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Abstract

Each player in an in¯nite population interacts strategically with a ¯-
nite subset of that population. Suppose each player's binary choice in each
period is a best response to the population choices of the previous period.
When can behaviour that is initially played by only a ¯nite set of play-
ers spread to the whole population? This paper characterizes when such
contagion is possible for arbitrary local interaction systems (represented by
general undirected graphs). Maximal contagion occurs when local inter-
action is su±ciently uniform and there is low neighbour growth, i.e., the
number of players who can be reached in k steps does not grow exponen-
tially in k.
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1. Introduction

When large populations interact strategically, players may be more likely to in-
teract with some players than others. A local interaction system describes a set
of players and speci¯es which players interact with which other players. If in
addition, each player at each location has a set of available actions and a payo®
function from each of his various interactions, we have a local interaction game.
The strategic problem becomes interesting when it is assumed that players cannot
tailor their behaviour for each neighbour, but must choose a constant action for
all neighbours.
A recent literature has examined such local interaction games.1 A key ¯nding

of that analysis is that local interaction may allow some forms of behaviour to
spread rapidly in certain dynamic systems.2 For example, suppose that players are
arranged along a line, and each player interacts with his two neighbours. An action
is 1=2-dominant if it is a best response when a player has at least one neighbour
playing that action.3 Ellison [1993] showed that if an action was 1=2-dominant
action at every location and was played at any pair of neighbouring locations, then
best response dynamics alone would ensure that it would eventually be played
everywhere.4

A number of papers have explored how robust this type of phenomenon is
to the structure of the local interaction. For example, two-dimensional lattices
have been much studied (Anderlini and Ianni [1995], Blume [1995], Ellison [1994]).
Blume [1995] considered local interaction systems where locations are on an m-
dimensional lattice and there is a translation invariant description of the set of
neighbours. Unfortunately, it is hard to know what to make of results which rely

1A partial listing includes Anderlini and Ianni [1996], Berninghaus and Schwalbe [1993,
1996], Blume [1993, 1995], Ellison [1993, 1994], Ianni [1996] and Mailath, Samuelson and Shaked
[1995b]. This paper follows that literature in treating the local interaction system as exogenous.
See Mailath, Samuelson and Shaked [1995a] and Ely [1995] for models with endogenous local
interaction. A large literature in economics has examined the role of local interaction in non-
strategic settings; see Durlauf [1996] for a survey of this work.

2The literature is primarily concerned with stochastic dynamic processes; as I discuss brie°y
in section 6, many of the conclusions are driven by properties of deterministic best response
dynamics.

3If there are only two possible actions in a symmetric two player game, both players choosing
the 1=2-dominant action is risk dominant in the sense of Harsanyi and Selten [1988].

4Ellison used this property of best response dynamics to prove that a stochastic dynamic
process converged to 1=2 dominant behaviour very fast.
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on a particular geometric structure. It is not clear that the study of lattices will
explain which qualitative features of neighbourhood relations determine strategic
behaviour.5

The primary purpose of this paper is to develop techniques for analyzing gen-
eral local interaction systems. It is useful to focus on one relatively narrow strate-
gic question in order to explore the comparative statics of the local interaction
system. In particular, I consider an in¯nite population of players. Each player
interacts with some ¯nite subset of the population and must choose one of two
actions (0 and 1) to play against all of them. There exists a critical number q be-
tween 0 and 1 such that action 1 is a best response for a player only if proportion
q of his neighbours plays 1. Players are assumed to revise their actions according
to determinisitic best response dynamics. Contagion is said to occur if one action
- say, action 1 - can spread from a ¯nite set of players to the whole population.
In particular, for any given local interaction system, there is a critical contagion
threshold such that contagion occurs if and only if the payo® parameter q is less
than the contagion threshold.
Ellison's argument discussed above shows that the contagion threshold for

interaction on a line is 1=2. In fact, the contagion threshold is at most 1=2
in all local interaction systems. A number of characterizations of the contagion
threshold are provided. A group of players is said to be p-cohesive if every member
of that group has at least proportion p of his neighbours within the group. We
show that the contagion threshold is the smallest p such that every \large" group
(consisting of all but a ¯nite set of players) contains an in¯nite, (1¡ p)-cohesive,
subgroup. We also show that the contagion threshold is the largest p such that
it is possible to label players so that, for any player with a su±ciently high label,
proportion at least p of his neighbours has a lower label. These characterizations
provide simple techniques for calculating the contagion threshold explicitly in
examples.
Contagion is most likely to occur if the contagion threshold is close to its upper

bound of 1=2. We show that the contagion threshold will be close to 1=2 if two
properties hold. First, there is low neighbour growth: the number of players who
can be reached in k steps grows less than exponentially in k. This will occur if
there is a tendency for players' neighbours' neighbours to be their own neighbours.
Second, the local interaction system must be su±ciently uniform, i.e., if there is

5Anderlini and Ianni [1995], Berninghaus and Schwalbe [1993] and Ianni [1996] provide some
results about general interaction systems.
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some number ® such that for all players a long way from some core group, roughly
proportion ® of their neighbours are closer to the core group.
While the focus is on one contagion question, the techniques and critical prop-

erties described are important in a range of strategic local interaction problems.
For example, when do mixed equilibria exist, i.e., equilibria of the local interac-
tion game where both actions are played? A low contagion threshold implies the
existence of mixed equilibria for a wide range of payo® parameters. In section 5,
I show (under the low neighbour growth assumption) that mixed equilibria exist
whenever the payo® parameter is more than the contagion threshold and less than
one minus the contagion threshold. One consequence is that mixed equilibria al-
ways exist in the (extreme) case of exactly symmetric payo®s. The literature on
local interaction games cited above has focussed on stochastic revision processes.
In section 6, I argue that the key qualitative properties of stochastic processes
built around best response dynamics depend on the deterministic process and
thus the properties of general local interaction systems studied here.
This paper builds on two literatures. The questions studied and the formal

framework used are very close to the earlier literature on local interaction games
(see footnote 1). When applied to geometric examples, the contribution of this
paper is to provide a useful language for discussing the structure of local inter-
action that can be used to generalize arguments already used in that literature.
More importantly, this approach allows a discussion of the qualitative properties
of local interaction systems that is independent of the geometry.
The inspiration for this work is an apparently unrelated literature on the role

of higher order beliefs in incomplete information games. It is possible to show a
formal equivalence between local interaction games and incomplete information
games. The formal techniques in this paper are then analogues of the belief
operator techniques, introduced by Monderer and Samet [1989], and used in the
higher order beliefs literature.6 However, this relationship is explored in detail
in a companion piece (Morris [1997]), so in this paper, the ideas are developed
independently.
The paper is organized as follows. Some geometric examples are discussed

in section 2; these illustrate the questions studied but also highlight the risks of
taking ¯xed geometric structures too seriously. The model of local interaction
games is introduced in section 3. The contagion question is posed and studied

6The papers of Monderer and Samet [1989, 1996], Morris, Rob and Shin [1995] and Kajii
and Morris [1995] are especially relevant.
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in section 4. Section 5 presents the results on the existence of mixed equilibria.
There is a discussion of various ways of adding random elements to this paper's
deterministic dynamic in section 6. Section 7 concludes.

2. Examples

I start by discussing examples where players' interaction is described by some geo-
metric relationship on a lattice. The purpose here is twofold. First, the examples
can be used to introduce and illustrate the main question addressed in the paper,
and provide some intuition for the answers that will eventually be given. But
second, the examples suggest that focussing exclusively on regular geometric ex-
amples can be somewhat deceptive. Eventually, we want to characterize strategic
behaviour in local interaction environments in ways that do not depend on any
geometry.
There is an in¯nite population of players. Each player interacts with a ¯nite

subset of the population and chooses one of two actions, 0 or 1. It is assumed
that he must play the same action against each neighbour. (We can think of
the action representing a norm of behaviour that cannot be altered at will). The
payo®s from each interaction are given by the matrix

0 1
0 q; q 0; 0
1 0; 0 1¡ q; 1¡ q

; (2.1)

where q 2 (0; 1). We will study what happens under (deterministic) best response
dynamics. Thus suppose that in each period, each player chooses an action that
maximizes the sum of his payo®s from all his interactions, given his neighbours'
actions in the previous period.
This paper is concerned with the following question. Does there exist a ¯nite

group of players, such that if that group starts out playing some action (say,
without loss of generality, action 1), best response dynamics will ensure that
that action is eventually played everywhere? If so, we say that action 1 spreads
contagiously. More speci¯cally, suppose a local interaction system is ¯xed. For
which values of q are contagious dynamics possible? We will show that every local
interaction system is characterized by a contagion threshold ». Contagion occurs
if and only if q · ».
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Example 1. (Interaction on a Line)7 The population is arranged on a line and
each player interacts with the player to his left and the player to his right. See
¯gure 1.

If q · 1=2, action 1 is a best response whenever at least one neighbour chooses
action 1. Thus if two neighbours x and x + 1 initially choose action 1, players
x ¡ 1; x; x + 1 and x + 2 must all choose action 1 in the next period, players
x¡ 2; x¡ 1; x; x+ 1; x+ 2 and x+ 3 must all choose action 1 in the period after
that, and so on. So contagion occurs exactly if q · 1=2.
Thus contagion occurs easily under interaction on a line. But what happens

if the interaction structure becomes more complex?

Example 2. (Nearest Neighbour Interaction in m Dimensions)8 The population
is situated on an in¯nite m dimensional lattice. Each player interacts with all
players who are immediate neighbours in the lattice and thus whose coordinates
di®er in only one dimension. If m = 1, then we have the interaction on a line of
the previous example. See ¯gure 2 for the case where m = 2.

In this case, each player has 2m neighbours. Contagion occurs only if q ·
1=2m.9 Thus it appears that as interaction becomes \richer" (i.e., as the number
of dimensions increases) contagion becomes impossible. However, this example
may be somewhat deceptive, as the following example shows.

Example 3. (n-Max Distance Interaction in m Dimensions) The population is
again situated on an in¯nite m dimensional lattice. Each player interacts with all
players who are less than n steps away in each of the m dimensions. See ¯gure 3
for the case where m = 2 and n = 1.

In this case, there is contagion whenever q · n(2n+1)m¡1

(2n+1)m¡1 . The following table
gives the values of this expression for di®erent values of m and n:

7This case has been analysed by Ellison [1993] and others.
8This case has been analysed by Blume [1995] and others.
9Proofs for this and other results given in this section are reported in the appendix. They

use the general results developed in the text.
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This example illustrates the lack of robustness of the nearest neighbour analysis.
If we simply add players at one diagonal remove, then increasing the number of
dimensions never eliminates contagion if q · 1=3.
So restricting attention to interaction on a lattice, higher dimensions may be

associated with decreasing contagion, but there is no simple relationship. We can
use the lattice examples and one more (non-lattice) example to illustrate features
that we will show are important for contagion.

² \Cohesive" Groups limit Contagion.

Example 4. (4-Families) The population is divided into an in¯nite number of
\families" of four players. Each player in a family interacts with every other
player in that family. Each player also interacts with exactly one player outside
his family. Figure 4 illustrates this structure.

Suppose q > 1=4. If many families start out with all their members playing
action 0, they will never stop playing action 0. Thus no contagion can occur if
q > 1=4. Each family is a cohesive group with the property that each member
has a high proportion (three out of four) of his interactions within the group.
The lack of contagion (for q > 1=4) in the nearest neighbour interaction in

two dimensions (example 2 and ¯gure 2) occurs for essentially the same reason.
Consider groups of players made up of two adjacent rows of players in the lattice.
Each player in the pair of rows has three of his four neighbours within the pair of
rows. Thus we have an equally cohesive group that will prevent contagion.

² Low Neighbour Growth allows Contagion.
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The n-max distance case (example 3) illustrates that as the radius of inter-
action becomes large, the contagion threshold approaches 1=2. What drives this
result? Intuitively, as the radius of interaction becomes large, irregularities, or
lumpiness, in the lattice structure disappears. But this is not su±cient to ensure
contagion. We also require one element that corresponds to \localness" in the
lattice examples. It must be the case there is neighbour correlation, so that a
player's neighbours' neighbours are more likely to be the original player's neigh-
bour than some player picked at random. This property is guaranteed to be true
if there is not too much neighbour growth: the number of players reached in k
steps grows less than exponentially in k.

3. Local Interaction Games

This section introduces general local interaction systems and the binary action
local interaction games studied in this paper, as well as introducing the critical
cohesion properties that we will be exploiting later in the paper.

3.1. Local Interaction Systems

Fix a countably in¯nite set of players X and let » be a binary relation on X . If
x » y, we say that \y is a neighbour of x." Write ¡ (x) for the set of neighbours
of x, i.e., ¡ (x) ´ fy : y » xg. We will assume, for all x 2 X ,

1. Irre°exivity: x =2 ¡ (x). No player is his own neighbour.

2. Symmetry: x » y ) y » x. If y is a neighbour of x, then x is a neighbour
of y.

3. Bounded Neighbours: there exists M such that 1 · #¡ (x) · M . Each
player has at least 1 and at most M neighbours.

A local interaction system is a pair (X ;»), where » satis¯es properties [1]
through [3]. A group of players, X, is an arbitrary subset of X . The complemen-
tary group in X is written as X, i.e., X = fx 2 X : x =2 Xg.
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3.2. Cohesion

For any given group of players X, do players in the group mostly interact with
players within the group or with players outside the group? In this section, critical
tools for analyzing this question are introduced. Let ¼[Xjx] be the proportion of
x's neighbours who are in group X, i.e.,

¼ (Xjx) = # (X \ ¡ (x))
#¡ (x)

.

Write ¦p(X) for the players for whom at least proportion p of their interactions
are with players in X, i.e.,

¦p(X) = fx 2 X : ¼ (Xjx) ¸ pg .

Let the cohesion of group X be the smallest p such that each player in X has
proportion p of his interactions within X, i.e.,

c(X) = min
x2X

¼ (Xjx) = max fp : X µ ¦p(X)g .

The minimum and maximum exist since, for all players x and groups X, ¼ (Xjx)
is a rational number with denominator less than or equal to M . Say that group
X is p-cohesive if c(X) ¸ p.10

3.3. Local Interaction Games

We will focus on the case where each player has two possible actions, f0; 1g. Write
u(a; a0) for the payo® of a player from a particular interaction if he chooses a and
his neighbour chooses a0. This payo® function corresponds to symmetric payo®
matrix:

0 1
0 u(0; 0); u(0; 0) u(0; 1); u(1; 0)
1 u(1; 0); u(0; 1) u(1; 1); u(1; 1)

We assume that this game has two strict Nash equilibria, so that u(0; 0) > u(1; 0)
and u(1; 1) > u(0; 1). However, for the analysis of this paper all we care about

10Sociologists have introduced and applied various related measures of the cohesion of groups;
see Wasserman and Faust [1994, chapter 7].
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is the best response correspondence of this game. In particular, observe that
action 1 is best response for some player exactly if he assigns probability at least
q = (u(0;0)¡u(1;0))

(u(0;0)¡u(1;0))+(u(1;1)¡u(0;1)) to the other player choosing action 1. Thus payo®s

are parameterized by the critical probability q 2 (0; 1).11 Now a local interaction
game is a 3-tuple (X ;»; q).
A conventional description of best responses and equilibrium would proceed as

follows. A (pure) con¯guration is a function s : X ! f0; 1g. Given con¯guration
s, player x's best response is to choose an action which maximizes the sum of his
payo®s from his interactions with each of his neighbours. Thus action a is a best
response to con¯guration s for player x, i.e. a 2 b(s; x) if

X

y2¡(x)
u(a; s(y)) ¸

X

y2¡(x)
u(1¡ a; s(y)).

Con¯guration s0 is best response to con¯guration s if s0(x) is a best response to s
for each x, i.e., if s0(x) 2 b(s; x) for all x 2 X ; and con¯guration s is an equilibrium
if it is a best response to itself.
However, it is useful for us to identify a con¯guration with the group of players

who choose action 1 in that con¯guration. Thus con¯guration s is identi¯ed with
the group X = fx : s(x) = 1g; group X is identi¯ed with con¯guration s where

s(x) =

(
1, if x 2 X
0, if x =2 X :

Now we have:

De¯nition 1. X is a best response to Y if X µ ¦q (Y ) and X µ ¦1¡q
³
Y

´
.

There exist multiple best responses to Y only if there are players who have
exactly proportion q of their neighbours within Y and thus exactly proportion
1 ¡ q outside Y . For a generic choice of q, this will not occur. So for generic q,
¦q (X) is the unique best response to X. Thus throughout the paper, ¦q (X) will
be referred to as the best response to X.

11Thus in particular, we can restrict attention to payo® matrices of the form given in equation
2.1 in section 2. Note that (1; 1) is a risk dominant equilibrium (in the sense of Harsanyi and
Selten [1988]) exactly if q < 1=2.
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De¯nition 2. X is an equilibrium of (X ;»; q) if X is a best response to X, i.e.,

if X µ ¦q (X) and X µ ¦1¡q
³
X

´
.

ThusX is an equilibrium if and only ifX is q-cohesive andX is (1¡q)-cohesive.
Again, for generic q, X is an equilibrium if and only if X = ¦q (X).

4. Deterministic Contagion

If X is the set of players who initially choose action 1, then under determinisitic
best response dynamics, [¦q]k (X) will be the set of players choosing action 1 after
k periods.

4.1. The Contagion Threshold

The contagion threshold is the largest q such that action 1 can spread from a ¯nite
group of players to a co-¯nite group of players,12 i.e.,

» = max
½
q : [

k¸1
[¦q]k (X) is co-¯nite for some ¯nite X

¾
.

The maximum can be shown to always exist, using properties of the operator ¦p

descrbied below. Operator ¦p is non-monotonic: X may contain ¦p(X), X may
be contained in ¦p(X), or neither might be true. To characterize the contagion
threshold, it will be useful to study an always increasing version of the operator

¦p+(X) ´ X [¦p(X).

The following properties of ¦p and ¦p+ will be used extensively in the following
analysis (the elementary proofs appear in Appendix C). For a sequence of groups
Xk, we write Xk " X if X = [

k¸1
Xk and Xk µ Xk+1 for each k; and Xk # X if

X = \
k¸1

Xk and Xk+1 µ Xk for each k. The properties hold for all X µ X .

B1 (Operator Monotonicity). ¦p(X) µ ¦p+ (X).

B2 (Group Continuity). If Xk " X, then ¦p (X) = [
k¸1

¦p (Xk) and ¦
p
+ (X) =

[
k¸1

¦p+ (Xk).

12A group X is co-¯nite if the complementary group X is ¯nite.
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B2 implies:

B2* (Group Monotonicity). If X µ Y , then ¦p (X) µ ¦p (Y ) and ¦p+ (X) µ
¦p+ (Y ).

B3 (Probability Continuity). If pk " p, then ¦pk (X) # ¦p (X) and ¦pk+ (X) #
¦p+ (X).

B3 implies:

B3* (Probability Monotonicity). If p < r, then ¦r (X) µ ¦p (X) and ¦r+ (X) µ
¦p+ (X).

B4 (Inverse Operator). If p+ r > 1, then ¦p (X) µ ¦r
³
X

´
.

Now we can show the following equivalences.

Lemma 1. If » be the contagion threshold of local interaction system (X ;»), the
following properties are equivalent:

[0] p · »;
[1] [

k¸1
[¦p]k (X) is co-¯nite, for some ¯nite X;

[2] [
k¸1

[¦p+]
k (X) is co-¯nite, for some ¯nite X;

[3] [¦p+]
k (X) " X , for some ¯nite X;

[4] [¦p]k (X) " X , for some ¯nite X.
It is straightforward to construct examples where X is ¯nite, [

k¸1
[¦p]k (X) is

¯nite, but [
k¸1

[¦p+]
k (X) = X . But the lemma implies that it must then be possible

to ¯nd another, possibly larger but still ¯nite, group Y with [
k¸1

[¦p]k (Y ) = X .
Proof. By de¯nition of » and property B3*, [0] is equivalent to [1].
If X µ Y and X is co-¯nite, then Y is co-¯nite. With property B1, this gives

[1] ) [2].

To show [2] ) [3], suppose [
k¸1

[¦p+]
k (X) is co-¯nite, for some ¯nite X; let

Y = X [
µ

[
k¸1

[¦p+]
k (X)

¶
; Y is ¯nite by construction. But by property B2*,

[
k¸1

[¦p+]
k (X) µ [

k¸1
[¦p+]

k (Y ) ; and

[
k¸1

[¦p+]
k (X) µ Y µ [

k¸1
[¦p+]

k (Y ),
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so [
k¸1

[¦p+]
k (Y ) = X . But [¦p+]k (Y ) is increasing by construction, so [¦p+]k (X) "

X .
To show [3] ) [4], we ¯rst show by induction that for all groups X and k ¸ 1,

[¦p+]
k (X) = X [¦p

³
[¦p+]

k¡1 (X)
´
. (4.1)

This is true by de¯nition for k = 1. Suppose it is true for arbitrary k. Now

[¦p+]
k+1 (X) = ¦p+

³
[¦p+]

k (X)
´

= [¦p+]
k (X) [ ¦p

³
[¦p+]

k (X)
´
, by de¯nition of ¦p+

= X [¦p
³
[¦p+]

k¡1 (X)
´

[ ¦p
³
[¦p+]

k (X)
´
, by inductive hypothesis

= X [¦p
³
[¦p+]

k (X)
´
, by B2*, since [¦p+]

k¡1 (X) µ [¦p+]
k (X) .

Now suppose thatX is ¯nite and [
k¸1

[¦p+]
k (X) = X . Let Y = X[fx : ¡ (x) \X 6= ;g;

since X is ¯nite, Y is ¯nite, and we can choose K such that Y µ [¦p+]
K (X) and

thus Y µ [¦p+]
k (X) for all k ¸ K. Now x 2 X ) ¡ (x) µ Y ) ¡ (x) µ [¦p+]

k (X)

for all k ¸ K ) x 2 ¦p
³
[¦p+]

k (X)
´
for all k ¸ K. Thus X µ ¦p

³
[¦p+]

k (X)
´
for

all k ¸ K. Now by (4.1), [¦p+]
k+1 (X) = X [ ¦p

³
[¦p+]

k (X)
´
= ¦p

³
[¦p+]

k (X)
´

for all k ¸ K. So [¦p]k
³
[¦p+]

K (X)
´
= [¦p+]

K+k (X) for all k ¸ 0. Thus

[¦p]k
³
[¦p+]

K (X)
´
is increasing and [

k¸1
[¦p]k

³
[¦p+]

K (X)
´
= X . Thus [¦p+]K (X)

is a ¯nite group satisfying property [4].
Finally, since X is co-¯nite, [4] ) [1]. 2

We will use lemma 1 in constructing some useful characterizations of the con-
tagion threshold.

4.2. Upper and Lower Bounds on the Contagion Threshold

This section provides upper and lower bounds on the contagion threshold. These
bounds are used in appendix A to analyse geometric examples (and thus prove
the results reported in section 2).

Proposition 1. The contagion threshold is the smallest p such that every co-
¯nite group contains an in¯nite, (1¡ p)-cohesive, subgroup.
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The proposition gives a characterization of the contagion threshold. The
proposition is most useful in one direction, giving a constructive way of providing
an upper bound on the contagion threshold:

Corollary 1. [Upper Bound] Suppose every co-¯nite group contains an in¯nite,
(1¡ p)-cohesive, subgroup. Then » · p.

The proof of proposition 1 will exploit the following lemma (proved in appendix
B).

Lemma 2. For any local interaction system (X ;») and probability p 2 (0; 1),

there exists " > 0 such that [
k¸1

[¦r+]
k (X) is (1 ¡ p)-cohesive for all X µ X and

r · p+ ".

Proof. (of proposition 1). The proposition can be re-stated as: \every co-
¯nite group contains an in¯nite, (1¡ p)-cohesive, subgroup if and only if » · p."
Suppose every co-¯nite group contains an in¯nite, (1¡ p)-cohesive, subgroup. Let
X be any ¯nite group. Let Y be any in¯nite, (1¡ p)-cohesive, subgroup of co-
¯nite group X. Fix r > p. We will show by induction that Y µ [¦r+]

k (X). True
for k = 0 (since Y µ X). Suppose true for k. Now:

Y µ ¦1¡p (Y ) , since Y is (1¡ p)-cohesive
µ ¦1¡p

µ
[¦r+]

k (X)
¶
, by inductive hypothesis and B2*

µ ¦r
³
[¦r+]

k (X)
´
, by B4.

Thus Y µ [¦r+]
k (X) \ ¦r

³
[¦r+]

k (X)
´

= [¦r+]
k (X) [ ¦r

³
[¦r+]

k (X)
´

= [¦r+]
k+1 (X):

So [
k¸1

h
¦r+

ik
(X) is not co-¯nite for all X µ X and thus, by lemma 1, » < r.

But » < r for all r > p implies » · p.
Now suppose » · p. Let X be any co-¯nite group. By lemma 2, there exists

" > 0 such that [
k¸1

h
¦p+"+

ik ³
X

´
is (1 ¡ p)-cohesive. Since p + " > », we have
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by lemma 1 that [
k¸1

h
¦p+"+

ik ³
X

´
is in¯nite. Since [

k¸1

h
¦p+"+

ik ³
X

´
µ X, every

co-¯nite group contains an in¯nite (1¡ p)-cohesive subgroup. 2
To develop lower bounds on the contagion threshold, some additional notation

is useful. A labelling of locations X is a bijection l : Z++ ! X . Write L for the
set of labellings and ®l (k) for the proportion of neighbours of player l(k) who
have a lower label under labelling l, i.e.,

®l (k) =
# fj : l(j) » l(k) and j < kg

# fj : l(j) » l(k)g . (4.2)

Proposition 2. The contagion threshold is the largest p such thus under some
labelling l, ®l (k) ¸ p for all su±ciently large k. Formally:

» = max
l2L

µ
lim
K!1

µ
min
k¸K

®l (k)
¶¶
. (4.3)

Again, this characterization is especially useful because it can be used to pro-
vide a constructive bound, in this case a lower bound:

Corollary 2. [Lower Bound I]. Suppose there exists a labelling l with ®l(k) ¸ p
for all su±ciently large k. Then » ¸ p.

Proof. (of proposition 2). The proposition can be re-stated as: \There exists a
labelling l with ®l(k) ¸ p for all su±ciently large k if and only if » ¸ p". Suppose
®l(k) ¸ p for all k > K. Now let X be the ¯nite group fl (j) : j · Kg. Now by
induction fl (j) : j · K + kg µ [¦p+]

k (X), so [
k¸1

[¦p+]
k (X) = X =) p · » (by

lemma 1).
Conversely, suppose p · ». By lemma 1, there exists ¯nite group X0 such

that [
n¸1

[¦p+]
n (X0) = X . Let Xn = [¦p+]

n (X0) \ [¦p+]n¡1 (X0) for n = 1; 2:::.

Consider any labelling with j > k whenever l (j) 2 Xm, l (k) 2 Xn and m > n.
Now ®l(k) ¸ p for all k > #X0. 2

A second lower bound holds under an additional restriction on the local inter-
action system:

De¯nition 3. Local Interaction System (X ;») is connected if, for all x; x 2 X ,
there exist fx1; x2; :::; xKg µ X such that x1 = x, xK = x and xk » xk+1 for each
k = 1; :::; K ¡ 1.
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Recall that M was an upper bound on the number of possible neighbours.

Corollary 3. [Lower Bound II]. If Local Interaction System (X;») is connected,
then the contagion threshold » is at least 1=M .

Proof. By connectedness, there exists a labelling such that for all k ¸ 2, there
exists j < k with l(j) » l(k). Since #¡ (x) · M for all x 2 X , ®l (k) ¸ 1=M for
all k. By corollary 2, » ¸ 1=M . 2

4.3. Contagion Thresholds close to 1=2

Proposition 3. Every local interaction system (X ;») has a contagion threshold
less than or equal to 1=2.

This can proved from a result of Kajii and Morris [1995], via the incomplete
information game/local interaction game equivalence discussed in Morris [1997].
For completeness, however, a direct proof is reported in appendix B.
The contagion threshold cannot exceed 1=2. The examples discussed in section

2 suggested that if there were su±ciently low neighbour growth and su±cient
uniformity in the local interaction system, then the contagion threshold would
be close to 1=2. We will now introduce two formal properties which capture the
intuition of low neighbour growth and uniformity.

Low Neighbour Growth Say that player y is within ErdÄos distance k of group
X if it takes at most k steps to reach y from X. Formally, let ¡0 (X) = X and

¡k+1 (X) = ¡k (X)[
n
y : y » x for some x 2 ¡k (X)

o
; ¡k (X) is the set of players

within ErdÄos distance k of X.
We will be interested in the behaviour of #¡k(X) as a function of k. Consider

the following example.

Example 5. (m-Hierarchy) The population is arranged in a hierarchy. Each
player has m ¡ 1 subordinates. Each player, except the root player, has a single
superior. Thus let X =

1[
k=0

Xk, where X0 = f;g and Xk = f1; ::;m¡ 1gk for
all k ¸ 1, with m ¸ 3; x » y if and only if x = (y; n) or y = (x; n) for some
n = 1; ::;m¡ 1. See ¯gure 5 for the case where m = 3.
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We can calculate how fast ¡k (X0) grows as a function of k: #¡
1 (X0) =

1 + (m¡ 1) = m, #¡2 (X0) = 1 + (m¡ 1) + (m¡ 1)2, etc.., so that

#¡k (X0) =
³
1 + (m¡ 1) + ::+ (m¡ 1)k

´
=

³
(m¡ 1)k+1 ¡ 1

´.
(m¡ 2)

Thus #¡k (X0) grows exponentially in k. Clearly this is the worst case scenario:
as long as each player has at most m neighbours, this is the fastest rate at which
#¡k (X) can grow. If a signi¯cant proportion of players' neighbours' neighbours
are their own neighbours, then this will tend to slow down the exponential growth.
We will be interested in the case where there is enough neighbour correlation to
prevent exponential growth of #¡k (X).

De¯nition 4. Local Interaction System (X ;») satis¯es low neighbour growth if
°¡k#¡k (X) ! 0 as k ! 1, for all ¯nite groups X and ° > 1.

In the all the geometric examples considered in section 2, #¡k (X) is a poly-
nomial function of k, and thus low neighbour growth is satis¯ed. In fact, as long
as the local interaction system is connected, requiring the de¯nition to hold for
all ¯nite X is redundant since we have:

Lemma 3. If (X ;») is connected and °¡k#¡k (X) ! 0 as k ! 1, for all ° > 1,
for some ¯nite X, then °¡k#¡k (X) ! 0 as k ! 1, for all ° > 1 and all ¯nite
X.

Proof. Suppose X is ¯nite and °¡k#¡k (X) > " > 0 for in¯nitely many k. Fix
any ¯nite group Y . By connectedness, X µ ¡n(Y ) for some n. Now ¡k (X) µ
¡n+k (Y ), so °¡(n+k)#¡n+k (Y ) > "°¡n > 0 for in¯nitely many k, i.e., °¡k#¡k (Y )
does not tend to zero. 2
Researchers in the sociology literature have compared the growth of #¡k (X)

for graphs describing di®erent relationships; #¡k (X) grows more slowly when
the graph describes an important relationship than when it describes a more
peripheral relationship. For example, Rapoport and Horvarth [1961] examined
levels of friendship among junior high school students. In a graph based on seventh
and eighth best friends, #¡k (X) grows fast. In a graph based on best and second
best friends, #¡k (X) grows much more slowly.13

13See also Granovetter [1973]. I'm grateful to Michael Chwe for bringing this literature to
my attention. See Chwe [1996] for more on the strategic implications of di®erent kinds of social
links.
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To get a feel for the growth of #¡k (X), consider the experimental ¯nding of
Milgram [1967] that the median ErdÄos distance between two randomly chosen indi-
viduals in the U.S. was ¯ve. To interpret this ¯nding, consider two extreme cases.
The US population at the time was around 200 million and Milgram estimated
that each individual had approximately 500 acquaintances. Suppose that one indi-
vidual has no overlap between his acquaintances, his acquaintances' acquaintances
and his acquaintances' acquaintances' acquaintances. Then over half the popula-
tion would be within ErdÄos distance 3 of this individual (5003 = 125; 000; 000).
On the other hand, suppose the population of 200 million was arranged in a circle
and each individual knew 250 people on either side, the median ErdÄos distance
would be 200,000.

±¡Uniformity To discuss the uniformity property, we need some additional
notation.

De¯nition 5. Labelling l is an ErdÄos labelling if there exists a ¯nite group X
such that l (i) 2 ¡k (X) and l (j) =2 ¡k(X) ) i < j.

De¯nition 6. Local Interaction System (X ;») satis¯es ±-uniformity if there ex-
ists an ErdÄos labelling l such that for all su±ciently large K,

max
k0;k¸K

j®l(k0)¡ ®l(k)j · ± (4.4)

The hierarchy case discussed above (example 5 and ¯gure 5) satis¯es 0-smoothness.

Consider any ErdÄos labelling with initial (singleton) group X0. Now ¡
k (X0) =

k[
j=0

Xj . For any K, player l(K) has exactly one neighbour with a lower label. Thus
®l(K) = 1=m for all K.14

Proposition 4. If a Local Interaction System satis¯es low neighbour growth and
±-uniformity, then the contagion threshold » ¸ 1=2¡ ±.

Proof. Suppose ErdÄos labelling l satis¯es (4.4). Then there exist ® and K with

®¡ ± · # fj : l (j) » l (k) and j < kg
# fj : l (j) » l (k)g · ®

14The contagion threshold » for this example is thus 1=m: by corollary 1, » · 1=m; by
corollary 3, » ¸ 1=m.
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for all k ¸ K. By corollary 2, » ¸ ® ¡ ±. So if ® ¸ 1=2, we are done. Suppose
then that ® < 1=2. Now:

# fj : l (j) » l (k) and j < kg ·
µ

®

1¡ ®
¶
# fj : l (j) » l (k) and j > kg (4.5)

for all k ¸ K. Since l is an ErdÄos labelling, there exists a ¯nite group X such that
l (i) 2 ¡k (X) and l (j) =2 ¡k(X) ) i < j. LetX0 = X andXk = ¡

k (X)\¡k¡1 (X)
for k = 1; 2; :::. Choose N such that l(K) 2 XN¡1. Now if n ¸ N , summing
equation (4.5) across all k with l(k) 2 Xn implies

(
# f(j; k) : l (j) » l (k) , l(j) 2 Xn¡1 and l(k) 2 Xng
+# f(j; k) : l (j) » l (k) , fl(j); l(k)g µ Xn and j < kg

)

·
µ

®

1¡ ®
¶ (

# f(j; k) : l (j) » l (k) , l(j) 2 Xn+1 and l(k) 2 Xng
+# f(j; k) : l (j) » l (k) , fl(j); l(k)g µ Xn and j > kg

)
.

Writing dn = # ffx; yg : x » y, x 2 Xn¡1 and y 2 Xng
and en = # ffx; yg : x » y, x 2 Xn and y 2 Xng ,

the above expression can be re-written as

dn + en ·
µ

®

1¡ ®
¶ ³
dn+1 + en

´
.

Since ® < 1=2, this implies dn+1 ¸
³
1¡®
®

´n
dn for all n ¸ N so dn ¸

³
1¡®
®

´N¡n
dN

for all n ¸ N . But #Xn ¸ dn /M ¸
³
1¡®
®

´N¡n
dN /M . Thus °¡n#¡n (X) ! 1

if ° <
³
1¡®
®

´
, contradicting the assumption of low neighbour growth. Thus our

hypothesis that ® < 1=2 is false and the lemma is proved. 2

Two earlier examples illustrate why both conditions are required. The hierar-
chy case (example 5 and ¯gure 5) satis¯ed 0-uniformity but failed low neighbour
growth. The contagion threshold was 1=m and thus not close to 1=2.
On the other hand, consider two dimensional nearest neighbour interaction

on a lattice (example 2 and ¯gure 2). For any x, we have #¡0 (fxg) = 1 and
#¡k+1 (fxg) = #¡k (fxg)+4(k+1) for all k ¸ 1. Thus #¡k (fxg) = 1+2k(k+1)
and the local interaction system satis¯es low neighbour growth. On the other
hand, ±-smoothness fails, for any ± < 1=4. Consider any ErdÄos labelling l. We
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noted above that, for any k, there are 4(k + 1) players who are contained in
¡k+1 (fxg) but not ¡k (fxg). Those locations form an empty square with k + 2
players on each side (see ¯gure 6); now 4k of those locations (those not on the
corners) have ®l (k) = 1=2. But the four corners have ®l (k) = 1=4. Intuitively,
the irregularity arises because of the lumpiness of the lattice.
The intuition for proposition 4 is that behaviour must always spread slowly

when contagion occurs: if it spreads fast initially, it must spread to players who do
not interact much with each other, and therefore it will not spread further. Given
the uniformity condition, low neighbour growth ensures that it spreads slowly. The
uniformity condition is quite necessary for this result, as the following example
shows.

Example 6. Let X = Z. Let »¤ be a symmetric, irre°exive relation such that
(X ;»¤) is an m-hierarchy (example 5). Now suppose that

¡ (x) = fy : y »¤ xor jy ¡ xj · ng .
So y is a neighbour of x if either y is no more than n distance from x on the line
or they are related by the hierarchy.

In this example, #¡k (X) grows at exponential rate m¡ 1. But the contagion
threshold » ¸ n

2n+m
, by corollary 2 (consider the labelling l with l (k) = k

2
if k is

even, l (k) = ¡k+1
2
if k is odd). By choosing m large but n larger, it is possible

to get arbitrarily large growth of #¡k (X) with a contagion threshold arbitrarily
close to 1=2. Thus it is possible to have high neighbour growth (as the evidence
of Milgram [1967] suggests) but still have high contagion if, as in this example,
most neighbours are \local" but a few relations generate most of the growth.

5. The Existence of Mixed Equilibria

When do there exist equilibria of local interaction games where di®erent players
take di®erent actions? How does the answer depend on the structure of inter-
action? This question has been studied by researchers under the rubric of the
co-existence of conventions; Sugden [1995] and Young [1996] both note the im-
portance of asymmetries in interaction in allowing co-existence.15 The contagion

15See also Shin and Williamson [1996] for an analysis of conventions with a continuum of
actions (Morris [1997] shows how their incomplete informations result translates to a local
interaction setting).
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threshold provides a relevant measure of the degree of asymmetry.
An equilibrium X is said to be mixed if X =2 f;;Xg.

Proposition 5. Suppose local interaction system (X ;») satis¯es low neighbour
growth and has contagion threshold ». Then for all q 2 [»; 1¡ »], local interaction
game (X ;»; q) has a mixed equilibrium.

Since we know that » · 1=2, we have:

Corollary 4. Local interaction game (X ;»; 1=2) has a mixed equilibrium when-
ever (X ;») satis¯es low neighbour growth.

Thus we know that at least in the degenerate case of exactly symmetric payo®s,
a mixed equilibrium always exists. The proposition will be proved via a pair of
lemmas.

Lemma 4. (X ;»; q) has a mixed equilibrium if and only if there exist disjoint
non-empty q-cohesive and (1¡ q)-cohesive groups in X .

Lemma 5. If (X ;») satis¯es low neighbour growth, then there exists a non-
empty, ¯nite, (1=2)-cohesive, group.

Both lemmas are proved in appendix B.
Proof. (of proposition 5). Suppose that » · q · 1=2 (a symmetric argument
applies if 1=2 · q · 1¡»). By lemma 5, there exists a ¯nite, (1=2)-cohesive group
X. Thus X is q-cohesive. By proposition 1, q ¸ » ) X contains an (in¯nite)
(1¡ q)-cohesive subgroup. Thus by lemma 4, (X ;»; q) has a mixed equilibrium.
2

6. Adding Randomness

Deterministic best response dynamics need not converge to an equilibrium. For
example, if players are arranged in a line and odd players choose action 1 and
even players choose action 0, then best responses will lead odd players to switch
to 0 and even players to switch to action 1. Best response dynamics, then, will
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lead to a two cycle as every player alternates between actions.16 Partly to rule out
such cycles, a number of researchers have considered adding stochastic elements
to the best response dynamics. This section contains an informal discussion of
alternative ways of adding random elements to the dynamic process considered in
this paper. We can use this discussion to describe the connection to some of the
related literature.

6.1. Random Initial Conditions

Say that the local interaction system is isoregular if that there exist an in¯nite
number of isomorphisms between players that preserve the neighbourhood struc-
ture. This property is satis¯ed by all the geometric examples discussed in this
paper. The de¯nition of contagion given in this paper requires the existence of
one ¯nite group from which action 1 will spread. But if the interaction system is
isoregular, then there will always exist an in¯nite number of disjoint groups from
which action 1 will spread (if there exists one such group). Suppose then that the
initial con¯guration is chosen randomly, with the independent probability that
each player chooses action 1 equal to ® 2 (0; 1). By the law of large numbers,
we will have action 1 initially played by all players in some contagion triggering
group, and thus probability one convergence to action 1 being played everywhere
if the payo® parameter q is less than the contagion threshold. Note that this is
true even though there exist initial conditions which lead to cycling.

6.2. Random Order of Revisions

Instead of having all players best responding simultaneously, suppose they revised
their actions sequentially, according to some randomly chosen rule (suppose also
that they randomized when indi®erent). Thus in each period, the player called
upon to revise would choose a best response to other players' actions, while other
players' actions would remain constant. Suppose X0 was the initial con¯gura-
tion and Xt described the sequence of con¯gurations under such a rule. It is
straightforward to check that with probability one, we must have:

[
k¸1

h
¦1¡q+

ik ³
X0

´
µ Xt µ [

k¸1
[¦q+]

k (X0) for all t = 1; 2; ::: (6.1)

16If X is ¯nite and (X ;») is bipartite, deterministic best response dynamics must always
converge to a two-cycle.
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Furthermore, there will exist two critical realizations of the revision process
such that Xt converges towards the upper bound and lower bound respectively.
Thus there exists a ¯nite initial group X0 such that action 1 spreads contagiously,
with positive probability, under a random revision rule if and only if there exists a
¯nite initial group X0 such that action 1 spreads contagiously under determinisitic
best response dynamics.
Blume [1995] considers a model with random order of moves (he also shows

results for random initial conditions). He focuses on interaction on a two dimen-
sional lattice, but considers both nearest neighbour interaction in n dimensions
and more general interaction with translation invariant neighbourhoods. In par-
ticular, he shows that on an in¯nite two dimensional lattice, as neighbourhoods
of a ¯xed shape are expanded, a variable analogous to the contagion threshold
tends to 1=2.

6.3. Random Responses

Suppose now that players do not always choose a best response. Consider two
cases.
Noise at the Margin. Suppose ¯rst that players always stay with their

current action if it is a best response, but they randomize if their current action
is not a best response. Now if X0 was the initial con¯guration and Xt described
the sequence of con¯gurations chosen under the process, we must again have
equation (6.1) holding with probability one, and thus contagion occurring with
positive probability under the noise at the margin process if and only if it occurs
under deterministic best response dynamics. Anderlini and Ianni [1995] show a
convergence result for arbitrary local interaction systems of a ¯nite population
version of the noise at the margin process.
Ergodic Noise. Suppose that there is a positive probability of any con¯gu-

ration in any period, but the probability of a player not choosing a best response
is small. In the environment of this paper, this would give rise to an in¯nite state
Markov process. Ellison [1993, 1994] considers ¯nite population versions of such
a process. In the long run, action 1 will be played most of the time whenever
q < 1

2
. But a ¯nite version of the contagion discussed in this paper is used to

show that convergence to action 1 being played occurs very fast. Blume [1993]
considers a random revision rule where the log odds ratio of choosing alternative
actions is linear in payo® di®erences (see also Ianni [1996]). This process can be
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shown to be equivalent to stochastic Ising models. But as the parameter on payo®
di®erences becomes large, the process converges to best response dynamics.

7. Conclusion

This paper focussed on one narrow question: when do we get contagion under
determinisitic best response dynamics in binary action games? This narrow focus
allowed a detailed analysis of the comparative statics of the local interaction sys-
tem. However, the techniques and some of the results presented here are relevant
to a broader range of questions: for example, the existence of mixed equilibria
and stochastic dynamics.
Many of the results extend straightforwardly to more general interaction struc-

tures (for example, allowing di®erent interactions to have di®erent weights). A
companion paper, Morris [1997], considers a very general class of interaction games
and it is straightforward to extend many of the results in this paper.
The contribution of the paper is to characterize contagion in terms of qualita-

tive properties of the interaction system, such as cohesion, neighbour growth and
uniformity (rather than in terms of, say, the dimension of lattices). But one would
like to go one step further and understand how likely these critical properties are
to emerge.
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Appendix A: Interaction on a Lattice

This appendix shows how the upper and lower bounds on the contagion thresh-
old developed in section 4 can be used to identify the contagion threshold in the
type of geometric examples studied in the literature.
Consider then local interaction systems on an m-dimensional lattice, i.e. X =

Zm. Nearest neighbour interaction (example 2) is now formally described by
adding the neighbourhood relation » de¯ned by

x » y ,
mX

i=1

jxi ¡ yij = 1.

26



See ¯gures 1 and 2 for the cases where m equals 1 and 2 respectively. The
contagion threshold » = 1=2m.
Since each player has exactly 2m neighbours, we have » ¸ 1=2m by corollary 3.

But now consider any group of the form ¤ (K) = fx : jxij > K for all i = 1;mg.
This is a co-¯nite group that includes all players except an m-dimensional cube
with side length (2K+1); ¤ (K) is

³
2m¡1
2m

´
-cohesive for all K; but for all co-¯nite

groups X, there exists positive integer K such that ¤ (K) µ X. So by corollary
1, » · 1=2m.
In order to analyze n-max distance interaction on an m-dimensional lattice,

it is useful to prove a general result about translation invariant neighbourhoods
in Zm (the two dimensional version was studied by Blume [1995]). Write kxk
for the length of vector x in <m, i.e., kxk =

s
mP
i=1
x2i ; 0 for the origin in <m;

and Sm¡1 for the surface of a sphere of radius 1 in m dimensions, i.e., Sm¡1 =
fx 2 <m : kxk = 1g.

Example 7. (Arbitrary translation invariant neighbourhoods in m dimensions).
Let X = Zm and de¯ne the neighbourhood relation » by

x » y , y ¡ x 2 W ,

whereW is some ¯nite subset of Zmn f0g. The maintained symmetry assumption
on (X ;») implies that W is radially symmetric (x 2 W =) ¡x 2 W ).

Let ³ (W ) be the maximum proportion of points in W that an (m ¡ 1)-
dimensional plane through the origin can go through, i.e.,

³ (W ) =
max
¸2Sm¡1

# fx 2 W : ¸:x = 0g
#W

.

It will be shown that the local interaction system (X ;») has contagion threshold
» 2

h
1
2
(1¡ ³ (W )) ; 1

2

i
. By radial symmetry,

# fx 2 W : ¸:x > 0g = # fx 2 W : ¸:x < 0g

for all ¸ 2 Sm¡1. Thus
# fx 2 W : ¸:x < 0g = 1

2
(#W ¡# fx 2 W : ¸:x = 0g)

¸ 1
2
(1¡ ³ (W ))#W
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for all ¸ 2 Sm¡1. Since W is a ¯nite set, there exists " > 0 such that

# fx 2 W : ¸:x · ¡"g = # fx 2 W : ¸:x < 0g ¸ 1

2
(1¡ ³ (W ))#W:

for all ¸ 2 Sm¡1. Let w = max
x2W

kxk. Suppose p < 1
2
(1¡ ³ (W )). We will

construct a labelling satisfying ®l (k) ¸ p for all k su±ciently large. Let labelling
l satisfy kxk ¸ kyk ) l (x) ¸ l (y). Fix K such that

2" kl (K)k ¸ w2 (7.1)

Let ¸ = 1
kl(K)k :l (K). Now suppose (i) y 2 ¡ (l (K)), so (y ¡ l (K)) 2 W ; and (ii)

¸: (y ¡ l (K)) · ¡", so kl(K)¡ ¸:yk ¸ ". Now

kl(K)¡ yk =
q

ky ¡ ¸:yk2 + kl(K)¡ ¸:yk2 · w;

so ky ¡ ¸:yk2 · w2 ¡ kl(K)¡ ¸:yk2 · w2 ¡ "2. Also k¸:yk · kl(K)k ¡ ", so

kyk =
q

ky ¡ ¸:yk2 + k¸:yk2

·
q
(kl (K)k ¡ ")2 + (w2 ¡ "2)

=
q

kl (K)k2 ¡ 2 kl (K)k "+ "2 + w2 ¡ "2
< kl (K)k by (7.1).

(see ¯gure 7 for the geometry of this argument17). Thus

fk : l(k) » l(K) and ¸: (y ¡ l (K)) · ¡"g µ fk : l(k) » l(K) and k < Kg

So #fk:l(k)»l(K) and k<Kg
#W

¸ #fk:l(k)»l(K) and ¸:(y¡l(K))·¡"g
#W

= #fx2W :¸:x·¡"g
#W

¸ 1
2
(1¡ ³ (W ))

> p.

Now the result follows by corollary 2.

17A similar diagram appears in the appendix of Carlsson and van Damme [1993]. The sim-
ilarity of the geometric arguments illustrates the incomplete information / local interaction
equivalence described in Morris [1997].
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This result can be applied to give an exact characterization of the contagion
threshold in n-max distance interaction in m dimensions (example 3 and ¯gure 3).
This example is formally described by lettingX = Zm and de¯ning neighbourhood
relation » by

x » y , 1 · max
i=1;m

jxi ¡ yij · n,

for some integer n ¸ 1. The contagion threshold » is

Ã (n;m) =
n (2n+ 1)m¡1

(2n+ 1)m ¡ 1 :

First note that this example ¯ts the structure of example 7 with

W = fx 2 Zmn f0g : jxij · n, for all i = 1;mg .

Observe that for each x 2 X and any i = 1;m,

# fy : y » x and yi > xig = # fy : y » x and yi < xig = n (2n+ 1)m¡1 ;

# fy : y » x and yi = xig = (2n+ 1)m¡1 ¡ 1;
and thus #¡ (x) = (2n+ 1)m ¡ 1 for all x 2 X . Now ³ (W ) = (2n+1)m¡1¡1

(2n+1)m¡1 . By

the argument of the example 7, the contagion threshold » ¸ 1
2
(1¡ ³ (W )) =

Ã (n;m). But consider the group ¤ (K) = fx : jxkj > Kg. For any x 2 ¤ (K),
# (¡ (x) \ ¤ (K)) ¸ n (2n+ 1)m¡1 + (2n+ 1)m¡1 ¡ 1, so for all x 2 ¤ (K),

# (¡ (x) \ ¤ (K))
#¡ (x)

¸ n (2n+ 1)m¡1 + (2n+ 1)m¡1 ¡ 1
((2n+ 1)m ¡ 1) = 1¡ Ã (n;m) ;

so ¤ (K) is p-cohesive for p · 1¡ Ã (n;m). But every co-¯nite group X contains
the group ¤ (K) if K is chosen su±ciently large. Thus every co-¯nite group has
an in¯nite, (1¡ Ã (n;m))-cohesive, subgroup. So by corollary 1, » · Ã (n;m). 2

Appendix B: Proofs

Proposition 3 and lemmas 2, 4 and 5 are proved in this appendix. Two addi-
tional lemmas are used and will be stated and proved ¯rst.

Lemma 6. SupposeX is ¯nite and p > 1=2. Then#
³
[¦p+]

k (X)
´

·
³
1 + M

2p¡1

´
#X

for all k ¸ 1.
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Proof. Let X be a ¯nite group and let p > 1=2. Let ½ = 1¡p
p
< 1. Consider the

increasing sequence of groups [¦p+]
k (X), for k ¸ 0. Fix K ¸ 1. Let Y0 = X; Yk =

[¦p+]
k (X)\ [¦p+]k¡1 (X) for k = 1; ::; K; and YK+1 = [¦p+]K (X). By construction,

the collection of groups fY0; Y1; ::; YK+1g partition X .
Now let h (i; j) = # f(x; y) : x » y, x 2 Yi and y 2 Yjg. Note that h(x; y) is

the number of ordered pairs of players. Thus, in the language of graph theory,
h(i; i) is twice the number of edges connecting vertices in Yi; but if j 6= i, h(i; j) is
exactly the number of edges joining vertices in Yi to vertices in Yj . Observe that
h(i; j) = h(j; i).

Now suppose there exists x 2 Yk = [¦p+]
k (X) \ [¦p+]k¡1 (X), for some k =

1; ::; K. Since [¦p+]
k (X) = [¦p+]

k¡1 (X) [ ¦p
³
[¦p+]

k¡1 (X)
´
, we must have x 2

¦p
³
[¦p+]

k¡1 (X)
´
. This in turn implies that

#
³
[¦p+]

k¡1 (X) \ ¡ (x)
´

#¡(x)
¸ p.

Re-arranging gives

#
½
y : y 2 k¡1[

i=0
Yi and y » x

¾
¸ p# fy : y » xg , so

(1¡ p)#
½
y : y 2 k¡1[

i=0
Yi and y » x

¾
¸ p#

½
y : y 2 K+1[

i=k
Yi and y » x

¾
, so

½#
½
y : y 2 k¡1[

i=0
Yi and y » x

¾
¸ #

½
y : y 2 K+1[

i=k
Yi and y » x

¾
.

Summing the above expression across x 2 Yk gives (for each k = 1; :::; K)

½
k¡1X

i=0

h(i; k) ¸
K+1X

i=k

h(k; i). (7.2)

We have just shown that (7.2) holds if Yk is non-empty. It trivially holds if Yk is
empty (since each expression equals zero). Now multiplying the kth equation of
(7.2) by 1 + ½+ ::+ ½K¡k and summing gives

KX

k=1

k¡1X

i=0

³
1 + ½+ ::+ ½K¡k

´
½h(i; k) ¸

KX

k=1

K+1X

i=k

³
1 + ½+ ::+ ½K¡k

´
h(k; i). (7.3)
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But

KX

k=1

k¡1X

i=0

³
1 + ½+ ::+ ½K¡k

´
½h(i; k) =

0
BBB@

KP
k=1

³
1 + ½+ ::+ ½K¡k

´
½h(0; k)

+
KP
k=1

k¡1P
i=1

³
1 + ½+ ::+ ½K¡k

´
½h(i; k)

1
CCCA

=

0
BBB@

KP
k=1

³
1 + ½+ ::+ ½K¡k

´
½h(0; k)

+
K¡1P
k=1

KP
i=k+1

³
1 + ½+ ::+ ½K¡i

´
½h(k; i)

1
CCCA

=

0
BBB@

KP
k=1

³
1 + ½+ ::+ ½K¡k

´
½h(0; k)

+
K¡1P
k=1

KP
i=k+1

³
½+ ½2 + ::+ ½K¡i+1

´
h(k; i)

1
CCCA(7.4)

and
KX

k=1

K+1X

i=k

³
1 + ½+ ::+ ½K¡k

´
h(k; i) =

0
BBBBBBB@

KP
k=1

³
1 + ½+ ::+ ½K¡k

´
h(k; k)

+
K¡1P
k=1

KP
i=k+1

³
1 + ½+ ::+ ½K¡k

´
h(k; i)

+
KP
k=1

³
1 + ½+ ::+ ½K¡k

´
h(k;K + 1)

1
CCCCCCCA

(7.5)
Substituting (7.4) and (7.5) in (7.3) gives

KX

k=1

³
1 + ½+ ::+ ½K¡k

´
½h(0; k) ¸

0
BBBBBBBB@

KP
k=1

³
1 + ½+ ::+ ½K¡k

´
h(k; k)

+
K¡1P
k=1

KP
i=k+1

Ã
1 + ½+ ::+ ½K¡k

¡½¡ ½2 ¡ ::¡ ½K¡i+1
!
h(k; i)

+
KP
k=1

³
1 + ½+ ::+ ½K¡k

´
h(k;K + 1)

1
CCCCCCCCA

.

Each h(k; i) on the right hand side is multiplied by a number which is at least
1, while each h (k; 0) on the left hand side is multiplied by a number less than

or equal to 1¡p
2p¡1 , since

³
1 + ½+ ::+ ½K¡k

´
½ = ½

1¡½

³
1¡ ½K¡k+1

´
< ½

1¡½ =
1¡p
2p¡1 .

Thus subtracting positive terms from the right hand side and adding positive
terms to the left hand side, we have

1¡ p
2p¡ 1

KX

k=1

h(0; k) ¸
KX

k=1

K+1X

i=k

h(k; i). (7.6)
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But 1 · ¡ (x) · M for all x 2 X implies that for all k = 0; ::;K + 1,

M:#Yk ¸
K+1X

i=0

h(i; k) ¸ #Yk. (7.7)

Now we have

KX

k=1

#Yk ·
KX

k=1

K+1X

i=0

h(i; k), by (7.7)

=
KX

k=1

h(0; k) + 2
KX

k=1

KX

i=k

h(k; i) +
KX

k=1

h(k;K + 1)

·
KX

k=1

h(0; k) + 2
KX

k=1

K+1X

i=k

h(k; i)

·
Ã
1 +

2 (1¡ p)
2p¡ 1

!
KX

k=1

h(0; k), by (7.6)

·
Ã

1

2p¡ 1

!
K+1X

k=0

h(0; k)

· M

2p¡ 1#Y0.

Thus # [¦p+]
K (X) =

KP
k=0
#Yk ·

³
1 + M

2p¡1

´
#Y0 =

³
1 + M

2p¡1

´
#X. 2

Lemma 7. Suppose (X ;») satis¯es low neighbour growth. Then for all " > 0

and all ¯nite groups X µ X , there exists n such that #(¡
n+1(X)\¡n(X))
#¡n+1(X)

< ".

Proof. Suppose
#(¡n+1(X)\¡n(X))

#¡n+1(X)
¸ " for all n. Then, for all n, #

³
¡n+1 (X) \ ¡n (X)

´
¸³

"
1¡"

´
#¡n (X), so #¡n+1 (X) ¸

³
1 + "

1¡"

´
#¡n (X) =

³
1
1¡"

´
#¡n (X) and #¡n (X) ¸³

1
1¡"

´n
#X. This contradicts low neighbour growth. 2

PROOF OF LEMMA 2. Consider the following ¯nite subset of [0; 1]:

F (M) =

(
® 2 (0; 1) : ® = n

m
,
for some integers m, n
with 0 < m · M and 0 · n · m

)
:
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Given p, choose " > 0 such that F (M) \ (p; p+ ") is empty. Since #(X\¡(x))
#¡(x)

2
F (M) for all x 2 X and X µ X , we have ¦r (X) = ¦r0(X) for all X µ X and
r; r0 2 (p; p+ "). So for any X µ X , there exists a group Y with

Y = [
k¸1

[¦r+]
k (X) for all r 2 (p; p+ ") .

Now if x 2 Y , ¼
µ

[
k¸1

h
¦r+

ik
(X)

¯̄
¯̄ x

¶
< r and so ¼ (Y jx) > 1 ¡ r for all

r 2 (p; p+ "). Then ¼ (Y jx) > 1¡ p for all x 2 Y . 2
PROOF OF PROPOSITION 3. Fix any p > 1=2 and any ¯nite group X.

By lemma 6, #
³
[¦p+]

k (X)
´

·
³
1 + M

2p¡1

´
#X for all k ¸ 1. Thus [

k¸1

³
[¦p+]

k (X)
´

is ¯nite. By the de¯nition of the contagion threshold and part [3] of lemma 1,
» < p. Thus » < p for all p > 1=2, so » · 1=2. 2

PROOF OF LEMMA 4. [only if] follows from the de¯nition of equilibrium.
For [if], let X0 and Y0 be disjoint q-cohesive and (1 ¡ q)-cohesive groups in X .
De¯ne Xk inductively as follows: Xk+1 = ¦

q
+ (Xk) \ Y0. Let X¤ = [

k¸1
Xk. Now

suppose x 2 X¤. If x 2 X0, then x 2 ¦q (X0) µ ¦q (X¤). If x =2 X0, then
x 2 Xk+1nXk for some k ¸ 0, so (by de¯nition of Xk+1), x 2 ¦q (Xk) µ ¦q (X¤).
Thus X¤ is q-cohesive. But

X¤ = [
k¸1

Xk

= [
k¸1

Xk+1, since X1 µ X2

= [
k¸1

³
(Xk [ ¦q (Xk)) \ Y0

´

=
µµ

[
k¸1

Xk

¶
[

µ
[
k¸1

¦q (Xk)
¶¶

\ Y0
= (X¤ [¦q (X¤)) \ Y0, by B2. (7.8)

= ¦q (X¤) \ Y0 (7.9)

Now suppose x 2 X¤. If x 2 Y0, then x 2 ¦1¡q (Y0) µ ¦1¡q
³
X¤

´
, since

Y0 µ X¤. If x =2 Y0, then by (7.8) x =2 ¦q (X¤), so x 2 ¦1¡q
³
X¤

´
. Thus X¤ is

(1¡ q)-cohesive. So X¤ is an equilibrium. 2
PROOF OF LEMMA 5. By lemma 2, there exists " > 0 such that

[
k¸1

·
¦
( 12+")
+

¸k
(X) is (1=2)-cohesive for all X µ X . Fix any ¯nite group Y . Let
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Zn = ¡
n+1 (Y ) \ [

k¸0

·
¦
( 12+")
+

¸k ³
¡n+1 (Y ) \ ¡n (Y )

´
for all n = 0; 1; ::

If x 2 Zn, then x 2 ¡n+1 (Y ). But x 2 [
k¸0

·
¦
( 12+")
+

¸k ³
¡n+1 (Y ) \ ¡n (Y )

´

implies x =2 ¡n+1 (Y )\¡n (Y ). Thus x 2 ¡n (Y ). By construction of ¡n+1 (Y ), this

implies that ¼ (¡n+1 (Y )jx) = 1. Now since [
k¸0

·
¦
( 12+")
+

¸k ³
¡n+1 (Y ) \ ¡n (Y )

´
is

(1=2)-cohesive, we have that Zn is (1=2)-cohesive. Also, Zn is ¯nite since ¡
n+1 (Y )

is ¯nite. Now observe that by lemma 6,

#

Ã·
¦

1
2
+"
+

¸k ³
¡n+1 (Y ) \ ¡n (Y )

´!
·

0
@1 +

M

2
³
1
2
+ "

´
¡ 1

1
A#

³
¡n+1 (Y ) \ ¡n (Y )

´

=
µ
1 +

M

2"

¶
#

³
¡n+1 (Y ) \ ¡n (Y )

´
, for all k ¸ 1.

Thus #Zn = #¡n+1 (Y )¡#
0
@ [
j¸0

·
¦
( 12+")
+

¸j ³
¡n+1 (Y ) \ ¡n (Y )

´
1
A

¸ #¡n+1 (Y )¡#
0
@

·
¦
( 12+")
+

¸k ³
¡n+1 (Y ) \ ¡n (Y )

´
1
A

¸ #¡n+1 (Y )¡
µ
1 +

M

2"

¶
#

³
¡n+1 (Y ) \ ¡n (Y )

´

= #¡n+1 (Y )

0
@1¡

µ
1 +

M

2"

¶ #
³
¡n+1 (Y ) \ ¡n (Y )

´

#¡n+1 (Y )

1
A

By lemma 7,
#(¡n+1(Y )\¡n(Y ))

#¡n+1(Y )
< 1

1+(M2" )
for some n. Thus #Zn > 0 and thus

Zn is non-empty for that n. Thus Zn is a ¯nite (1=2)-cohesive group. 2

Appendix C: Proportion Operator Properties

B1: ¦p (X) µ X [¦p (X) = ¦p+ (X)
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B2*: If X µ Y , then ¼ (Xjx) · ¼ (Y jx) for all x; so ¼ (Xjx) ¸ p implies
¼ (Y jx) ¸ p, and thus ¦p (X) µ ¦p (Y ). Now X µ Y and ¦p (X) µ ¦p (Y )
imply that ¦p+ (X) = X [¦p (X) µ Y [¦p (Y ) = ¦p (Y ).

B2: Suppose Xk " X. First, observe that x 2 S
k¸1
¦p (Xk) ) x 2 ¦p (Xk) for

some Xk ) x 2 ¦p (X) (by B2*). Now if ¼ [Xj x] ¸ p, there exists k
such that ¡ (x) \ X µ Xk. Thus x 2 ¦p (X) ) x 2 ¦p (Xk) for some
k ) x 2 S

k¸1
¦p (Xk). Thus ¦

p (X) =
S
k¸1
¦p (Xk). Now ¦

p
+ (X) = X [

¦p (X) =

"
S
k¸1
Xk

#
[

"
S
k¸1
¦p (Xk)

#
=

S
k¸1
[Xk [ ¦p (Xk)] =

S
k¸1
¦p+ (Xk).

B3*: If ¼ (Xjx) ¸ r and r > p, then ¼ (Xjx) ¸ p. Thus r > p implies ¦r (X) µ
¦p (X). Now ¦r (X) µ X [ ¦r (X) µ X [¦p (X) = ¦p+ (X).

B3: Suppose pk " p. By B3*, ¦pk (X) is a decreasing sequence of sets and
¦p (X) µ ¦pk (X) for all k. But now if x 2 T

k¸1
¦pk (X), ¼ (Xjx) ¸ pk

for all k, so ¼ (Xjx) ¸ p, so x 2 ¦p (X). Thus ¦pk (X) # ¦p (X). Now
¦pk+ (X) = [X [¦pk (X)] # [X [¦p (X)] = ¦p+ (X).

B4: Suppose p + r > 1; x 2 ¦p (X) ) ¼ (Xjx) ¸ p ) ¼
³
Xjx

´
· 1 ¡ p < r )

x =2 ¦r
³
X

´
) x 2 ¦r

³
X

´
.
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