributions of θ and θ1 respectively. These relationships are complex enough to make
precise predictions almost impossible. Perhaps, the exception is any family of distributions
that can be ranked according to their hazard rates over the whole support <, regardless of
the variances of the components of the type. Otherwise optimal ex–ante and ex–post tariffs
will intersect each other, which therefore leads to ambiguous welfare results. Instead of
solving the model for one of such cases that avoids ambiguity, the following section explores
the magnitude of the welfare effects associated to different pricing strategies using the
empirical distributions of θ, θ1, and θ2, which is a more interesting analysis because direct
observations of types are rarely available.

6.2 Simulations

In this subsection I compute simple estimates of the welfare effects due to the introduction
of optional tariffs for the two local exchanges of Kentucky using Monte–Carlo simulations.34

For each city I evaluate the average expected consumer surplus, profits, and total welfare

33 The evaluation carried in footnote 26 is an approximation to the effects of changes in the correlation
parameter that could be added to the discussion here.

34 Although optional tariffs were effectively introduced only in Louisville in the second half or 1986,
there is no reason not to evaluate the potential effects of the introduction of optional tariffs in Bowling
Green.

– 35 –



of screening local telephone customers through either a mandatory ex–post pricing, a
continuum of optional two–part tariffs, or a continuum of fully nonlinear options. In order
to evaluate the welfare effects, I first have to specify a particular demand function. I
assume that the indirect utility function is:

V (p,A, θ) =
θ

α
exp[−αp]−A ; α > 0, (59)

which leads to the following demand equation:

x(p, θ) = θ exp[αp]. (60)

This specification has been used before in telecommunications demand analysis because it
is bounded under the flat rate option [Hobson and Spady (1988); Kling and Van Der Ploeg
(1990)]. If p = 0, consumers purchase their satiation level x(p, θ) = θ, which I identified in
Section 5 as the actual number of weekly calls during the spring months when all customers
were under mandatory flat rate service. Similarly, when p = 0, the expected usage equals
E2[θ] = θ1 + µ2, which I identified as the expected number of weekly calls. The solutions
of T̂ (θ), T̃ (θ1), and ˜̃T (θ1, θ2) for this particular demand function and general distribution,
are shown in Appendix 3. Obviously, these equations could be solved explicitly for some
given distributions. However, instead of imposing any arbitrary distribution function, I
will evaluate these welfare effects using the empirical distributions of θ and its components.

Nonlinear pricing solutions based on (60) are constructed under the assumption
that the monopolist considers only the possibility of allowing for call discounts, instead of
price discrimination based on duration of the call, time of the day, distance, or any other
criteria.35 Table 5 presents the results of evaluating these tariffs and their associated
welfare effects for the two Kentucky local exchanges where the tariff experiment was
conducted. I compute an adaptive Gaussian kernel with optimal bandwidth chosen to
minimize the mean integrated square error of the estimation of the distributions of θ, θ1,
and θ2 (actual or expected calls and estimation bias respectively) corresponding to each
local exchange.36

Distribution estimates are shown in Figures 3–4 for the two local exchanges of
Bowling Green and Kentucky. There are not many differences among the distributions of
these exchanges. In both cases, the kernel estimates identify important focal points around
50 and 100 expected calls per week respectively. However, the most important distinction

35 The available data is not able to identify any effect other than potential volume discounts based
on the total number of calls. This is because the database includes expectations for total number of weekly
calls during the spring months when the effective marginal tariff is zero, but it does not include anything
regarding expected duration of calls or average time/distance profile of these calls.

36 See Silverman (1986, §5.3). The estimation procedure discretizes the ranges of θ, θ1, and θ2 around
a 128 point grid to obtain the kernel estimation of each density by means of a fast Fourier transform.
Estimation of f(·) and F (·) for intermediate values of θ, θ1, or θ2 is obtained by polynomial interpolation
(with all 128 point estimates of the kernel) using Neville’s algorithm [Press, Flannery, Teulosky, and
Vetterling (1986, §3.1)].
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between these two exchanges is the positive bias in Louisville. The hazard rate of all
distributions can be considered increasing. The first increasing portions of the different
hazard rates of Figures 3 and 4 account for most of the corresponding mass of probability.
For large θ, θ1, or θ2 a small variation of the respective kernel estimate of their probability
density functions, f̂(·) will become much larger when divided by their estimated survival
functions 1 − F̂ (·), therefore making the kernel estimate of the hazard rates unreliable
for large values of θ, θ1, or θ2. As all increasing variances of the kernel estimates of the
hazard rates show, most variations in r̂(·) after the initial increasing section are most likely
due to purely random effects than to genuine increases or decreases of the hazard rate for
particular regions.37

Before analyzing the results of the simulations from these kernel estimates of the
distributions of types, it is necessary to address two identification issues that will provide
with meaningful simulation figures: a) What is the actual average number of calls in each
local exchange with different tariff regimes when p 6= 0? And b) What is a reasonable
value of the elasticity of demand?

The values of θ and θ1 are identified as the actual and expected number of calls
during the spring months, when consumers faced a zero marginal charge. Thus, the
observed and expected consumption are excellent dummies of individual satiation levels
that characterize the type of each individual consumer. The existence of a positive charge
per call could lead to a selection effect in Louisville where the flat rate was still an option
later in the fall, and a suppression effect in Bowling Green (mandatory measured) and
Louisville (optional measured). During the fall months in which these tariffs applied,
customers in Bowling Green made 134.33 local calls on average every month. This number
identifies the number of calls of the ex–post tariff in my base case for Bowling Green since
it already includes the effect of a positive marginal tariff. In Louisville this number is
significantly higher as it averages the number of calls of 30% of the customers on optional
measured service, 86.69, and the 189.28 monthly calls of the remaining 70% of customers
on optional flat rate service. The value of 179.02 is therefore used in the base case to
identify the volume of demand under the ex–ante pricing regime in Louisville.

Price elasticity of demand function (60) is given by ε = αp. Therefore, for any price
per call, it is always possible to modify the value of α in order to fit a demand function with
the desired value of the elasticity. The simulations are run for four values of price elasticity
(evaluated at the average sample p) as reported in four independent empirical studies of
local telephone demand: −0.1 [Park, Wetzel, and Mitchell (1983)], −0.17 [Kling and Van
Der Ploeg (1990)], −0.45 [Train, McFadden, and Ben–Akiva (1987)], and −0.7 [Hobson and
Spady (1988)]. Because of the methodology used and the richness of the data available, the
estimate of Park, Wetzel, and Mitchell is probably the most accurate. I however decided to
choose ε = −0.17 for the base case common to the two cities because this number allows for
comparisons with other situations, both with higher and lower elasticities of demands. But

37 The variance of the hazard rate shown at the bottom of Figures 3–4 has been computed according
to equation (6.25) of Silverman (1986, §6.5) for adaptive Gaussian kernels.
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also, and more importantly, because Park, Wetzel, and Mitchell (1983, §5) acknowledge
that demand elasticities are price dependent and they indicate that elasticities could likely
be higher for higher prices (as in my case).

The elasticity is dependent on the price of the calls. Unfortunately the actual tariffs
in both Bowling Greene and Louisville were multidimensional, and not only charged for
setup but also for duration, and both of them varied depending on the time band, and in
some cases the distance of the call within the local exchange. After comparing telephone
usage patterns in the two local exchanges, I chose an average cost per call of 7 cents as
representative for the base case of the simulations.

Table 5 evaluates each particular nonlinear pricing solution and its associated
welfare magnitudes: consumer surplus V , profits (revenues) π, and total welfare W . All
average values of simulations in Table 5 are shown in 1986 dollars per month. Reported
simulations are the average of 10,000 independent draws from the kernel estimation of
the empirical distribution of types.38 These random draws from the kernel distribution
estimates are constrained to have the same first two moments of the true distributions of
θ, θ1, and θ2 respectively (see Table 1).

To comment results of Table 5, I focus on the case where ε = −0.17. Thus, in
Bowling Green, the optimal ex–post tariff involves an average marginal rate of $0.07,
and an average monthly fee of $44.07. Given the empirical distributions of types in that
local exchange, consumers enjoy an average expected money surplus of $11.25, the local
monopolist expects to make $44.92 in profits (revenues) per customer, and total expected
welfare amounts to $56.17 per person.

Average monthly fees are slightly higher under optional pricing than with the
standard ex–post nonlinear tariffs (SNLT), although almost no distinction is found between
optional two–part tariffs (OTPT) and optional nonlinear tariffs (ONLT). Marginal rates
are 34% lower with OTPT than with SNLT while under ONLT, they rise 18%. These
are however average magnitudes. Thus, the higher consumption under ONLT relative to
OTPT could be explained by a likely reduction in marginal tariffs under ONLT relative
to OTPT as consumption increases (θ2) for each chosen tariff (θ1). This increase in
consumption explains the important increase in expected consumer surplus under ONLT.
Expected consumer surplus increases by 14% due to the 5% expansion of demand under
ONLT relative to SNLT as compared to the 1% expansion with OTPT.

Introduction of OTPT enhance welfare by about 2%, mostly driven by a 4% increase
in profits, because consumer surplus is also reduced by 4% (of an initial smaller amount
than profits). ONLT reduces welfare by 5%, but the distribution of its components is quite
different from the OTPT case. It appears that the effect of the reduction of marginal rates
for large consumers under ONLT dominates and thus consumers benefit more from the

38 The practical advantage of simulation using random draws from kernel estimates of the distribu-
tions as compared to simple repeated random draws with replacement from the sample of types is that we
can evaluate the pricing functions at any point, even if it has not exactly occurred in the data.
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introduction of ONLT than from the introduction of OTPT, although the latter one is the
welfare maximizing pricing policy in expectation among the three analyzed here.

Finally, all magnitudes considered (with the exception of consumption) are inversely
related to the absolute value of the elasticity of demand. Thus, the more inelastic is the
demand, the higher is the average the fixed fee as well as marginal tariffs. But also the
expected consumer surplus, profits and total welfare. The analysis of the four different
scenarios points out to the importance of an accurate estimate of the elasticity to evaluate
welfare effects. For instance, comparing the total expected welfare across different scenarios
and tariffs, it increases an average of 70% when ε = −0.10 relative to ε = −0.17. However
it falls about 62% when ε = −0.45, and 75% when ε = −0.70. However, the welfare
analysis carried out before for the reference scenario when ε = −0.17 is also valid for the
others, so that the conclusion of OTPT being the preferred pricing option appears to be
robust to different values of the elasticity of demand.

For the case of Louisville, the reference OTPT case is characterized again with
an average marginal rate of $0.07, and the average monthly fee of $63.59.39 Individual
expected consumer surplus is $10.03, expected profits per customer are $65.00, and total
expected welfare amounts to $75.03 per person.

The welfare analysis of the results of Louisville is very similar to that one of
Bowling Green. There are two sources of differences between these two exchanges that
affect the results of simulations. Consumption pattern may vary due to differences in
demographics, socioeconomic variables, and/or the size of the local network. The effect
of all these variables have already been captured through the identification of exchange
specific levels of telephone usage under different tariff regimes. The other source is the
disparate behavior of type shocks in these two cities. Results of Section 5.1 show that
θ second order stochastically dominates θ1 in Bowling Green, while in Louisville, this
stochastic dominance is of first order, which means that Louisville customers systematically
underestimate their future local telephone usage.

Systematic underestimation of future consumption is the origin of the wider effects
of welfare in Louisville relative to Bowling Green when comparing pricing alternatives.
Thus, for instance, for the ε = −0.17 scenario, going from SNLT to OTPT reduces the
expected consumer rents by 4% and increases expected profits by 4% in Bowling Green,
while in Louisville the expected consumer surplus reduction is about 20% and the increase
in expected profits reaches 7%. This means a less favorable distribution of welfare for
consumers due to the fact that the majority of them would choose particular OTPTs that
ex–post prove to be designed for very low consumption profiles. However, OTPT is again
the welfare maximizing among the three pricing strategies considered here.

39 Observe that average marginal rates are normalized to $0.07 both for the OTPT and ONLT cases.
Since consumption (independent of ε) is also normalized across scenarios, the average marginal rate is
always the same for OTPT and ONLT across scenarios.
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Finally, observe that the simulation results regarding differences of expected profits
are in accordance to the theoretical results of the previous sections, and of Proposition
6 in particular. Welfare increases in expectation when we implement OTPT instead of
SNLT. The SOSD of θ over θ1 is the dominant factor driving this result. The FOSD of
Louisville, with mean increasing effect on the usage level accounts for the stronger effect in
the increase of expected profits (7% in Louisville vs. 4% in Bowling Green). Finally, the
additional 4% increase in profits obtained when ONLT are in use instead of OTPT should
be explained by the monopolist being able to discriminate consumers also with respect to
θ2. Expected profits increase as the number of options increases and accounts for ex–post
differences.

7 Conclusions

This paper has addressed several pricing strategies of a monopolist who wants to screen
consumers when their individual demands are stochastic. For tractability considerations, I
have restricted my attention to the case where consumer taste parameters remain single–
dimensional in order to study the conditions leading to quantity discounts of the optional
nonlinear tariffs when consumers buy several units of the same product.

As mentioned in previous sections, optional nonlinear pricing has not attracted
much attention among economists until very recently. Traditionally, economists have
incorrectly extended the application of results of the standard nonlinear pricing theory to
situations where consumption and tariff choice were not simultaneous. The early treatment
of Clay, Sibley, and Srinagesh (1992) studied the design of optimal two–part tariffs, but
restricting their attention to the discrete type case. They also limited drastically the range
of variation of θ2 to ensure that the same SCP held both ex–ante and ex–post, so that the
ordering of individual consumer preferences remained unaltered after the realization of the
shock. Miravete (1996) extended this model to the case of a continuum of two–part tariff
options with a continuum of types, independently of whether the ordering of consumer
tastes changed or not after the realization of the shock. Miravete (1997) used a particular
closed form solution of this model to analyze the estimation bias of not dealing with
asymmetric information and self–selection issues in a cross–section framework. Finally,
Courty and Li (1998) analyzed a general model of sequential screening with a continuum
of types but limiting the analysis to consumers with unit demands and biased type shocks
in the sense of FOSD.

Relative to all these works, the present paper contributes by characterizing a fully
nonlinear tariff when consumers buy more than one unit, and by making explicit the role of
the statistical assumptions on the existence of quantity discounts (IHR of the distribution
of type components), and welfare effects (FOSD and SOSD of θ over θ1). This paper
also compares different optimal nonlinear tariffs depending on whether they are designed
ex–ante or ex–post, through the preservation of the IHR property of the distribution of
type components through convolution. Finally, the paper also contributes to this literature
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by providing very strong evidence in favor of the suggested type–varying model based on
direct observation of consumer types. Furthermore, using simulations from the kernel
distributions of these types, the paper reports results that favor optional two–part tariffs
as the welfare maximizing strategy in two local exchanges of Kentucky.

The results of this paper help explaining the widespread use of tariff discounts
embodied into tariff options in several monopolistic and competitive markets. But the
suggested solution also opens the possibility of theoretical extensions to other agency
problems where individual stochastic components of moral hazard or adverse selection
parameters could also be present. Restricting our attention to common nonlinear pricing
issues, there are no significant difficulties (besides burdensome notation) in extending the
present model to address for example the case of firms that compete through the design of
optional nonlinear tariffs. This could be done along the line of the papers by Armstrong and
Vickers (1998) or Stole (1995) for the case of differentiated products, or Rochet and Stole
(1998) when the competing firms sell an homogeneous good. Extensions to Principal–Agent
problems based on Laffont and Tirole’s (1993) model could also open the possibility of
analyzing additional features associated to the existence of uncertainty in several issues
with direct policy applications, both from the perspective of adverse selection and moral
hazard.
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Appendix 1

• Derivation of the Ex–Post Tariff

The corresponding Hamiltonian for the monopolist’s ex–post problem is:

H[V, p, θ] = [v(p(θ), θ)− V (θ)− (p(θ)− c)vp(p, θ)−K] f(θ) + λ(θ)vθ(p(θ), θ) (A.1)

Using equation (2), the first order necessary conditions are:

Hp : −(p(θ)− c)vpp(p, θ)f(θ) + λ(θ)vpθ(p(θ), θ) = 0 (A.2)

HV : f(θ) = λ′(θ) ; λ(θ) = 0 (A.3)

There is not transversality condition at θ since V ′(θ) > 0 because the participation
constraint is only binding at θ. Then [Kamien and Schwartz (1991, §II.7)]:

λ(θ) =

θ∫
θ

f(z)dz = F (θ)− 1 (A.4)

Equations (9) − (10) follow from substituting this expression and the SCP into the first
order necessary conditions Hp and HV .

• Proof of Lemma 1

Assumption 3 restricts the distribution functions considered here to be continuously differ-
entiable and positive. From Definiton 4 it follows that a twice continuously differentiable
function g(z) is log–concave if and only if:

∂2[log g(z)]
∂z2

=
∂

∂z

[
g′(z)
g(z)

]
< 0, (A.5)

i.e., since g(z) > 0 ∀z ∈ <, g′(z)/g(z) has to be monotone decreasing on R. Next, without
loss of generality, assume x1 < x2 and 0 = y1 < y2 = ∆. Then, from the definition of PF2

the following inequality should hold:

g(x1)g(x2 −∆)− g(x2)g(x1 −∆) ≥ 0. (A.6)

Based on this inequality, all the following inequalities are equivalent:

g(x2 −∆)
g(x2)

≥ g(x1 −∆)
g(x1)

, (A.7a)

lim
∆→0

g(x2 −∆)
g(x2)

≥ lim
∆→0

g(x1 −∆)
g(x1)

, (A.7b)

−g′(x2)
g(x2)

≥ −g
′(x1)

g(x1)
, (A.7c)
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which, given g(z) > 0, proves that ∀z ∈ <, g′(z)/g(z) is monotone decreasing on <.

• Proof of Lemma 2

By definition of PF2, the convolution distribution F (θ) defined in (46) has to be such that
∀x1, x2 ∈ X ⊆ < and ∀y1, y2 ∈ Y ⊆ <, such that x1 < x2 and y1 < y2, the following
condition holds:

∣∣∣∣ F (x1 − y1) F (x1 − y2)
F (x2 − y1) F (x2 − y2)

∣∣∣∣ =

∣∣∣∣∣∣∣
∫
R

F1(x1 − z)f2(z − y1)dz
∫
R

F1(x1 − z)f2(z − y2)dz∫
R

F1(x2 − z)f2(z − y1)dz
∫
R

F1(x2 − z)f2(z − y2)dz

∣∣∣∣∣∣∣
=
∫
z1<

∫
z2

∣∣∣∣ F1(x1 − z1) F1(x1 − z2)
F1(x2 − z1) F1(x2 − z2)

∣∣∣∣ · ∣∣∣∣ f2(z1 − y1) f2(z1 − y2)
f2(z2 − y1) f2(z2 − y2)

∣∣∣∣dz1dz2 ≥ 0, (A.8)

where the last inequality is the Basic Composition Formula that relates convolutions of
totally positive functions. From here the proof is immediate since the first determinant in
the double integral is positive as F1(θ1) is PF2 and the second determinant is also positive
as f2(θ2) is PF2. Indices can be changed arbitrarily and the convolution be referred to
other functions (density, survival) as long as they fulfill the assumptions stated in this
lemma.

• Proof of Proposition 3

In order to prove this proposition let first study the total positivity properties of the
function δ : < → {0, 1} defined as follows:

δ(x− y) =
{

0 if x < y
1 otherwise (A.9)

From Definition 5, δ(x − y) is PF2 if ∀x1, x2 ∈ X ⊆ R and ∀y1, y2 ∈ Y ⊆ <, such that
x1 < x2 and y1 < y2, the following condition holds:∣∣∣∣ δ(x1 − y1) δ(x1 − y2)

δ(x2 − y1) δ(x2 − y2)

∣∣∣∣ ≥ 0. (A.10)

There are six possible cases:

1. If x1 < x2 < y1 < y2, then 0 · 0− 0 · 0 = 0,
2. If x1 < y1 ≤ x2 < y2, then 0 · 0− 1 · 0 = 0,
3. If x1 < y1 < y2 ≤ x2, then 0 · 1− 1 · 0 = 0,
4. If y1 ≤ x1 < y2 ≤ x2, then 1 · 1− 1 · 0 = 1,
5. If y1 ≤ x1 < x2 < y2, then 1 · 0− 1 · 0 = 0,
6. If y1 < y2 ≤ x1 < x2, then 1 · 1− 1 · 1 = 0.
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Thus δ(x − y) is PF2. It is then straightforward to show that δ̂(x − y) = 1 − δ(x − y) is
also PF2. By Lemma 2, γ̂(θi), the convolution of δ̂(x− θi) and fi(θi) is PF2. Therefore:

γ̂(θi) =
∫
R

δ̂(x− θi)fi(θi)dθi =

x∫
−∞

fi(θi)dθi, (A.11)

because δ̂(x− θi) = 1 only if x < θi. Hence, in this case, γ̂(θi) = Fi(θi = x), and therefore
the cumulative distribution function Fi(θi) is PF2. Similarly, γ(θi) the convolution of
δ(x− θi) and fi(θi) is also PF2, which in this case implies that:

γ(θi) =
∫
R

δ(x− θi)fi(θi)dθi =

∞∫
x

fi(θi)dθi, (A.12)

because δ(x − θi) = 1 only if x ≥ θi. Thus, in this second case, γ(θi) = F i(θi = x), and
therefore the survival function 1− Fi(θi) is also PF2.

• Proof of Proposition 4

Suppose not, i.e., for instance assume that r1(θ) < r(θ):

f1(θ)
F 1(θ)

<
f(θ)
F (θ)

. (A.13)

Using the definition of Fourier convolution, this inequality is equivalent to the following
three inequalities:

f1(θ)F (θ)− f(θ)F 1(θ) < 0, (A.14)

f1(θ)

∞∫
0

F 1(θ − z)f2(z)dz − F 1(θ)

∞∫
0

f1(θ − z)f2(z)dz < 0, (A.15)

∞∫
0

[
f1(θ)F 1(θ − z)− F 1(θ)f1(θ − z)

]
f2(z)dz < 0. (A.16)

Since by Assumption 2, f2(θ) ≥ 0 on 0 ≤ θ <∞, it must be the case that the term between
brackets is negative ∀θ ≥ 0. But observe that this condition then requires

f1(θ)
F 1(θ)

≤ f1(θ − z)
F 1(θ − z)

∀z ≥ 0 (A.17)

so that F1(θ1) should be decreasing hazard rate. Similarly, r2(θ) < r(θ) violates F2(θ2)
being IHR. Contradiction.
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• Tariff Solutions for Exponential Demand

I present here the solutions of the optimal ex–post tariff, the ex–ante optional two–part
tariffs, and the ex–ante nonlinear options. These solutions are constructed for demand
specification (60). These expressions are then used to evaluate the corresponding welfare
magnitudes. For simplicity I have assumed that c = 0 and K = 0. These parameters only
change the scale of the fixed fee and marginal charge, but the comparisons of expected
welfare under pricing regimes remain unaffected. Thus, the optimal ex–post tariff is
characterized by:

p̂(θ) =
1

αθr(θ)
, (18a)

Â(θ) =
1
α

θ exp[−{θr(θ)}−1]−
θ∫
θ

exp[−{zr(z)}−1]dz

 . (18b)

The expressions for the optional two–part tariffs are more cumbersome. However,
for the present application the sample only includes active consumers. Thus, the ex–post
participation constraints are not binding for any ex–ante type. This fact simplifies optimal
pricing expressions and computations because F2[θ2(θ1)] = 0 for all possible ex–ante types
θ1, and because E2[θ2 | θ2 ≥ θ2(θ1)] = µ2, which is straightforward to compute from the
available data. Taking advantage of these simplifications, the menu of optional two–part
tariffs is given by:

p̃(θ1) =
1

α(θ1 + µ2)r1(θ1)
, (19a)

Ã(θ1) =
exp[−{(θ1 + µ2)r1(θ1)}−1]

α

(θ1 + µ2)−
θ1∫
θ1

exp[−{(z + µ2)r1(z)}−1]dz

 . (19b)

There are however some difficulties because since the shock is defined as the difference
between the actual and expected telephone usage, its empirical support is dependent
on the magnitude of the expectation. Since only active customers are included in the
sample, a consumer that expects to make 15 weekly calls cannot suffer a negative demand
shock higher than 15 because otherwise her actual consumption would be negative, which
makes no sense. Nevertheless, simulations can handle all these issues by imposing that the
random draws fulfill this non–negativity condition, which appears to bind only for a small
percentage of the sample.

The expressions for the optional nonlinear options are further complicated by the
existence of θ∗2(θ1) in the solutions that characterize the optimal nonlinear tariff options.
Fortunately, it is straightforward to show that for the utility function (59), condition (31)
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only requires that θ∗2(θ1) = µ2 for all possible ex–ante types θ1. The optimal departure
from the “boundary two–part tariff” is:

∆ ˜̃p(θ) =
F2(µ2)− F2(θ2)
α(θ1 + θ2)f2(θ2)

, (20a)

∆ ˜̃A(θ) =
exp

[
−{(θ1 + µ2)r1(θ1)}−1

]
α

{
(θ1 + θ2)

(
exp

[
F2(µ2)− F2(θ2)
(θ1 + θ2)f2(θ2)

]
− 1
)

−
θ2∫
µ2

(
exp

[
F2(µ2)− F2(z)
(θ1 + z)f2(z)

]
− 1
)
dz

}
, (20b)

which together with (19a)− (19b) defines the menu of nonlinear options { ˜̃A(θ), ˜̃p(θ)}.
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Appendix 2

• Description of Variables

The data set includes the following variables. Most of them are dummies that take value
equal to 1 for the indicated case:

CALLS Monthly average of weekly number of actual calls.
EXPCALLS Expected number of weekly calls.

BIAS Calls – Expcalls.
AGE1 The head of the household is between 15 and 34 years old.
AGE2 The head of the household is between 35 and 54 years old.
AGE3 The head of the household is at least 54 years old.

BENEFITS The household receives some benefits such as Food Stamps, Social Security,
Federal Rent Assistance, Aid to Families with Dependent Children,...

BLACK The head of the household belongs to the black ethnic group.
CHURCH Some member of the household uses the telephone for charity or church work.

COLLEGE The head of the household is at least a college graduate.
HHSIZE Number of people who regularly live in the household.

INCOME Estimated total monthly income of the household.
DINCOME The household did not report its annual income. Recoded at $19,851.
MARRIED The head of the household is married.

MEASURED The household is on local measured service in one particular month.
MOVED The household moved at least once in the last five years.

ONLYMALE The head of the household is single and male.
RETIRED The head of the household is retired.

TEENS Number of teenagers (between 13 and 19 years old) living in the household.
MARCH Observation for the month of March 1986.

APRIL Observation for the month of April 1986.
MAY Observation for the month of May 1986.

OCTOBER Observation for the month of October 1986.
NOVEMBER Observation for the month of November 1986.

DECEMBER Observation for the month of December 1986.

Appendix 3

• Test of Stochastic Dominance

In this Appendix I will follow the notation of Anderson (1996) to identify the elements of the
stochastic dominance test referred to the model of this paper. The partitions of the range
of phone are somewhat arbitrary and have been chosen to define fractiles that are more or
less homogeneous in size. The definition of k fractiles is complicated by the existence of
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“focal points” in the distribution of expected phone calls, which is evident from Figures
1.1 and 1.2. These category thresholds define the interval length dj , and each distribution
determines the number of cases x(θ), x(θ1) within each category. Given that the number of
observations (5,241 in Bowling Green and 4,349 in Louisville) is the same for the actual and
expected number of calls (n(θ) = n(θ1) = n), it is straightforward to obtain the probability
of any number of calls falling in a given category under each distribution, φ(θ) = x(θ)/n(θ),
φ(θ1) = x(θ1)/n(θ1). The test makes use of p? = (x(θ) + x(θ1))/(n(θ) + n(θ1)), the
probability of the joint sample of actual and expected calls, to build the covariance matrix
and test the significance of the differences referred to (52) and (53). It is useful to define
two matrices to state the FOSD and SOSD hypotheses:

If =


1 0 0 · · 0
1 1 0 · · 0
1 1 1 · · 0
· · · · · 0
· · · · · 0
1 1 1 · · 1

 ; IF =
1
2


d1 0 0 · · 0

d1 + d2 d2 0 · · 0
d1 + d2 d2 + d3 d3 · · 0
· · · · · 0
· · · · · 0

d1 + d2 d2 + d3 d3 + d4 · · dk

 . (A.21)

Thus, the FOSD hypotheses can be written as:

H0 : If (φ(θ)− φ(θ1)) = 0 vs. H1 : If (φ(θ)− φ(θ1)) ≤ 0, (A.22)

and the SOSD hypotheses as:

H0 : IF If (φ(θ)− φ(θ1)) = 0 vs. H1 : IF If (φ(θ)− φ(θ1)) ≤ 0. (A.23)

Given the covariance matrix:

Ω
n

=


φ?1(1− φ?1) −φ?1φ?2 · · · −φ?1φ?k
−φ?2φ?1 φ?2(1− φ?2) · · · −φ?2φ?k
· · · · · ·
· · · · · ·

−φ?kφ?1 −φ?kφ?2 · · · φ?k(1− φ?k)

 , (A.24)

and m = n−1(n(θ) + n(θ1))/n(θ)n(θ1), the vector of frequency differences, φ(θ)− φ(θ1) is
normally distributed as N(0,mΩ). Therefore, for the FOSD hypothesis If (φ(θ) − φ(θ1))
is normally distributed as N(0,mIfΩI ′f ); and for the SOSD case, IF If (φ(θ) − φ(θ1)) is
normally distributed as N(0,mIF IfΩI ′fI

′
F ). Tables 3 and 4 present the division of each ele-

ment, If (φ(θ)−φ(θ1)) and IF If (φ(θ)−φ(θ1)) by its appropriate standard deviation. Since
we need to compare multiple differences simultaneously, the critical values for these ratios
are given by the studentized maximum modulus distribution [Stoline and Ury (1979)].
If any of these ratios is significantly positive for any given fractile, the corresponding
hypothesis of stochastic dominance should be rejected.
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Appendix 4

Table 1. Descriptive Statistics

Bowling Green Louisville TEST

CALLS, θ 32.0489 36.6112 -6.63
(26.902) (38.197)

EXPCALLS, θ1 31.4137 25.9329 8.02
(36.123) (30.827)

BIAS, θ2 0.6352 10.6783 -12.64
(37.179) (39.966)

log(INCOME) 7.3097 7.0847 13.55
(0.798) (0.819)

HHSIZE 2.7960 2.5381 9.02
(1.266) (1.493)

TEENS 0.3711 0.2309 10.31
(0.713) (0.619)

DINCOME 0.1328 0.1603 -3.78
(0.339) (0.370)

AGE1 0.0614 0.0625 -0.22
(0.240) (0.242)

AGE2 0.2524 0.2644 -1.34
(0.434) (0.441)

AGE3 0.6861 0.6730 1.37
(0.464) (0.469)

COLLEGE 0.2803 0.2244 6.31
(0.449) (0.417)

MARRIED 0.6926 0.5059 18.85
(0.462) (0.500)

RETIRED 0.1525 0.2550 -12.40
(0.360) (0.436)

BLACK 0.0622 0.1168 -9.25
(0.242) (0.321)

CHURCH 0.2082 0.1692 4.88
(0.406) (0.375)

BENEFITS 0.2063 0.3152 -12.11
(0.405) (0.465)

MOVED 0.4820 0.4074 7.34
(0.500) (0.491)

ONLYMALE 0.0452 0.1053 -10.99
(0.208) (0.307)

MARCH 0.3288 0.3325 -0.38
(0.470) (0.471)

APRIL 0.3318 0.3318 0.00
(0.471) (0.471)

MAY 0.3394 0.3357 0.38
(0.474) (0.472)

Observations 5241 4349

Mean and standard deviations (between parentheses) of demo-
graphics for the spring sample. The “TEST” column shows
the test of differences of means for each variable in these two
cities.
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Table 2. Consumption Expectation Bias

Bowling Green Louisville

Obs. PAT Avg.Bias Std.Dev. Strata Avg.Bias Std.Dev. PAT Obs.

5241 2652.59 0.6352 ( 37.179 ) ALL 10.6783 ( 39.966 ) 2353.89 4249

1723 879.39 0.9765 ( 37.076 ) MARCH 11.6001 ( 43.581 ) 758.78 1446
1739 903.94 0.6571 ( 37.014 ) APRIL 10.5580 ( 39.119 ) 791.41 1443
1779 879.94 0.2834 ( 37.457 ) MAY 9.8842 ( 36.946 ) 819.24 1460

1967 1029.82 2.9062 ( 39.662 ) LOW INCOME 15.9668 ( 50.592 ) 917.78 1645
3274 1662.00 -0.7291 ( 35.541 ) HIGH INCOME 7.4610 ( 31.388 ) 1484.04 2704

714 293.15 0.0920 ( 18.198 ) HHSIZE=1 6.2131 ( 34.470 ) 597.57 1095
1774 1016.19 -1.1249 ( 30.470 ) HHSIZE=2 6.4538 ( 27.637 ) 874.67 1502
1290 704.12 2.9518 ( 33.353 ) HHSIZE=3 13.8281 ( 38.995 ) 426.18 776
980 562.48 -0.0021 ( 47.312 ) HHSIZE=4 14.3265 ( 43.909 ) 336.77 582
483 281.00 3.0087 ( 59.734 ) HHSIZE ≥ 5 27.6001 ( 71.748 ) 277.91 394

3798 1941.58 -0.3655 ( 29.838 ) TEENS=0 7.5578 ( 35.786 ) 2060.40 3653
1029 611.62 0.9405 ( 54.873 ) TEENS=1 23.4185 ( 47.131 ) 252.33 460
414 225.09 9.0571 ( 42.156 ) TEENS ≥ 2 34.1479 ( 65.503 ) 164.79 236

322 217.03 -4.7589 ( 26.910 ) AGE1=1 8.4026 ( 32.578 ) 205.51 272
1323 869.76 -2.7377 ( 42.171 ) AGE2=1 9.0469 ( 38.949 ) 723.88 1150
3596 1677.65 2.3592 ( 35.866 ) AGE3=1 11.5307 ( 40.955 ) 1514.95 2927

1469 828.09 -3.4543 ( 37.277 ) COLLEGE=1 4.6580 ( 28.899 ) 524.11 976
3772 1878.68 2.2279 ( 37.024 ) COLLEGE=0 12.4203 ( 42.480 ) 1908.92 3373

3630 1851.96 0.5463 ( 36.427 ) MARRIED=1 10.6344 ( 32.603 ) 1243.15 2200
1611 835.40 0.8355 ( 38.830 ) MARRIED=0 10.7232 ( 46.315 ) 1166.71 2149

799 338.42 1.3146 ( 28.672 ) RETIRED=1 9.6512 ( 35.496 ) 561.92 1109
4442 2361.63 0.5130 ( 38.512 ) RETIRED=0 11.0299 ( 41.384 ) 1844.82 3240

326 237.93 11.6811 ( 71.411 ) BLACK=1 29.3614 ( 66.110 ) 454.15 508
4915 2488.20 -0.0974 ( 33.587 ) BLACK=0 8.2073 ( 34.340 ) 1957.76 3841

1091 600.92 -1.8867 ( 45.088 ) CHURCH=1 7.8696 ( 52.922 ) 329.06 736
4150 2107.23 1.2982 ( 34.779 ) CHURCH=0 11.2505 ( 36.754 ) 2056.26 3613

1081 493.97 2.2926 ( 35.188 ) BENEFITS=1 13.8292 ( 42.011 ) 726.25 1371
4160 2201.68 0.2046 ( 37.671 ) BENEFITS=0 9.2277 ( 38.910 ) 1661.81 2978

2526 1334.84 0.0820 ( 40.646 ) MOVED=1 10.7220 ( 39.305 ) 1100.09 1772
2715 1381.03 1.1500 ( 33.634 ) MOVED=0 10.6482 ( 40.422 ) 1303.97 2577

237 145.27 -3.5797 ( 23.912 ) ONLYMALE=1 4.6319 ( 27.237 ) 265.54 458
5004 2541.78 0.8349 ( 37.682 ) ONLYMALE=0 11.3900 ( 41.151 ) 2127.43 3891

“PAT” column reports Pearson analog goodness of fit test for equality of the distribution ”of

the expected and actual number of calls. This test is distributed as a χ2(19), with 0.05 and
0.01” critical values at 30.14 and 36.19 respectively. All statistics have p–values lower than
0.01.
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Table 5. Simulation Results

BOWLING GREEN

Tariff ε = −0.10 ε = −0.17 ε = −0.45 ε = −0.70

A 74.911 44.065 16.647 10.702
p 0.119 0.070 0.026 0.017

Ex–Post x 134.340 134.340 134.340 134.340
V 19.127 11.251 4.250 2.732
π 76.357 44.916 16.968 10.908
W 95.484 56.167 21.219 13.641

A 77.047 45.322 17.122 11.007
p 0.079 0.046 0.018 0.011

Op. TPT x 136.312 136.312 136.312 136.312
V 18.371 10.807 4.083 2.625
π 79.389 46.699 17.642 11.341
W 97.760 57.506 21.724 13.966

A 77.134 45.373 17.141 11.019
p 0.141 0.083 0.031 0.020

Op. NLT x 141.431 141.431 141.431 141.431
V 21.868 12.863 4.859 3.124
π 68.936 40.551 15.319 9.848
W 90.803 53.414 20.179 12.972

LOUISVILLE

Tariff ε = −0.10 ε = −0.17 ε = −0.45 ε = −0.70

A 100.530 59.135 22.340 14.361
p 0.195 0.115 0.043 0.028

Ex–Post x 174.076 174.076 174.076 174.076
V 21.323 12.543 4.739 3.046
π 103.002 60.590 22.889 14.715
W 124.326 73.133 27.628 17.761

A 108.266 63.686 24.059 15.467
p 0.119 0.070 0.026 0.017

Op. TPT x 179.017 179.017 179.017 179.017
V 17.046 10.027 3.788 2.435
π 110.498 64.999 24.555 15.785
W 127.543 75.026 28.343 18.221

A 115.539 67.964 25.675 16.506
p 0.119 0.070 0.026 0.017

Op. NLT x 179.017 179.017 179.017 179.017
V 9.773 5.749 2.172 1.396
π 114.385 67.286 25.419 16.341
W 124.158 73.034 27.591 17.737

Average value of 10,000 random draws from kernel estimates of the
corresponding probability density functions.
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Figure 1. Empirical Distributions
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Figure 2. Hazard Rate Dominance
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Figure 3. Bowling Green: Kernel Estimates
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Figure 4. Louisville: Kernel Estimates
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