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Abstract

Incomplete information, local interaction and random matching games
all share a common mathematical structure. A type or player interacts
with various subsets of the set of all types/players. A type/player's total
payo® is additive in the payo®s from these various interactions. This paper
describes a general class of interaction games and shows how each of these
three classes of games can be understood as special cases. Techniques and
results from the incomplete information literature are translated into this
more general framework. A companion paper, Morris [1997], uses these
techniques to derive new results concerning contagion in local interaction
games.
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1 Introduction

This paper introduces and analyses a class of interaction games. A ¯nite or
in¯nite population interacts strategically. But each player's payo® depends on
the population strategy pro¯le in a special way. Each player is involved in
a number of interactions, consisting of subsets of players. He must choose the
same action in each of his interactions. He receives a payo® from each interaction
that does not depend on the actions of players not in the interaction. Each
interaction has a weight. An equilibrium of an interaction game is a pro¯le of
possibly mixed strategies for each player such that each player maximizes the
weighted sum of his payo®s from each interaction.

Two restrictions allow an interaction game to have an incomplete infor-
mation interpretation: N-partite interaction requires that the players can be
partitioned into N groups, such that each interaction consists of exactly one
player from each group; bounded interactions requires that the weights on the
interactions add up to 1. Now consider the N player incomplete information
game where each of the N groups represent the set of types of one \big player".
Interactions then correspond to type pro¯les, or states, while the \weight" on
an interaction corresponds the probability of the type pro¯le. The de¯nition
of equilibrium for general interaction games corresponds to the standard de¯n-
ition of (Bayesian Nash) equilibrium of the incomplete information game. Any
incomplete information game can be interpreted as an interaction game in this
way.

To interpret an interaction game as a random matching game, drop the N -
partite interaction assumption but assume bounded interactions and two more
restrictions: player independent payo®s requires that any player's payo® from
an interaction depends only on his action and the actions of others in the group
(and not on the identity of the player or interaction); binary interaction requires
each positive weight interaction consists of exactly two players. Now interpret
an interaction as a match of two players and the weight of an interaction as
the probability of that match. Players must choose actions without knowing
which match is chosen. Again, the de¯nition of equilibrium for general inter-
action games corresponds to the standard de¯nition of equilibrium for random
matching games and any random matching game can be interpreted as an in-
teraction game in this way. Indeed, only the bounded interactions assumption
is necessary to interpret an interaction game as a random matching game. One
can easily have many player matches where payo®s depend on the identities of
all players in the match.

Finally, to interpret an interaction game as a deterministic local interaction
game, maintain the player independent payo®s and binary interaction assump-
tions but replace bounded interactions with the following: constant weights
requires that each interaction receives a weight of either 0 or 1. Now two play-
ers are \neighbours" if the interaction consisting of those two players has weight
1; they are not neighbours if that interaction has weight 0. Again, equilibrium
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notions coincide. Deterministic local interaction is the broadest interpretation
of interaction games since no restriction is necessary for the interpretation: one
can have an unbounded number of many player interactions where identities
matter and di®erent interactions have di®erent deterministic weights.

These equivalences are more than just a curiosity. By understanding the
common structure of interaction games, we understand each of these classes
of games better. For example, it transpires that what matters in the analysis
of incomplete information games is the additive separability of payo®s across
interactions; the fact that types of one player do not interact with other types
of the same player is irrelevant for most purposes.

Monderer and Samet [1989] introduced a set of techniques (\belief oper-
ators") for analysing higher order beliefs (players' beliefs about other players'
beliefs, etc...) in incomplete information games. This paper shows how to trans-
late the belief operator techniques, and results proved using them, to general
interaction games. In incomplete information games, higher order beliefs are
important exactly when players' types are highly correlated and belief operators
are most useful in such situations. The interaction game viewpoint makes clear
that this feature corresponds to highly local interaction and highly non-uniform
random matching. It is thus in these environments that the techniques described
are most useful.

The approach described here builds on Mailath, Samuelson and Shaked
[1995]. They show that the set of probability distributions over action pro¯les
generated by equilibria of random matching games equals the set of correlated
equilibria of the underlying game. This argument (summarized in section 3.3.1)
implicitly exploits the equivalence between incomplete information and local
interaction / random matching games. The purpose of this paper is to make
the equivalence explicit in a more general class of games, but also to develop a
uni¯ed approach to analysing interaction games. Most results are translations
of known results into this general setting. In a companion piece, Morris [1997],
these techniques are applied to give new characterizations of which features of
a local interaction system allow behaviour to spread contagiously. That paper
also contains a discussion of existing results in the local interaction literature
and their (sometimes close) connection to the approach described here.

I now provide a more detailed outline of the paper. In section 2, I describe
an \investment example" that has incomplete information, local interaction and
random matching interpretations. With the incomplete information interpreta-
tion, the example is close to the \electronic mail game" of Rubinstein [1989] that
is the canonical example illustrating how higher order beliefs can allow small
probability events to have high probability impacts in incomplete information
games. With the local interaction interpretation, the example is close to the
interaction on a line analysis of Ellison [1993] that is the canonical example of
how the behaviour of a small number of players can be bootstrapped to in°uence
the behaviour of all players in a local interaction system. This example goes a
long way to providing a feel for the equivalence.
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The general class of interaction games is described in section 3, together
with the restrictions necessary to support the various interpretations. Four ex-
amples in section 3.2 serve two purposes. They all clarify the role of the various
restrictions introduced. The latter two examples illustrate the usefulness of a
more general perspective on incomplete information results. I present a no trade
result generalizing the standard incomplete information result. I also present a
version of the convention game of Shin and Williamson [1996]. Suppose that
each player must choose an action in the interval [0; 1] and that each player has
an incentive to mimic others' behaviour and, more speci¯cally, choose an action
that is a weighted average of all the actions of all players he interacts with.
Then all players must choose the same action in any equilibrium if the interac-
tion system is connected (each player interacts directly or indirectly via some
chain with every other player). This is true even though such equilibria may be
strictly Pareto dominated. This negative result is sensitive to the continuum of
action assumption. But it is an important benchmark and is quite independent
of any structure (beyond connectedness) of the interaction system.

The uni¯ed approach is presented in section 4.1. The key tool is the follow-
ing. Fix a group of players Y . Let Bp (Y ) be the group of players x with the
property that proportion at least p of interactions including x involve players
who are entirely in the original group Y . A group Y is p-cohesive if this is
true for all members of Y , i.e., Y µ Bp (Y ). Cohesion is crucial for the analy-
sis of interaction games: if there exist p-cohesive groups for p close to 1, then
it is possible to determine the behaviour of players within those groups inde-
pendently of what players outside do. On the other hand, it is exactly when
p-cohesive groups fail to exist (for large p) that outcomes are highly sensitive to
small probability events (in the incomplete information interpretation) or small
sets of deviant players (in the random matching/local interaction interpreta-
tion). The largest p-cohesive group contained in any group Y can be found by

iteratively applying the operator Bp to group Y , i.e., Cp (Y ) =
T

k¸1

[Bp]k (Y )

contains every p-cohesive subset of Y .1

A few benchmark results employing p-cohesion are presented in section 4.2.
When can we characterize equilibrium behaviour of some group of players inde-
pendently of the behaviour of other players? An action a is said to be p-dominant
for x if it is best response whenever all other players in at least proportion p
of all interactions involving x choose a. If an interaction game includes a p-
cohesive group Y for whom action a is p-dominant, then it has an equilibrium
where a is played by everyone in Y . But when does there exist such a p-cohesive
group? Speci¯cally, which interaction systems have the property that all large
groups have p-cohesive sub-groups? A characterization is given using proportion
operators in section 4.2.3. This allows a characterization of which equilibria of
an N-player game are robust in interaction (Kajii and Morris [1995]). In fact,

1The close relation between proportion operators and belief operators is discussed in section
4.1.2.
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the general interaction approach developed in this paper allows an extension
of the Kajii and Morris results. Finally, in section 4.3, the relation between
equilibrium arguments and dynamic arguments is discussed.

2 Leading Example

2.1 Investment Game

Two players (ROW and COL) must choose whether to Invest (I) or Not Invest
(D). Each player faces a cost 2 of investing. Each player realizes a gross return
of 3 from the investment if both (1) the other player invests and (2) invest-
ment conditions are favorable for that player. Thus if investment conditions are
favorable for both players, then payo®s are given by the following symmetric
matrix:

Favorable for ROW
Favorable for COL

I D

I 1,1 -2,0
D 0,-2 0,0

This game has two strict Nash equilibria: both players invest and both
players don't invest. On the other hand, if conditions are unfavorable for ROW
(but favorable for player COL), payo®s are given by the following matrix:

Favorable for ROW
Unfavorable for COL

I D

I -2,1 -2,0
D 0,-2 0,0

In this game, ROW has a dominant strategy to not invest, and thus the
unique Nash equilibrium has both players not investing.

2.2 Incomplete Information

Now allow a small amount of incomplete information about investment condi-
tions. In particular, investment conditions are always favorable for COL, but
not for ROW . ROW knows when investment conditions are favorable for him,
but COL does not.

Speci¯cally, suppose that ROW observes a signal sR 2 f0; :::;K ¡ 1g which
is drawn from a uniform distribution. Assume that investment conditions are
favorable for ROW unless sR = 0. COL observes a noisy version of ROW 's
signal, sC 2 f0; :::;K ¡ 1g. In particular, assume that

sC =

½
sR, with probability 1=2
sR ¡ 1, with probability 1=2

;
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with mod K arithmetic, so that 0¡1 = K ¡1. Thus if sR = 0, sC is 0 or K ¡1
with equal likelihood.

The above constitutes a description of an incomplete information game. We
can summarize the game in the following diagram:

Type of
COL

Type of
ROW

0 1 2 K-1
0 £ ± ± ¢ £ U
1 £ £ ± ¢ ± F
2 ± £ £ ¢ ± F

¢ ¢ ¢ ¢ ¢ ¢
K-1 ± ± ± ¢ £ F

F F F ¢ F

Types of ROW are represented by rows, types of COL by columns. Boxes
with a £ correspond to type pro¯les which occur with positive probability; given
the uniform prior assumption, each occurs with ex ante probability 1

2K . Boxes
with a ± correspond to type pro¯les that occur with zero ex ante probability.
Payo®s are speci¯ed by the letter - F for favorable, U for unfavorable - at the
end of the row/column corresponding to the type.

The unique equilibrium of this incomplete information game has each in-
vestor never investing. To see why, observe ¯rst that type 0 of ROW will not
invest in any equilibrium. But type 0 of COL attaches probability 1=2 to ROW
being of type 0, and therefore not investing. But even if investment conditions
are favorable, the best response of a player who believes that his opponent will
invest with probability less than or equal to a half is not to invest. Thus type
0 of COL will not invest. But now consider type 1 of ROW . Although invest-
ment conditions are favorable, he attaches probability 1=2 to his opponent not
investing; so he will not invest. This argument iterates to ensure that no one
will invest.

This example is an elaboration of an example of Rubinstein [1989]; this
version follows the leading example of Morris, Rob and Shin [1995]. It illustrates
the fact that it is not enough either that investment conditions are favorable
for both players with high probability; nor that everyone know that everyone
know... up to an arbitrary number of levels... that investment conditions are
favorable for both players.

2.3 Local Interaction

Now suppose that there are 2K players situated on a circle (see ¯gure 1). Player
k interacts with his two neighbours, k¡1 and k+1. We use mod 2K arithmetic,
so that player 2K's neighbours are 2K ¡ 1 and 1. Conditions are favorable for
all players except the player at location 1. It is common knowledge for whom
investment conditions are favorable.
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Each player must decide whether to invest or not. His payo® is the sum of
his payo® from his two interactions with each of his two neighbours. A strategy
pro¯le speci¯es which players invest, and which do not. A strategy pro¯le is an
equilibrium strategy pro¯le if each player's action is a best response given the
behaviour of his two neighbours.

This local interaction game can be summarized by the following table:

2 4 6 2K
1 £ ± ± ¢ £ U
3 £ £ ± ¢ ± F
5 ± £ £ ¢ ± F

¢ ¢ ¢ ¢ ¢ ¢
2K-1 ± ± ± ¢ £ F

F F F ¢ F

A cross (£) marks a pair of players who interact with each other. Thus, for
example, player 3 interacts with players 2 and 4 and no other player.

The unique equilibrium of this game has all players never investing. The
argument is as for the incomplete information game. We know that the player
at location 1 will never invest. Consider the player at location 2. Since one
of his neighbours is not investing, his best response is not to invest. Similarly,
the player at location 3 does not invest, and the argument iterates to ensure
the result. This iterated deletion of dominated strategies argument is closely
related to the best response dynamics on a line argument of Ellison [1993] (the
relation is discussed in section 4.3).

The above table is constructed in such a way as to identify an exact re-
lationship between the incomplete information game and the local interaction
game. In particular, the odd numbered players in the local interaction game
play the role of ROW 's types in the incomplete information game, while the
even numbered players play the role of COL's types.

2.4 Random Matching

The local interaction game can be easily interpreted as an environment with non-
uniform random matching. Suppose in each period, two players are randomly
drawn out of a population of 2K to play the investment game. The two players
are not randomly chosen: players are labelled 1 through 2K and only players
with consecutive labels may be chosen. Players must decide on an action before
knowing who they are matched against. Investment conditions are favorable for
all players except player 1.
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3 Interaction Games

Fix a ¯nite or countably in¯nite population of players, X . A standard strate-
gic form game among these players is described by a set of actions for each
player, fAxgx2X , and payo® functions for each player, fvxgx2X , where each

vx : £
x2X

Ax ! < . Thus the game is described by 3-tuple
¡
X ; fAxgx2X ; fvxgx2X

¢
.

A (simple) mixed strategy for player x is a (¯nite support) probability distri-
bution ®x 2 ¢(Ax). A mixed strategy pro¯le is a vector ® ´ f®xgx2X . For
notational convenience, I want to work with a constant set of actions A (so that
Ax = A for all x 2 X ); we can always re-label actions so that the action set is
constant.

This paper is concerned with games with a special form of payo®s. Write I
for the collection of subsets of X with at least two elements; an element X 2 I
will be called an interaction. We write I (x) be the collection of such interactions
involving player x, i.e.,

I (x) = fX 2 I : x 2 Xg .

Let P : I ! <+, where for all x 2 X ,

0 <
X

X2I(x)

P (X) < 1. (1)

Write aX = (ax)x2X for a typical element of AX . Now for each x 2 X , let
ux (aX ;X) be the payo® that player x gets from interaction X 2 I(x) if players
in X choose according to aX . Assume that payo®s are bounded, i.e., for each
x 2 X , there exists M such that jux (aX ;X)j · M for all X 2 X and aX 2 AX .
This assumption ensures that total payo®s are well de¯ned:

vx (a) =
X

X2I(x)

P (X):ux (aX ;X) .

In this paper, we will be studying interaction games of the above form, described
by the 4-tuple

¡
X ; P;A; fuxgx2X

¢
. Payo® functions can be extended to mixed

strategies in the usual way; thus for any ® 2 [¢ (A)]X :

ux (®X ;X) =
X

aX2AX

0
@ Y

y2X

®y (ay)

1
Aux (aX ;X)

and vx (®) =
X

X2I(x)

P (X):ux (®X ;X) .

De¯nition 1 Strategy pro¯le ®¤ 2 [¢ (A)]X is a (Nash) equilibrium of
¡
X ; P;A; fuxgx2X

¢

if for all x 2 X and all ® 2 ¢(A):

vx

¡
®¤

x; ®¤
¡x

¢
¸ vx

¡
®;®¤

¡x

¢
.
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The degenerate interaction game with P (X) = 0 for all X 6= X can capture
any form of strategic interaction. But this formulation is of interest when X
is large and P (X) > 0 only for small X. I will outline a number of alterna-
tive interpretations of interaction games below, each of which relies on extra
restrictions on the game

¡
X ; P;A; fuxgx2X

¢
.

3.1 Interpretations

3.1.1 Incomplete Information

For an incomplete information interpretation, we require ¯rst that for some
N ¸ 2, only interactions with N members have positive weight:

P1 (N-ary Interaction): If P (X) > 0, then #X = N .

In the special case where N = 2, I refer to binary interaction. But we will
also require the stronger property that the players can be divided into N groups
such that each positive weight interaction involves exactly one player from each
of the groups.

P1* (N-partite Interaction): There exists a partition of X into N disjoint
subsets (X1; ::;XN) such that if P (X) > 0, X consists of exactly one
element of each of X1; ::;XN .

In the special case where N = 2, I refer to bipartite interaction. Note that
N -partite interaction (P1¤) implies N-ary interaction (P1).

Second, the sum of the interaction weights over the whole system is bounded.
Without loss of generality, we can assume the sum is equal to one.

P2 (Bounded Interactions):
P

X2I
P (X) = 1.

Now
¡
X ; A; P; fuxgx2X

¢
can be interpreted as an incomplete information

game, where there are N \big players", f1; :::; Ng, A is the action set of each
player n and Xn is the set of types of big player n; writing IN for the set of
interactions consisting of exactly N players, each element of IN corresponds to
a type pro¯le in X1 £ :: £ XN , i.e., the cross product of player types, or state
space; P is the probability distribution over type pro¯les. Note that payo®s
depend on the type pro¯le (state) X. Now a strategy pro¯le ® can be thought

of as a collection of mixed strategies for each big player, ® ´ f®ngN
n=1, where

each ®n ´ f®xgx2Xn
describes the behaviour of each type of big player n.

The de¯nition of Nash equilibrium for general interaction games given above
corresponds to an interim de¯nition of Bayesian Nash equilibrium. But this
is equivalent to the standard ex ante de¯nition.2 N -partite interaction (P1)

2Harsanyi [1967, page 177] described an interim interpretation of incomplete information
games (he attributes it to Selten) where each type is treated as a separate player.
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and bounded interactions (P2) are both necessary for the interpretation of the
interaction game as a standard game of incomplete information.3

3.1.2 Random Matching

If ba 2 AK is a K-vector of actions, write e¼ [ba] for the frequencies of actions in
that action pro¯le, i.e.,

e¼ [ba] (a) =
# fk 2 f1; ::;Kg : bak = ag

K

for each a 2 A. Now suppose that N players are matched together to play
a game. Each player cares only about the frequency of actions of his N ¡ 1
opponents (not who takes which action). Thus if a player chooses action a 2 A
and his N ¡1 opponents choose action pro¯le ba 2 AN¡1, his payo® is g (a; e¼ [ba]).
A function g : A £ ¢(A) ! < is a symmetric payo® function. For any N ¸ 2,
write g [N ] for the symmetric N-player game where the nth player's payo® from

action pro¯le famgN
m=1 is g

³
an; e¼

h
famgm6=n

i´
.

Write X=x for the group consisting of all members of X except x. Requiring
that each player's payo® from each interaction is given by some symmetric payo®
function gives us:

P3 (Symmetric Payo®s): For each x 2 X and X 2 I (x), there is a sym-
metric payo® function g such that ux (aX ;X) = g

¡
ax; e¼

£
aXnx

¤¢
for all

aX 2 AX .

Note that the symmetric payo®s assumption is empty for those X with
#X = 2. Requiring in addition that each player's payo® function does not
depend on which interaction he is involved in gives us:

P3*(Interaction Ind't Payo®s): For each x 2 X , there is a symmetric pay-
o® function g such that ux (aX ;X) = g

¡
ax; e¼

£
aXnx

¤¢
for all X 2 I (x)

and aX 2 AX .

Finally, requiring also that payo® functions do not depend on the identity
of the player gives us:

P3** (Player Ind't Payo®s): There is a symmetric payo® function g such
that ux (aX ;X) = g

¡
ax; e¼

£
aXnx

¤¢
for all x 2 X , X µ I (x) and aX 2 AX .

3Bounded interactions (P2) is necessary for a standard ex ante interpretation of incomplete
information games. But with an interim interpretation, no inconsistency arises if we allow for
improper priors (Hartigan [1983]) with in¯nite mass. Note that equation (1) is a maintained
restriction on P that implies that conditional probabilities are always well de¯ned.
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The most standard one population model of random matching assumes bi-
nary interaction (P1, with N = 2), bounded interactions (P2) and player ind't
payo®s (P3¤¤). Now X is a collection of players. Each (positive probability)
match consists of two players. Thus I is the set of possible matches and P is a
probability distributions over matches. Payo®s are independent of all features of
the match. An equilibrium has the following interpretation. Each player picks
a possibly mixed strategy. He does not know with whom he will interact. His
mixed strategy is a best response to the expected distribution over actions.

Only the bounded interactions assumption (P2) is necessary for this inter-
pretation. Matches may consist of more than two players. Payo®s may be
di®erent for each player and may depend on who they interact with.

3.1.3 Local Interaction

A standard model of local interaction considers a graph (X ;»), where X is
the set of players (or \locations") and » is an irre°exive symmetric relation;
player x is a \neighbour" of player y if x » y. Players must choose the same
action against each neighbour, all players have the same payo® function from
all interactions, and their total payo® is the sum of their payo®s from each
neighbour.

This model corresponds in this framework to assuming binary interaction
(P1, with N = 2), player ind't payo®s (P3¤¤) and

P4 (Constant Weights): P (X) 2 f0; cg for all X 2 I for some c > 0.

Now x and y are neighbours exactly if P (fx; yg) = c. An equilibrium has
the following interpretation. Each player picks a possibly mixed strategy. His
mixed strategy maximizes the sum of his payo®s from all interactions, given the
strategies of others.

The local interaction interpretation is the most general, in the sense that
no restriction is necessary for the interpretation. We can allow an unbounded
quantity of interactions involving many players with varying payo®s that depend
on the interactions and the opponents' identities. We can drop the constant
weights assumption. If P (X) > 0, we would say that the group X interacts and
P (X) measures the importance of that interaction.

3.2 Examples

Four examples will illustrate the general structure of interaction games. The in-
vestment example (section 3.2.1) and co-ordination on a lattice example (section
3.2.2) illustrate the various properties that we have introduced in the alterna-
tive interpretations. No trade (3.2.3) and convention (3.2.4) examples illustrate
how results that hold for incomplete information game generalize to interaction
games.
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3.2.1 Investment Game

The following is a formal description of the example of section 2. Let X =
f1; ::; 2Kg; A = fI;Dg;

P (X) =

½
1

2K , if X = fx; yg and either jx ¡ yj = 1 or fx; yg = f1; 2Kg
0, otherwise

;

u1 (aX ;X) =

½
¡2, if a1 = I
0, if a1 = D

and if x 6= 1, then

ux (aX ;X) =

8
<
:

1, if ay = I for all y 2 X
¡2, if ax = I and ay = D for some y 2 X
0, if ax = D

.

² This game satis¯es bipartite interaction (P1¤, with N = 2), bounded
interactions (P2), interaction ind't payo®s (P3¤), constant weights (P4),
but not player ind't payo®s (P3¤¤). To check for bipartite interaction, let
X1 = fx : x is oddg and X2 = fx : x is eveng.

² The argument given in section 2 showed unique equilibrium ®¤ has ®¤
x (D) =

1 for all x 2 X . This is also the unique strategy pro¯le satisfying iterated
deletion of strictly dominated strategies (we provide a formal de¯nition
for this in the next section).

3.2.2 Co-ordination on a Lattice

Versions of this example have been studied in the local interaction literature
(Blume [1995], Ellison [1994], Anderlini and Ianni [1996]). Suppose that the set
of players consists of all points on a two dimensional lattice, each player interacts
with his nearest neighbours and each player's payo®s from each interaction are
given by the symmetric matrix:

I D
I 1; 1 0; 0
D 0; 0 2; 2

This game may be formally represented at follows. Writing Z for the set of
integers, X = Z2; A = fI;Dg;

P (X) =

½
1, if X = fx; yg and jx1 ¡ y1j + jx2 ¡ y2j = 1
0, otherwise

ux (aX ;X) =

8
<
:

1, if ay = I for all y 2 X
2, if ay = D for all y 2 X
0, otherwise

.
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² This game satis¯es bipartite interaction (P1¤, with N = 2), player ind't
payo®s (P3¤¤), constant weights (P4), but not bounded interactions (P2).
To check for bipartite interaction, let X1 = fx : x1 + x2 is oddg and X2 =
fx : x1 + x2 is eveng.

² There are many equilibria (see Blume [1995] for a characterization). For
example, ®¤ is an equilibrium where ®¤

x (I) = 1 if x1 ¸ 0 and ®¤
x (D) = 1

if x1 < 0.

3.2.3 No Trade Theorem

The standard no trade theorem for incomplete information games states that if
there are no ex ante gains from trade, no trade will take place in any trading
game where players always have the option of not trading. As a number of
researchers have noted, this result remains true if there are no interim gains
from trade (a weaker assumption, and thus a stronger result). One special case
where there are no interim gains from trade is when (i) there are no ex post
gains from trade; (ii) players are risk neutral; and (iii) players share a common
prior. This result has a natural analogue in all interaction games.

Let X be ¯nite and A = fI;Dg. For each X 2 I, let fX : X ! < satisfyP
x2X

fX (x) · 0. Let

ux (aX ;X) =

½
fX (x) ¡ ", if ay = I for all y 2 X
0, if ay = D for some y 2 X

where " > 0. The interpretation is that player x must decide whether to par-
ticipate (I) or not (D). If he participates, he pays a transaction cost ". Each
interaction in which he participates is zero sum.

² This game satis¯es bounded interactions (P2) and symmetric payo®s (P3)
but for non-trivial functions fX will fail interaction ind't payo®s (P3¤). It
may or may not satisfy N -ary interaction (P1) or constant weights (P4).

Let ®¤ be any equilibrium and let ¯¤ (X) be the corresponding probability
that all players participate in interaction X, i.e., ¯¤ (X) =

Q
x2X

®¤
x (I). Now

player x's payo® is u¤
x =

P
X2I(x)

P (X)¯¤ (X) (fX (x) ¡ ") ¸ 0 (since he can

guarantee himself 0 by choosing D). So

0 ·
X

x2X
u¤

x

=
X

x2X

X

X2I(x)

P (X)¯¤ (X) (fX (x) ¡ ")

14



=
X

X2I

X

x2X

P (X)¯¤ (X) (fX (x) ¡ ")

· ¡"
X

X2I
#X:P (X) :¯¤ (X) .

Thus P (X) > 0 ) ¯¤ (X) = 0 ) ®¤
x (D) = 1 for some x 2 X. In other

words:

² In every positive probability interaction, at least one player chooses D.

In the incomplete information interpretation, the common prior assumption
plays a crucial role in this result (it ensures that the ex post zero sum property
implies no interim gains from trade). The analogous property in interaction
games (built into this formulation) is that each player uses the same interaction
weights.

3.2.4 Conventions

Shin and Williamson [1996] described and analysed (a more general version of)
the following game (with an incomplete information interpretation). Let X be
¯nite, A = [0; 1] and

ux (aX ;X) = eux

¡
aXnx;X

¢
¡ "

0
@ax ¡ 1

#X ¡ 1

X

y2Xnx

ay

1
A

2

for some " > 0. Thus player x's payo® from interaction X is additively sepa-
rable in two components. The ¯rst component, eux

¡
aXnx;X

¢
, does not depend

on player x's action. The second component is a quadratic loss function pro-
portional to the squared distance between player x's action and the weighted
average of the actions of others in the interaction.

² This game satis¯es bounded interactions (P2); it may or may not satisfy
N-ary interaction (P1), symmetric payo®s (P3) and constant weights
(P4).

Each player's best response is always to choose an action that is a weighted
average of actions chosen by the other players in the interactions he is a member
of. Thus this is a convention game where each player wants to mimic those he
interacts with. Thus for any Ã 2 [0; 1], there is an equilibrium where ®x (Ã) = 1
for all x 2 X . More surprisingly, if every player is linked, directly or indirectly,
to every other player, all equilibria take this form. More precisely, this is true
if the following property is satis¯ed.

P5 (Connectedness): For all x; y 2 X , there exists a sequence of interactions
X1; :::;XK such that x 2 X1; y 2 XK ; P (Xk) > 0 for all k = 1; ::;K; and
Xk \ Xk+1 6= ; for all k = 1; ::;K ¡ 1.
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The argument is straightforward. Let Ã be largest action played with pos-
itive probability by any player (say it is player x). Since each player's action
is a strictly convex combination of the actions played by all players he inter-
acts with, we have ®y

¡
Ã

¢
= 1 for all y 2 S

fX2Ifxg:P (X)>0g
X. Iterating this

argument, connectedness ensures that ®y

¡
Ã

¢
= 1 for all y 2 X .

It might be highly ine±cient to have all players choose a constant action,
i.e., if " is very small and eux depends non-trivially on aXnx.4

3.3 Related Literature and Further Solution Concepts

3.3.1 Role Dependent Payo®s, Player Independent Payo®s and Cor-
related Equilibria

N -partite interaction (P1¤) was the de¯ning characteristic of an incomplete
information game. But it also has a natural interpretation under a local in-
teraction / random matching interpretation: each player has a role and each
interaction consists of exactly one player in each of N roles. Under this inter-
pretation, it is natural to consider settings where a player's payo® depends on
his role, but nothing else. This restriction can be described formally as follows.
Write IN for the set of interactions with #X = N , and IN (x) ´ I (x) \ IN .

Any X 2 IN can be written as X = fº (n;X)gN
n=1, where º (n;X) is the unique

(by N -partite interaction) element of X \ Xn. An N -player game (not nec-

essarily symmetric) is parameterized by payo® functions fgngN
n=1, with each

gn : AN ! <.

P3a (Role Dependent Payo®s): There is an N -player game fgngN
n=1, such

that ux (aX ;X) = gn

³¡
aº(m;X)

¢N

m=1

´
for all x 2 Xn, X 2 IN (x) and

aX 2 AX .5

Mailath, Samuelson and Shaked [1995] studied interaction games (with a ran-
dom matching interpretation) satisfying N -partite interaction (P1), bounded in-
teractions (P2) and role dependent payo®s (P3a). They showed the following.
Let ¹ 2 ¢

¡
AN

¢
be the probability distribution over action pro¯les generated

by some equilibrium ® of an interaction game, i.e.,

¹ (ba) =
X

X2I
P (X)

Ã
NY

n=1

®º(n;X)

¡
baº(n;X)

¢
!

.

This probability distribution ¹ is a correlated equilibrium of the N -player game
parameterized by fgngN

n=1. Under the incomplete information interpretation,

4Morris [1997] contains positive results on the co-existence of conventions with discrete
actions. See also Sugden [1995] and Young [1996].

5Player ind't payo®s (P3¤¤) implies role dependent payo®s (P3a), but role dependent
payo®s need not imply even symmetric payo®s (P3).
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the role dependent payo®s assumption (P3a) is equivalent to assuming that each
big player's payo®s are independent of his type. Thus the above result is equiv-
alent to Aumann's [1987] classic characterization of correlated equilibrium.6

A related result holds in the case where N -partite interaction (P1¤) is weak-
ened to N -ary interaction (P1), although in this case it is necessary to have
player ind't payo®s (P3¤¤) (see Mailath, Samuelson and Shaked [1995] and
Ianni [1996]). Since player ind't payo®s is satis¯ed, assume that payo®s of all
players are given by symmetric payo® function g. For some equilibrium ® of an
interaction game, we can calculate the probability distribution over unordered
pro¯les of actions. We can then construct a probability distribution ¹ 2 ¢

¡
AN

¢

over ordered action pro¯les by assuming that any ordering is equally likely. This
probability distribution is a symmetric correlated equilibrium of the symmetric
N -player game g [N ]. The formal construction is

¹ (ba) =
1

# fba0 2 AN : e¼ (ba0) = e¼ (ba)g
X

X2I

X

faX :e¼(aX)=e¼(ba)g
P (X)

Ã Y

x2X

®x (ax)

!

(note that e¼ (ba0) = e¼ (ba) exactly if ba0 and ba represent the same collection of
actions - possibly in a di®erent order).

3.3.2 Iterated Deletion of Strictly Dominated Strategies

The natural de¯nitions of equilibrium in incomplete information games, ran-
dom matching games and local interaction games all correspond to the natural
de¯nition of equilibrium in the general interaction games. However, other solu-
tion concepts do not translate quite as straightfowardly. Consider the following
de¯nition of iterated deletion of strictly dominated strategies for interaction
games.

De¯nition 2 De¯ne
©
Uk

x

ª
x2X , each Uk

x µ A, iteratively as follows: U0
x = A;

Ak =
n
® 2 [¢ (A)]X : ®x (a) = 0 if a =2 Uk

x

o
;

Uk+1
x =

©
a 2 Uk

x : vx (a; ®¡x) ¸ vx (a0; ®¡x) for all a0 2 Ax, for some ® 2 Ak
ª

.

Action a survives iterated deletion of strictly dominated strategies for player x
if a 2 U1

x ´ T
k¸1

Uk
x .

This de¯nition corresponds to iterated deletion of strictly interim dominated
strategies in an incomplete information game [Fudenberg and Tirole 1991, p.
226].

6The common prior assumption was necessary for Aumann's [1987] characterization. Drop-
ping the common prior assumption, his assumptions imply only that each player x (with
x 2 Xn) chooses an action that survives iterated deletion of strictly dominated strategies (for
player n in the N-player game fgngNn=1). The same conclusion would follow if we relaxed the
assumption (in interaction games) that players use the same weights in calculating payo®s.

17



4 A Uni¯ed Analysis of Interaction Games

Some tools for analyzing interaction systems (X ; P ) are introduced in section
4.1; these tools are applied to characterizing equilibrium behaviour and dynam-
ics in interaction games in sections 4.2 and 4.3 respectively.

4.1 The Structure of Interaction

4.1.1 Proportion Operators

Let Y µ X be a group of players. We are interested in the set of players who
have most of their interactions within group Y . For any p 2 (0; 1], let Bp (Y )
be the set of players for whom proportion at least p of their interactions involve
exclusively players within group Y , i.e.,

Bp (Y ) ´

8
><
>:

x 2 X :

P
fX2I(x):XµY g

P (X)

P
X2I(x)

P (X)
¸ p

9
>=
>;

.

Observe that Bp (Y ) µ Y for all Y µ X . Group Y is p-cohesive if each member
of Y has proportion p of his interactions within Y , i.e., Y µ Bp (Y ). Iterating
the operator, we have:

Cp (Y ) = \
k¸1

[Bp]k (Y ) :

Thus Cp (Y ) is the collection of players for whom all the following statements
are true. At least proportion p of their interactions are within Y . At least
proportion p of their interactions involve players who have at least proportion
p of their interactions within Y . And so on.

It is straightforward to show that Bp satis¯es the following two properties:

if Y µ Y 0, then Bp (Y ) µ Bp (Y 0) ; (monotonicity)

if Yk+1 µ Yk for all k, then \
k¸1

Bp (Yk) µ Bp

µ
\

k¸1
Yk

¶
: (continuity)

The following result is a consequence of these two properties.

Proposition 1 For all groups Y : (1) Cp (Y ) is the largest p-cohesive group
contained in Y . (2) x 2 Cp (Y ) if and only if there exists a p-cohesive group Y 0

such that (i) x 2 Y 0 and (ii) Y 0 µ Y .

Proof. Cp (Y ) ´ \
k¸1

[Bp]k (Y ) µ \
k¸2

[Bp]k (Y ) µ Bp

µ
\

k¸1
[Bp]k (Y )

¶
=

Bp (Cp (Y )), by continuity, so Cp (Y ) is p-cohesive. Now for all Y 0 µ Y ,

[Bp]k (Y 0) µ [Bp]k (Y ) for all k ¸ 1, by iterated application of monotonicity;
thus Cp (Y 0) µ Cp (Y ). If in addition Y 0 in p-cohesive, then Y 0 = Cp (Y 0) µ
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Cp (Y ), proving (1). For the \only if" part of (2), set Y 0 = Cp (Y ). For the
\if" part of (2), we have x 2 Y 0 by (i), Y 0 = Cp (Y 0) by assumption that Y 0 is
p-cohesive and Cp (Y 0) µ Cp (Y ) by (ii) and part (1). So x 2 Y 0 = Cp (Y 0) µ
Cp (Y ). 2

4.1.2 Interpretation of Proportion Operators and Cohesion

Incomplete Information Assume N -partite interaction (P1¤) and bounded
interactions (P2). Thus under the incomplete information interpretation, Xn

is the set of types of big player n. For any X 2 IN , write º (n;X) for the
unique element of X \ Xn: º (n;X) is the type of big player n if the state (i.e.,
the interaction) is X. For arbitrary events E µ I, Monderer and Samet [1989]

de¯ned eBp
n (E) to be the set of states where player n believes event E with

probability at least p. Thus eBp
n : 2I ! 2I is de¯ned by

eBp
n (E) ´

8
><
>:

X 2 I :

P
fX02I(º(n;X)):X02Eg

P (X0)

P
X02I(º(n;X))

P (X0)

9
>=
>;

.

Now let eBp
¤ (E) be the set of states where all big players believe event E with

probability at least p, i.e., eBp
¤ (E) ´

NT
n=1

eBp
n (E). How is this belief operator

eBp
¤ related to the proportion operators de¯ned above? Under the incomplete

information interpretation, a group Y is a collection of types. We can associate
with each collection of types an event eE (Y ) ´ fX 2 I : X µ Y g. Now it is true
by de¯nition that

eE (Bp (Y )) = fX 2 I : X µ Bp (Y )g

=

8
><
>:

X 2 I :

P
fX02I(x):X0µY g

P (X0)

P
X02I(x)

P (X0)
¸ p for all x 2 X

9
>=
>;

=
N\

n=1

8
><
>:

X 2 I :

P
fX02I(º(n;X)):X0µY g

P (X0)

P
X02I(º(n;X))

P (X0)
¸ p

9
>=
>;

=
N\

n=1

8
>><
>>:

X 2 I :

P
©

X02I(º(n;X)):X02eE(Y )
ªP (X0)

P
X02I(º(n;X))

P (X0)
¸ p

9
>>=
>>;

=
N\

n=1

eBp
n

³
eE (Y )

´
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= eBp
¤

³
eE (Y )

´
.

Thus proportion operators can be thought of as belief operators restricted to
simple events that have the form eE (Y ) (for the game theory applications that
we will discuss in the next section, these are exactly the events we are interested
in). Proposition 1 is thus a simple corollary of proposition 3 of Monderer and

Samet [1989].7 In the language of Monderer and Samet [1989], an event eE (Y )

is \evident p-belief" if and only if the group Y is p-cohesive; and eE (Cp (Y )) is

the set of states where the event eE (Y ) is \common p-belief."

Local Interaction Under the local interaction interpretation, a group Y is
p-cohesive if at least proportion p of the interactions of each member involve
only members of that group. The local interaction interpretation of cohesion is
discussed extensively in a companion piece, Morris [1997]. That paper explores
a simple form of local interaction described by a graph (X ;»), where » is a
symmetric and irre°exive relation. Two players x and y are said to be neighbours
if x » y. This corresponds (in the language of this paper) to the case of
binary interaction (P1, with N = 2) and constant weights (P4), i.e., P (X) =½

1, if X = fx; yg and x » y
0, otherwise

. In this simple setting, it was natural to consider

an operator de¯ned by:

¦p (Y ) =

½
x 2 X :

# fy 2 Y : y » xg
# fy 2 X : y » xg ¸ p

¾
.

This operator is related to the proportion operator of this paper as follows:

Bp (Y ) =

8
><
>:

x 2 X :

P
ffx;yg2I(x):fx;ygµY g

P (fx; yg)
P

fx;yg2I(x)

P (fx; yg)
¸ p

9
>=
>;

=

( n
x 2 X : #fy2Y :y»xg

#fy2X :y»xg

o
, if x 2 Y

;, if x =2 Y

= Y \ ¦p (Y ) .

Random Matching Under the random matching interpretation, group Y is
p-cohesive if each member of Y attaches probability at least p to any interaction
he is in involving only members of group Y .

7In fact, the restriction to simple events simpli¯es the argument: eBp¤ is monotonic when
restricted to simple events, but not otherwise.
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4.1.3 The Size of p-Cohesive Groups

It will be useful to know something about the relation between the size of group
Y and the size of the group Cp (Y ). Write Y for the complement of Y in X .
Proposition 4.2 of Kajii and Morris [1995] can be modi¯ed to show:

Corollary 1 If N-ary interaction (P1) holds8 and p < 1
N , then for all Y µ X :

X
n

X2I:X\Cp(Y ) 6=;
oP (X) ·

µ
(N ¡ 1) p

1 ¡ Np

¶ X

fX2I:X\Y 6=;g
P (X).

Note that this result only has content if
P

fX2I:X\Y 6=;g
P (X) is ¯nite. The

right hand expression is a positive constant (that depends only on N and p)
times the sum of the weights of all interactions involving members of Y . The
left hand expression is the sum of the weights of all interactions that involve
players who are not in Cp

¡
Y

¢
.

To translate this into a restriction on the number of players, we require
some relationship between numbers of players and the sum of the weights of the
interactions that they are involved in. Thus we have:

P6 (Bounded Player Weights): There exists · > 0 and º ¸ 1 such that for
all x 2 X ,

· ·
X

X2I(x)

P (X) · ·º.

Note that under this restriction X is ¯nite if and only if bounded interactions
(P2) holds. Now we have:

Lemma 1 If N-ary interaction (P1) and bounded player weights (P7) hold,
and p < 1

N , then for all ¯nite Y µ X :

#Cp
¡
Y

¢
·

µ
1 ¡ p
1
N ¡ p

¶
º#Y .

So under the premises of the lemma, if Y contains most players, Cp (Y ) must
contain most players.
Proof. By P6,

P
X2I(x)

P (X) · ·º for all x 2 Y ; thus

X

fX2I:X\Y 6=;g
P (X) ·

X

x2Y

X

X2I(x)

P (X) · ·º#Y . (2)

8N-ary interaction could be weakened to the assumption that all interactions involve at
most N players, i.e., P (X) > 0) #X · N .
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By P6,
P

X2I(x)

P (X) ¸ · for all x 2 Cp
¡
Y

¢
; thus

N

0
BBB@

X
n

X2I:X\Cp(Y )6=;
oP (X)

1
CCCA =

X

x2X

0
BBB@

X
n

X2I(x): X\Cp(Y )6=;
oP (X)

1
CCCA

¸
X

x2Cp(Y )

X

X2I(x)

P (X)

¸ ·#Cp
¡
Y

¢
. (3)

Now equation (3), corollary 1 and equation (2) imply the result. 2

4.2 Equilibrium

This section reports versions of (incomplete information) results in Morris, Rob
and Shin [1995] and Kajii and Morris [1995] applied to general interaction games.
Most proofs are omitted, as the arguments are essentially unchanged.

4.2.1 Existence

Througout this section, the following pair of assumptions su±cient for equilib-
rium existence are assumed.9

P7 (Finite Action Set): A is a ¯nite set.

P8 (Finite Interactions): P (X) > 0 ) X is ¯nite.

Remark 1 If interaction game
¡
X ; P;A; fuxgx2X

¢
satis¯es P7 and P8, then

there exists an equilibrium.

I also assume interaction ind't payo®s (P3¤) throughout this section. This
assumption is inessential: slightly more complicated results could be proved
without it. Under assumption (P3¤), we can write ux (a; ¼) for player x's payo®
from any interaction in which he chooses action a, his opponents choose aXnx

and ¼ = b¼
¡
aXnx

¢
.

9Existence fails in the following example satisfyingP7 but notP8. Let X = Z; A = fI;Dg;
P (X ) = 1 and P (X) = 0 for all X 6= X ; and

ux (aX ;X ) =

(
1, if ax = I and ay = D for all y > x
¡1, if ax = I and ay = I for some y > x
0, if ax = D

.
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4.2.2 The Basic Lemma

The ¯rst question we want to address is: when is it possible to characterize equi-
librium behaviour for some group of players independently of what other players
do? We provide one set of su±cient conditions, combining the cohesion prop-
erties of the interaction system with the following property of payo®s, adapted
from Morris, Rob and Shin [1995]. Write ¼a for the probability distribution

putting probability 1 on action a, i.e., ¼a (a0) =

½
1, if a0 = a
0, otherwise

.

De¯nition 3 Action a is p-dominant for x if, for all a0 2 A and ¼ 2 ¢(A),

pux (a; ¼a) + (1 ¡ p)ux (a; ¼) ¸ pux (a0; ¼a) + (1 ¡ p)ux (a0; ¼) :

Thus action a is p-dominant if it a best response whenever proportion p of
interactions involve all other players choosing a also. If a is 1-dominant at x,
then everyone playing a is a symmetric Nash equilibrium of ux [N ], the N-player
game where each player's payo®s are given by ux. If a is 0-dominant, then action
a is a (weakly) dominant action.

Fix an interaction game and write ª (a; p) for the set of players for whom
action a is p-dominant.

Lemma 2 Consider a disjoint collection of groups fY1; :::; YKg with Yk µ ª(ak; pk)
and Yk pk-cohesive for each k = 1; ::;K; there is an equilibrium ® of the inter-
action game with ®x (ak) = 1 for all x 2 Yk, k = 1; ::;K.

Proof. Consider the modi¯ed interaction game where all players in Yk are
required to play action ak with probability one. Let ® be an equilibrium of the
modi¯ed game (an equilibrium exists by remark 1). I will show that ® is an
equilibrium of the original game. By construction, ®x is a best response at all

x =2
KS

k=1

Yk. But if x 2 Yk, then, since Yk is pk-cohesive, proportion at least pk

of x's neighbours are in Yk. Thus proportion at least pk are playing ak. Since
x 2 Yk µ ª(ak; pk), ak is a best response. 2

This result is an extension (to interaction games) of lemma 5.2 of Kajii
and Morris [1995] which in turn builds on theorem B of Monderer and Samet
[1989]. By proposition 1, the largest p-cohesive group contained in ª(a; p) is
Cp (ª (a; p)). Thus the following proposition follows from lemma 2.

Proposition 2 Interaction game
¡
X ; P;A; fuxgx2X

¢
has an equilibrium ® with

®x (a) = 1 for all x 2 Cp (ª (a; p)).

The following example (which is a generalization of the investment game of
section 2) illustrates the sense in which this result is tight.
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Unanimity Game: Consider interaction games
¡
X ; P;A; fuxgx2X

¢
of the fol-

lowing form. Let A = fI;Dg; let X be partitioned into two sets F (favor-
able) and U (unfavorable); let

ux (a; ¼) =

8
<
:

q
1¡q , if a = I, ¼ = ¼a and x 2 F

¡1, if a = I and either x 2 Uor ¼ 6= ¼a

0, if a = D

for some q 2 (0; 1).10

Action I is (1 ¡ q)-dominant at all x 2 F . Thus by proposition 2, there
exists an equilibrium where all players in C1¡q (F ) choose action I. But we
can also show that action D is the only action that survives iterative deletion of
strictly dominated strategies for all players not in C1¡q (F ). To see why, observe
that U1

x = fDg for all x 2 U . Now if x 2 B1¡q (F ), x has more than proportion
q of his interactions not contained in F . Thus his payo® to action I is strictly

less than (1 ¡ q)
³

q
1¡q

´
+ q (¡1) = 0. Thus U2

x = fDg for all x 2 B1¡q (F );

iterating this argument shows that Uk+1
x = fDg for all x 2 [B1¡q]k (F ) and so

U1
x = fDg for all x 2 C1¡q (F ).11

4.2.3 Contagion Threshold

Suppose that action a is p-dominant for almost all players. Is this enough to
ensure that action a is played in some equilibrium? The investment game of
section 2 suggests not. The action I was 2

3 -dominant at almost every location
(for large K) but nonetheless was never played. The problem was that although
ª(a; p) contained almost all players, C2=3 (ª (a; p)) was empty. In order to
exploit proposition 2, it is necessary to ¯nd conditions when ª(a; p) large implies
that Cp (ª (a; p)) is large.

Because I want to make statements concerning \almost all" players, it is
convenient to work with interaction games where there is an in¯nite mass of in-
teractions. Thus in the remainder of this sub-section, it is assumed that bounded
interactions (P2) is not satis¯ed but bounded player weights (P6) is satis¯ed
(assumptions P3¤, P7 and P8 are maintained). Analogous results hold when
P2 is satis¯ed (and without P6); but more complicated \", ±" characterizations
of large and small groups are required.

Fix an interaction system (X ; P ). A group is co-¯nite if it contains all but a
¯nite number of players. A property is said to be true for \almost all" players
if it is true for any co-¯nite group of players. De¯ne a contagion threshold for
an interaction system as follows:

10This game satis¯es interaction ind't payo®s (P3¤) but - for non-trivial F - not player ind't
payo®s (P3¤¤). It may or may not satisfy N-partite interaction (P1¤), bounded interactions
(P2) or constant weights (P4).
11This argument is a many person version of the infection argument of Morris, Rob and

Shin [1995].
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» = inf

½
p 2 [0; 1] :

every co-¯nite group Y contains an
in¯nite (1 ¡ p) -cohesive subgroup

¾
.

Lemma 3 Suppose (X ; P ) has contagion threshold »; then every interaction
game

¡
X ; P;A; fuxgx2X

¢
where a is (1 ¡ »)-dominant for almost all players has

an equilibrium where an in¯nite number of players choose a.

This follows immediately from the de¯nition of » and proposition 2. Con-
versely, for any q < », we can construct a unanimity game where the interaction
system (X ; P ) has contagion threshold » and F is co-¯nite, but action D is
the only action surviving iterated deletion of strictly dominated strategies for
almost all players.

Morris [1997] provides a number of alternative characterizations of this con-
tagion threshold and shows how to calculate it for geometric binary interaction
systems. For example, if players are distributed on an in¯nite m-dimensional
lattice and have weight 1 on all their nearest neighbours (and weight 0 on all
others), the contagion threshold is 1

2m . If players are distributed on an in¯nite
m-dimensional lattice and interact with all players within Euclidean distance r,
the contagion threshold is close to 1

2 for large r (independent of m).12

4.2.4 Robust Equilibria

We can provide a bound on the contagion threshold that depends on the size
of positive weight interactions. By lemma 1, we have that if N -ary interaction

(P1) holds and p < 1
N , #Cp

¡
Y

¢
·

³
1¡p
1
N ¡p

´
º#Y for all ¯nite Y . It follows that

Cp (Y ) ·
³

1¡p
1
N ¡p

´
º#Y for all co-¯nite Y , so Cp (Y ) is co-¯nite if Y is co-¯nite.

So 1 ¡ p < 1
N (i.e., p > N¡1

N ) implies that every co-¯nite group contains a
co-¯nite (1 ¡ p)-cohesive subgroup. Thus:

Lemma 4 If bounded interactions (P2) does not hold but bounded player weights
(P6) and N-ary interaction (P1) hold, then the contagion threshold » · N¡1

N .

This bound is tight: there exist interaction systems satisfying the two premises
with contagion threshold N¡1

N :

Example 1 Let X = f1; :::; Ng £ Z+. Let

P (X) =

8
<
:

1, if
X = (n; k) ; (m;k + 1)m2f1;::;Ngnn

for some n = 1; ::; N and k = 0; 1:::
0, otherwise

.

12The latter result is closely related to the incomplete information analysis of Carlsson and
van Damme [1993]. Indeed, the proof appeals to essentially the same geometric argument
used by Carlsson and van Damme [1993] in their appendix on multi-dimensional signals (see
appendix A of Morris [1997] and the related argument of Blume [1995]).
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See ¯gure 2 for the case where N = 3.

Let Y = X
/n

(n; 0)N
n=1

o
. Choose any q > 1

N . By induction, [Bq]k (Y ) =

X
/n

(n; j)n2f1;::;Ng;j·k

o
; thus Cq (Y ) = ; and for all p < N¡1

N , there exists a

co-¯nite group Y such that C1¡p (Y ) is empty. Thus » ¸ N¡1
N .

This implies that we can prove results about the equilibria of interaction
games that depend only on the size of interactions. Fix a symmetric payo®
function g.

De¯nition 4 Action a is p-dominant in g if, for all a0 2 A and ¼ 2 ¢(A),

pg (a; ¼a) + (1 ¡ p) g (a; ¼) ¸ pg (a0; ¼a) + (1 ¡ p) g (a0; ¼) :

De¯nition 5 Action a is robust in g[N ] if every N-ary interaction game where
almost all players' payo®s are given by g has an equilibrium where a is played
by almost all players.

Lemma 5 If action a is 1
N -dominant in g, then a is robust in g[N ].

This is a special case of proposition 5.3 in Kajii and Morris [1995] (which had
an incomplete information interpretation). This result becomes weak for large
N , as requiring a to be 1

N -dominant is close to requiring that it be a dominant
strategy. But we can use the general structure of interaction games to provide
an easy extension that works for games with large N .

Consider any interaction game
¡
X ; P;A; fuxgx2X

¢
with

ux (aX ;X) =
X

y2Xnx

eux (fax; ayg ; fx; yg)

for all x 2 X , X 2 I (x) and aX 2 AX , so that payo®s are additively separable
in the actions of the di®erent opponents. Now consider instead the binary

interaction game
³
X ; eP;A; feuxgx2X

´
where eP (fx; yg) =

P
fX2I:fx;ygµXg

P (X).

This latter game is identical (in terms of best responses) to the former game.
But now let g be an additively separable symmetric payo® function, i.e.,

with g (a; ¼) =
P

a02A

¼ (a0) g (a; ¼a0), where g is a symmetric payo® function. By

the transformation described above, any N-ary interaction game where almost
all players' payo®s are given by g is equivalent to a binary interaction game
where almost all players' payo®s are given by g. Now if a is 1

2 -dominant in g, a
is robust in g[N ].13

13This argument can be extended to games without additively separable payo®s as fol-
lows: action a is robust in g[N ] (for all N ¸ 2) if for all a0 2 A and ¸ 2 ¢(¢(A)) with
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4.3 Dynamics

Much of the literature on local interaction and random matching is concerned
with dynamics. A companion paper, Morris [1997], uses the techniques de-
scribed in this paper to provide new results about best response dynamics in
local interaction systems represented by a simple graph (i.e., satisfying binary
interaction (P1, with N = 2) and constant weights (P4)). Here I simply want
to point out in this more general context the relation between best response
dynamics and the equilibrium arguments that I have been developing here.

Suppose that player ind't payo®s (P3¤¤) holds and that payo®s are given by
the symmetric payo® function of players in F in the unanimity game above,

gU (a; ¼) =

8
<
:

q
1¡q , if a = I and ¼ = ¼I

¡1, if a = I and ¼ 6= ¼I

0, if a = D
.

Consider the following deterministic dynamic process. At time 0, players in
Y0 invest (i.e., choose action I), while players in Y0 do not invest (i.e., choose
action D). At each time t+1, a player that did not invest in period t continues
to not invest. A player who did invest in period t invests in period t + 1 only
if it is a best response to the previous period strategies to do so, i.e., if all
other players invested in at least proportion p of his period t interactions. Thus

Yt = B1¡q (Yt¡1) and so Yt =
£
B1¡q

¤t
(Y0) and Yt # C1¡q (Y0) as t ! 1.14

P
¼2¢(A)

¸ (¼) ¼ (a) ¸ 1
2
:

X

¼2¢(A)

¸ (¼) g (a; ¼) ¸
X

¼2¢(A)

¸ (¼) g
¡
a0; ¼

¢

It is also possible to extend the Kajii and Morris [1995] results for asymmetric games. Say

that fa¤ngNn=1 is a robust equilibrium of N-player game fgngNn=1 if every N-partite interaction
game, where (for each n) almost every player in Xn has payo®s given by gn, has an equilib-
rium where fa¤ngNn=1 is played in almost all interactions. Say that fa¤ngNn=1 is a p-dominant
equilibrium of fgngNn=1 if for all n = 1; ::; N , an 2 A and a¡n 2 AN¡1,

pgn
¡
a¤n; a

¤
¡n

¢
+ (1¡ p) gn (a¤n; a¡n) ¸ pgn

¡
an; a

¤
¡n

¢
+ (1¡ p) gn (an; a¡n) .

KM showed that fa¤ngNn=1 is robust if fa¤ngNn=1 is 1
N
-dominant. But the argument in the

text can be adapted to show that fa¤ngNn=1 is also robust if for all n = 1; ::; N , an 2 A and

¸ 2 ¢
¡
AN¡1

¢
satisfying

P
a¡n2AN¡1

¸ (a¡n)# fm 6= n : am = a¤mg ¸ 1
2
,

X

a¡n2AN¡1

¸ (a¡n) gn (a¤n; a¡n) ¸
X

a¡n2AN¡1

¸ (a¡n) gn (an; a¡n) .

14Yt # Y if Yt+1 µ Yt for all t = 0; 1; ::: and Y =
T
t¸0

Yt.
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Thus the contagion threshold described above tells us exactly whether it is
possible for behaviour initially played almost everywhere to eventually be played
almost nowhere. Speci¯cally, there exists a co-¯nite group of players Y0 such
that action I is eventually played almost nowhere exactly if q < ».

This dynamic process was unidirectional best response dynamics: players
were only allowed to switch from I to D and not vice versa. If players switched
from D back to I when I was a best response, it would in principle be harder
to get action I to disappear. But Morris [1997] shows that the same contagion
threshold is critical even when looking at two sided best response dynamics.
More precisely, if there exists a co-¯nite Y0 such that C1¡q (Y0) is ¯nite then
there exists another co-¯nite group Z0 (typically strictly contained in Y0) such
that two sided best response dynamics applied to Z0 is decreasing and converges
to the empty set.

5 Conclusion

Incomplete information, local interaction and random matching games can all
be understood as special cases of a general class of interaction games. The
distinguishing features of particular classes of games - for example, N -partite
interaction for incomplete information games - are in many cases a distraction.
A more abstract approach may both allow productive arbitrages across the
di®erent research areas and provide a better understanding of what is driving
results. Future work will show whether this is in fact the case. Morris [1997]
represents one attempt to exploit the equivalence.

One can think of further games that can be embedded in this class. Dynamic
games, where each player gets to make many choices, are routinely interpreted
as games between \agents" of those players, where each agent gets to make only
one choice. If payo®s are additively separable through time, each agent's payo®
depends only on interactions with a small subset of all agents (i.e., those acting
in the same time period). But the characteristic feature of dynamic games -
that players must anticipate the impact of their actions on others' actions - is
not naturally embedded in the class of games described in this paper. However,
there are two special cases where the analysis translates. First, there is the case
where players make a sequence of choices at di®erent points in time, without
observing others' choices until the end of the game. In this case, Morris [1995]
shows that the incomplete information argument of Carlsson and van Damme
[1993] translates to show that if players' clocks are not perfectly co-ordinated,
they must play the risk dominant equilibrium in any two player two action
co-ordination game. It was noted in footnote 12 that the Carlsson and van
Damme argument is closely related to crucial local interaction results. Second,
there is the continuum of players case. In this case, again, individual players
cannot in°uence others' actions. Burdzy, Frankel and Pauzner [1996] show that
if there is symmetric noise concerning how payo®s evolve through time, the risk
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dominant equilibrium must be played always. They note the connection with
the incomplete information argument of Carlsson and van Damme.
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