CARESS Working Paper \#96-06 Approximate Common Knowledge Revisited*

Stephen Morris ${ }^{\dagger}$

September 1996

Abstract

Suppose we replace "knowledge" by "belief with probability p " in standard definitions of common knowledge. Very different notions arise depending the exact definition of common knowledge used in the substitution. This paper demonstrates those differences and identifies which notion is relevant in each of three contexts: equilibrium analysis in incomplete information games, best response dynamics in incomplete information games, and agreeing to disagree/no trade results.

1. Introduction

Suppose we replace "knowledge" in the definition of common knowledge by belief with high probability; what notion of approximate common knowledge do we get? The answer is surprisingly sensitive to the exact definition of common knowledge in that construction.

[^0]Consider (as I shall throughout this paper) the case where there are two individuals, 1 and 2. Say that one individual p-believes event E if he assigns it probability at least p. Event E is common p-belief if both p-believe E, both p-believe that both p-believe E, both p-believe that both p-believe that both p-believe E, and so on. ${ }^{1}$ Event E is iterated p-belief for 1 if $1 p$-believes $E, 1$ p-believes that $2 p$-believes $E, 1 p$-believes that $2 p$-believes that $1 p$-believes E, and so on. Event E is iterated p-belief if it is iterated p-belief for both individuals. ${ }^{2}$

Common 1-belief and iterated 1-belief are equivalent to each other and to standard definitions of common knowledge. ${ }^{3}$ When p is not equal to 1 , common p-belief is not equivalent to iterated p-belief. If an event is common p-belief, it is necessarily iterated p-belief, but the converse is not true. It might nonetheless be conjectured that for any $p<1$, there should exist some q (sufficiently close to 1) such that if an event is iterated q-belief, it must be common p-belief. This is false: in particular, I show that for any $1 / 2<r \leq p<1$ and $\varepsilon>0$, it is possible to find events which are iterated p-belief with probability at least $1-\varepsilon$, but which are never common r-belief.

Monderer and Samet (1989) established that common p-belief is the natural notion of approximate common knowledge when studying the robustness to equilibria to a lack of common knowledge of payoffs. I show that iterated p-belief is the relevant notion of approximate common knowledge for the study of best response dynamics in incomplete information games.

Another important application of common knowledge, starting with Aumann (1976), has been to agreeing to disagree and no trade results. The relevant notion of approximate common knowledge for both kinds of results is weak common p-belief. An event is said to be weak common p-belief if it is common p-belief either given individuals' actual information or if individuals ignore some of their information. ${ }^{4}$ This notion is much weaker than common p-belief and is necessary and sufficient for both approximate agreement results and approximate no trade results.

The paper is organized as follows. Alternative notions of approximate common knowledge are

[^1]introduced, characterized and related in section 2. Iterated p-belief, common p-belief and weak common p-belief are introduced in sections 2.1 through 2.3 respectively; in section 2.4 , it is shown that in the special case when p equals 1 , all three notions are equivalent; but in section 2.5 , it is shown that if $p<1$, there is no necessary connection between common p-belief and the two weaker notions. Section 3 considers applications and shows which notion is relevant for which application. Section 4 contains discussion.

2. Approximate Common Knowledge

There are two individuals, $\{1,2\}$; let - be a countable state space, with typical element ω. For each $i \in\{1,2\}$, let \mathcal{Q}_{i} be a partition of.- Write \mathcal{F}_{i} for the σ-field generated by \mathcal{Q}_{i}. Let P be a probability on the countable state space.

Event $E \subseteq-$ is simple if $E=E_{1} \cap E_{2}$ and each $E_{i} \in \mathcal{F}_{i}$. Whenever event $E_{1} \cap E_{2}$ is said to be simple, it should be understood that $E_{i} \in \mathcal{F}_{i}$, for both i. Write $Q_{i}(\omega)$ for the (unique) element of \mathcal{Q}_{i} containing ω. The partition \mathcal{Q}_{i} is interpreted as individual i 's information, so that if the true state is ω, individual i knows only that the true state is an element of $Q_{i}(\omega)$. Write $P(\omega)$ for the probability of the singleton event $\{\omega\}$, and $P[E \mid F]$ for the conditional probability of event E, given event F, if $P[F]>0$. Throughout the paper, I will assume that all information sets occur with positive probability, i.e., $P\left[Q_{i}(\omega)\right]>0$ for all $\omega \in-$ and $i \in\{1,2\}$. When i represents a typical individual, j will be understood to be the other individual.

An individual p-believes an event E at state ω if the conditional probability of E, given $Q_{i}(\omega)$, is at least p. Writing $B_{i}^{p} E$ for the set of states where $i p$-believes E, we have $B_{i}^{p} E \equiv$ $\left\{\omega: P\left[E \mid Q_{i}(\omega)\right] \geq p\right\}$. The following straightforward properties of belief operators will be used extensively:

B1: If $E \in \mathcal{F}_{i}$, then $B_{i}^{p} E=E$.
B2: If $E_{1} \cap E_{2}$ is simple, then $B_{i}^{p}\left(E_{1} \cap E_{2}\right)=E_{i} \cap B_{i}^{p} E_{j}$.
B3: If $q \geq p$, then $B_{i}^{q} E \subseteq B_{i}^{p} E$.
B4: If $E \subseteq F$, then $B_{i}^{p} E \subseteq B_{i}^{p} F$.

2.1. Iterated p-Belief

Event E is iterated p-belief for 1 if $1 p$-believes it, $1 p$-believes that $2 p$-believes it, $1 p$-believes that $2 p$-believes that $1 p$-believes it, and so on. Writing $I_{i}^{p} E$ for the set of states where E is iterated p-belief for i, we have:

$$
\begin{aligned}
I_{1}^{p} E & \equiv B_{1}^{p} E \cap B_{1}^{p} B_{2}^{p} E \cap B_{1}^{p} B_{2}^{p} B_{1}^{p} E \cap \ldots \\
I_{2}^{p} E & \equiv B_{2}^{p} E \cap B_{2}^{p} B_{1}^{p} E \cap B_{2}^{p} B_{1}^{p} B_{2}^{p} E \cap \ldots
\end{aligned}
$$

Definition 2.1. (Hierarchical). Event E is iterated p-belief if it is iterated p-belief for both players. Thus E is iterated p-belief at state ω if $\omega \in I^{p} E \equiv I_{1}^{p} E \cap I_{2}^{p} E$.

This definition corresponds to $(1-p, \infty)$-approximate common knowledge, in the language of Stinchcombe (1988). It is possible to give a rather weak "fixed point" characterization of iterated p-belief. Say that collection of events \mathcal{E} is mutually p-evident if $B_{i}^{p} E \in \mathcal{E}$, for all events $E \in \mathcal{E}$ and both i.

Proposition 2.2. (Fixed Point Characterization) Event E is iterated p-belief at ω if and only if there exists a mutually p-evident collection of events \mathcal{E} with [1] $B_{i}^{p} E \in \mathcal{E}$ for both i; and [2] $\omega \in F$, for all $F \in \mathcal{E}$.

Proof. (if) Suppose \mathcal{E} is mutually p-evident and [1] and [2] hold. By [1], $B_{1}^{p} E \in \mathcal{E}$ and $B_{2}^{p} E \in$ \mathcal{E}. Now, by \mathcal{E} mutually p-evident, $B_{1}^{p} B_{2}^{p} E \in \mathcal{E}$ and $B_{2}^{p} B_{1}^{p} E \in \mathcal{E}$ and so $B_{1}^{p}\left[B_{2}^{p} B_{1}^{p}\right]^{n} E \in \mathcal{E}$, $B_{2}^{p}\left[B_{1}^{p} B_{2}^{p}\right]^{n} E \in \mathcal{E},\left[B_{2}^{p} B_{1}^{p}\right]^{n+1} E \in \mathcal{E},\left[B_{1}^{p} B_{2}^{p}\right]^{n+1} E \in \mathcal{E}$, for all $n \geq 0$. Since $I^{p} E$ is exactly the intersection of these expressions, $\omega \in I^{p} E$ by [2].
(only if) Suppose E is iterated p-belief at ω. Let

$$
\mathcal{E}=\left\{F \subseteq-: \begin{array}{c}
F \in\left\{B_{1}^{p}\left[B_{2}^{p} B_{1}^{p}\right]^{n} E, B_{2}^{p}\left[B_{1}^{p} B_{2}^{p}\right]^{n} E,\left[B_{2}^{p} B_{1}^{p}\right]^{n+1} E,\left[B_{1}^{p} B_{2}^{p}\right]^{n+1} E\right\} \\
\text { for some } n \geq 0
\end{array}\right\}
$$

By definition of iterated p-belief, [2] holds. By construction of \mathcal{E}, [1] holds and \mathcal{E} is mutually p-evident.

Example 2.3. $-=\{1,2,3,4,5,6\} ; \mathcal{Q}_{1}=(\{1,2\},\{3\},\{4\},\{5,6\}) ; \mathcal{Q}_{2}=(\{1,3,4\},\{2,5,6\})$; $P(\omega)=1 / 6$ for all $\omega \in$ - .

If $E^{*}=\{1,2,3\}$, then $I^{0.6} E^{*}=\{3\}$. Let us verify this, first using the hierarchical definition, and then using the fixed point characterization: $B_{1}^{0.6} E^{*}=\{1,2,3\} ; B_{2}^{0.6} E^{*}=\{1,3,4\} ; B_{2}^{0.6} B_{1}^{0.6} E^{*}=$ $\{1,3,4\} ;$ and $B_{1}^{0.6} B_{2}^{0.6} E^{*}=\{3,4\}$. But now since $B_{1}^{0.6}\{1,3,4\}=\{3,4\}$ and $B_{2}^{0.6}\{3,4\}=\{1,3,4\}$, $I_{1}^{0.6} E^{*}=\{3\}, I_{2}^{0.6} E^{*}=\{1,3,4\}$ and $I^{0.6} E^{*}=\{3\}$. On the other hand, consider the collection of events $\mathcal{E}=(\{1,3,4\},\{3,4\})$. Observe that $[1] B_{i}^{0.6} E^{*} \in \mathcal{E}$ for both i; [2] $3 \in E$ for all $E \in \mathcal{E}$; and [3] $B_{i}^{0.6} E \in \mathcal{E}$ for all $E \in \mathcal{E}$ and both i.

2.2. Common p-Belief

An event E is common p-belief if both p-believe it, both p-believe that both p-believe it, and so on. Formally, define a "both p-believe" operator as follows: $B_{*}^{p} E \equiv B_{1}^{p} E \cap B_{2}^{p} E$.

Definition 2.4. (Hierarchical) Event E is common p-belief at ω if

$$
\omega \in C^{p} E \equiv \bigcap_{n \geq 1}\left[B_{*}^{p}\right]^{n} E \equiv B_{*}^{p} E \cap B_{*}^{p} B_{*}^{p} E \cap B_{*}^{p} B_{*}^{p} B_{*}^{p} E \cap \ldots
$$

This notion can be given a tight fixed point characterization. Event F is p-evident if $F \subseteq B_{*}^{p} F$. Thus event F is p-evident exactly if $\mathcal{E}=\{E: F \subseteq E\}$ is mutually p-evident. By B2, a simple event $F_{1} \cap F_{2}$ is p-evident if $F_{1} \subseteq B_{1}^{p} F_{2}$ and $F_{2} \subseteq B_{2}^{p} F_{1}$.

Proposition 2.5. (Fixed Point Characterization) The following statements are equivalent; [1] event E is common p-belief at ω; [2] there exists a p-evident event F such that $\omega \in F$ and $F \subseteq B_{*}^{p} E$; [3] there exists a simple p-evident event $F_{1} \cap F_{2}$ such that $\omega \in F_{1} \cap F_{2}$ and $F_{i} \subseteq B_{i}^{p} E$ for both i.

The equivalence of [1] and [2] is due to Monderer and Samet (1989), who defined common p-belief using the fixed point characterization.

Common p-belief may differ from iterated p-belief. In example 2.3, $B_{1}^{0.6} E^{*}=\{1,2,3\} ; B_{2}^{0.6} E^{*}=$ $\{1,3,4\}$, so $B_{*}^{0.6} E^{*}=\{1,3\}$. Now $B_{1}^{0.6} B_{*}^{0.6} E^{*}=\{3\}$ and $B_{2}^{0.6} B_{*}^{0.6} E^{*}=\{1,3,4\}$, giving $\left[B_{*}^{0.6}\right]^{2} E^{*}=$ $\{3\}$. Now $B_{1}^{0.6}\left(\left[B_{*}^{0.6}\right]^{2} E^{*}\right)=\{3\}$ and $B_{2}^{0.6}\left[B_{*}^{0.6}\right]^{2} E^{*}=\emptyset$, giving $\left[B_{*}^{0.6}\right]^{3} E^{*}=\emptyset$, and thus $C^{0.6} E^{*}=\emptyset$.

2.3. Weak Common p-Belief

More information can reduce the degree of common p-belief of an event. Consider the following example.

Example 2.6. $-=\{0,1,2, \ldots\} ; \mathcal{Q}_{1}=(-) ; \mathcal{Q}_{2}=(-) ; P(\omega)=\delta(1-\delta)^{\omega}$ for all $\omega \in-$, where $\delta \in(0,1)$.

Thus individuals 1 and 2 have no information. Consider the event $E^{*}=\{1,2,3 \ldots\} ; P\left[E^{*}\right]=$ $1-\delta$, so for any $p \leq 1-\delta, B_{1}^{p} E^{*}=-, B_{2}^{p} E^{*}=-$, so $B_{*}^{p} E^{*}=-$ and $C^{p} E^{*}=-$. Thus for sufficiently small δ, E^{*} is always common p-belief (for any given $p<1$).

Now suppose that individuals 1 and 2 received some information about the state of the world. In particular, the example becomes:

Example 2.7. $\left.-=\{0,1,2, \ldots\} ; \mathcal{Q}_{1}=(\{0\},\{1,2\},\{3,4\}, ..) ; \mathcal{Q}_{2}=(\{0,1\},\{2,3\}, \ldots\}.\right) ; P(\omega)=$ $\delta(1-\delta)^{\omega}$ for all $\omega \in-$, where $\delta \in(0,1)$.

Now for any $p \geq 1 / 2$ and $\omega \geq 1, B_{*}^{p}(\{\omega, \omega+1, .\})=.\{\omega+1, \omega+2, .$.$\} . Thus B_{*}^{p} E^{*}=\{2,3, .$.$\} ,$ $\left[B_{*}^{p}\right]^{n} E^{*}=\{n+1, n+2, .$.$\} for all n \geq 0$ and so $C^{p} E^{*}=\emptyset$.

This suggests the following alternative notion of approximate common knowledge. Suppose that each individual i had access to information partition \mathcal{Q}_{i}, but need not acquire that information. What is the maximum attainable degree of common p-belief of a given event? Thus say that event E is weak common p-belief if event E is common p-belief given the individuals' information or any worse information. Formally, write $\mathcal{Q} \equiv\left(\mathcal{Q}_{1}, \mathcal{Q}_{2}\right)$ and index belief and common p-belief operators as follows (in this section only): $B_{\mathcal{Q}_{i}}^{p} E \equiv\left\{\omega: P\left[E \mid Q_{i}(\omega)\right] \geq p\right\}, B_{\mathcal{Q}^{2}}^{p} E \equiv B_{\mathcal{Q}_{1}}^{p} E \cap B_{\mathcal{Q}_{2}}^{p} E$ and $C_{\mathcal{Q}}^{p} E \equiv{ }_{n \geq 1}\left[B_{\mathcal{Q}}^{p}\right]^{n} E$. Say that \mathcal{Q}^{\prime} is a coarsening of \mathcal{Q} if $Q_{i}(\omega) \subseteq Q_{i}^{\prime}(\omega)$ for both i and all $\omega \in$-. Write $\mathcal{C}(\mathcal{Q})$ for the coarsenings of \mathcal{Q}.

Definition 2.8. (Hierarchical). Event E is weak common p-belief at ω (under \mathcal{Q}) if event E is common p-belief at ω under some coarsening of \mathcal{Q}, i.e., if $\omega \in W^{p} E \equiv \underset{\mathcal{Q}^{\prime} \in \mathcal{C}(\mathcal{Q})}{\cup} C_{\mathcal{Q}^{\prime}}^{p} E$.

Simple event $F_{1} \cap F_{2}$ is weakly p-evident if it is empty or $P\left[F_{1} \mid F_{2}\right] \geq p$ and $P\left[F_{2} \mid F_{1}\right] \geq p$.

Proposition 2.9. (Fixed Point Characterization). Event E is weak common p-belief at ω if and only if there exists a weakly p-evident event $F_{1} \cap F_{2}$ with $\omega \in F_{1} \cap F_{2}$ and $P\left[E \mid F_{i}\right] \geq p$ for both i.

This notion is due to Geanakoplos (1994, p. 1482) who called it weakly p-common knowledge. Proof. Suppose $\omega \in W^{p} E$. Then $\omega \in C_{\mathcal{Q}^{\prime}}^{p} E$ for some $\mathcal{Q}^{\prime} \in \mathcal{C}(\mathcal{Q})$. By proposition 2.5, there exists simple event $F_{1} \cap F_{2}$ with [1] $F_{i} \subseteq B_{\mathcal{Q}_{i}^{\prime}}^{p} E$ for both i and [2] $F_{i} \subseteq B_{\mathcal{Q}_{i}^{\prime}}^{p} F_{j}$ for both i. But [1] implies $P\left[E \mid F_{i}\right] \geq p$ for both i, and [2] implies $P\left[F_{j} \mid F_{i}\right] \geq p$ for both i. On the other hand, suppose there exists a weakly p-evident event $F_{1} \cap F_{2}$ with $\omega \in F_{1} \cap F_{2}$ and $F_{i} \subseteq B_{i}^{p} E$ for both i. Let

$$
Q_{i}^{\prime}(\omega)=\left\{\begin{array}{l}
F_{i}, \text { if } \omega \in F_{i} \\
-\backslash F_{i}, \text { if } \omega \notin F_{i}
\end{array} .\right.
$$

By construction $F_{i} \subseteq B_{\mathcal{Q}_{i}^{\prime}}^{p} E$ for both i, so $F_{1} \cap F_{2} \subseteq B_{\mathcal{Q}^{\prime}}^{p} E$. But $F_{1} \cap F_{2} \subseteq F_{i} \cap B_{\mathcal{Q}_{i}^{\prime}}^{p} F_{j}=$ $B_{\mathcal{Q}_{i}^{\prime}}^{p}\left(F_{1} \cap F_{2}\right)$ for both i (by B2). Thus $F_{1} \cap F_{2} \subseteq B_{\mathcal{Q}^{\prime}}^{p} E \subseteq\left[B_{\mathcal{Q}^{\prime}}^{p}\right]^{2} E \subseteq C_{\mathcal{Q}^{\prime}}^{p} E$.

Corollary 2.10. If $P[E] \geq p$, then $W^{p} E=-$.
Proof. Since - $\in \mathcal{F}_{i}$ for both $i,-$ is weakly p-evident.

2.4. The Relation between Alternative Notions for $p=1$

Iterated 1-belief, common 1-belief and weak common 1-belief are all equivalent
Proposition 2.11. For all events $E: I^{1} E=C^{1} E=W^{1} E$.
Proof. Observe first that for each i and all collections of events $\left\{E^{k}\right\}_{k=1}^{\infty}, B_{i}^{1}\left(\cap_{k \geq 1} E^{k}\right)=\bigcap_{k \geq 1}^{\cap}$ $B_{i}^{1} E^{k}$. Thus $I^{1} E \subseteq B_{i}^{1} I^{1} E$ for each i, i.e., $I^{1} E$ is 1 -evident. Now since $I^{1} E \subseteq B_{*}^{1} E$ (by definition), $I^{1} E \subseteq C^{1} E$ by lemma 2.5. But lemma 2.14 below shows $C^{p} E \subseteq I^{p} E$ for all p, so $I^{1} E=C^{1} E$.

Now suppose $\mathcal{Q}^{\prime} \in C(\mathcal{Q})$. For all events $E: B_{\mathcal{Q}_{i}^{\prime}}^{1} E \subseteq B_{\mathcal{Q}_{i}}^{1} E$ for each i, so $B_{\mathcal{Q}^{\prime}}^{1} E \subseteq B_{\mathcal{Q}^{2}}^{1} E$, so $C_{\mathcal{Q}^{\prime}}^{1} E \subseteq C_{\mathcal{Q}}^{1} E$; thus $C^{1} E \subseteq W^{1} E$. But lemma 2.15 below shows that $C^{p} E \subseteq W^{p} E$ for all p, so $C^{1} E=W^{1} E$.

The "truth axiom" requires that 1-beliefs are always correct, i.e., $B_{i}^{1} E \subseteq E$ for all events E and each i. In our setting, the truth axiom is equivalent to requiring that P has full support, i.e.,
$P(\omega)>0$ for all $\omega \in-$. Under the truth axiom with $p=1$, all three notions outlined above are equivalent to the following definition of common knowledge.

Let $\mathcal{F}^{*}=\mathcal{F}_{1} \cap \mathcal{F}_{2}$. Now \mathcal{F}^{*} is the σ-field generated by the meet of the individuals' partitions.

Definition 2.12 (Aumann (1976)). Event E is common knowledge at ω if

$$
\omega \in \mathcal{C K} E \equiv\left\{\omega: \omega \in F \subseteq E, \text { for some } F \in \mathcal{F}^{*}\right\}
$$

Lemma 2.13. For events E : (a) $\mathcal{C K} E \subseteq I^{1} E=C^{1} E=W^{1} E$; (b) under the truth axiom, $\mathcal{C K} E=I^{1} E=C^{1} E=W^{1} E$.

Proof. (a) If $F \in \mathcal{F}^{*}$, then F is 1-evident. If F is 1-evident and $F \subseteq E$, then $F \subseteq B_{*}^{1} F \subseteq B_{*}^{1} E$. Thus $\omega \in \mathcal{C K} E \Rightarrow \omega \in F \subseteq E$, for some $F \in \mathcal{F}^{*} \Rightarrow \omega \in F \subseteq B_{*}^{1} E$, for some 1-evident $F \Rightarrow \omega \in$ $C^{1} E$, by lemma 2.5.
(b) Under the truth axiom, if F is 1 -evident then $F \in \mathcal{F}^{*}$. Under the truth axiom, if F is 1-evident and $F \subseteq B_{*}^{1} E$, then $F \subseteq E$. Thus $\omega \in C^{1} E \Rightarrow \omega \in F \subseteq B_{*}^{1} E$, for some 1-evident $F \Rightarrow \omega \in F \subseteq E$, for some $F \in \mathcal{F}^{*} \Rightarrow \omega \in \mathcal{C K} E$.

2.5. The Relation Between Alternative Notions for $p<1$

The equivalence of the alternative notions of approximate common knowledge does not, in general, hold if $p<1$. This is because the belief operator typically fails to satisfy the distributive property that if event E is believed with probability at least p, and event F is believed with probability at least p, then event $E \cap F$ is believed with probability at least p, so it is possible that $B_{i}^{p} E \cap B_{i}^{p} F \neq$ $B_{i}^{p}(E \cap F)$.

The following two lemmas show that common p-belief is in general a stronger notion than either iterated p-belief or weak common p-belief.

Lemma 2.14. For all events E and $p \in(0,1]: C^{p} E \subseteq I^{p} E$.
Proof. For any event E and individual $i, B_{*}^{p} E \subseteq B_{i}^{p} E$. Thus $B_{*}^{p} B_{*}^{p} E \subseteq B_{2}^{p} B_{1}^{p} E \cap B_{1}^{p} B_{2}^{p} E$; by an iterative argument, we have $\left[B_{*}^{p}\right]^{2 n-1}(E) \subseteq B_{1}^{p}\left[B_{2}^{p} B_{1}^{p}\right]^{n-1} E \cap B_{2}^{p}\left[B_{1}^{p} B_{2}^{p}\right]^{n} E$ and $\left[B_{*}^{p}\right]^{2 n}(E) \subseteq$
$\left[B_{2}^{p} B_{1}^{p}\right]^{n} E \cap\left[B_{1}^{p} B_{2}^{p}\right]^{n} E$, for all $n \geq 1$. So

$$
C^{p} E \equiv \bigcap_{n \geq 1}\left[B_{*}^{p}\right]^{n} E \subseteq I_{1}^{p} E \cap I_{2}^{p} E \equiv I^{p} E
$$

Lemma 2.15. For all events E and $p \in(0,1]: C^{p} E \subseteq W^{p} E$.

Proof. $C^{p} E \equiv C_{\mathcal{Q}}^{p} E \subseteq \underset{\mathcal{Q}^{\prime} \in \mathcal{C}(\mathcal{Q})}{\cup} C_{\mathcal{Q}^{\prime}}^{p} E \equiv W^{p} E$.

2.5.1. The Unbounded State Space Case

With no restrictions on the size of the state space - , there need be no connection between common p-belief and the two weaker variants. In particular, we have:

Remark 2.16. For all $1 / 2<r \leq p<1$ and $0<\varepsilon<1$, it is possible to construct an information system containing an event E with $P\left[I^{p} E\right] \geq 1-\varepsilon, P\left[W^{p} E\right] \geq 1-\varepsilon$ and $C^{r} E=\emptyset$.

This is shown by the following example:

Example 2.17. This example is parameterized by $1 / 2<r \leq p<1$ and $0<\varepsilon<1$. Write N for the smallest integer satisfying $N \geq \operatorname{Max}\left\{\frac{1}{2 r-1}, \frac{2}{1-p}\right\}$ and M for the smallest integer satisfying $M \geq \operatorname{Max}\left\{\frac{N^{2(N+1)}}{\varepsilon}, \frac{N^{2(N+1)}}{1-p}\right\}$. Each individual i observes a signal $s_{i} \in S=\{1, \ldots, N+M\}$. A state consists of the pair of signals observed by the two individuals, so $\omega \equiv\left(s_{1}, s_{2}\right)$ and - $\equiv S^{2}$. Individuals' partitions reflect the fact that they observe only their own signals. Thus $Q_{i}\left(\left(s_{1}, s_{2}\right)\right)=$ $\left\{\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in-: s_{i}=s_{i}^{\prime}\right\}$. Let $P(\omega)=\pi(\omega) / \sum_{\omega^{\prime} \in} \pi\left(\omega^{\prime}\right)$, for all $\omega \in-$, where π is defined as follows. ${ }^{5}$

[^2]| | 1 | 2 | 3 | \cdot | $\mathrm{~N}-1$ | N | $\mathrm{~N}+1$ | $\mathrm{~N}+2$ | . | $\mathrm{~N}+\mathrm{M}-2$ | $\mathrm{~N}+\mathrm{M}-1$ | $\mathrm{~N}+\mathrm{M}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | $N^{2 N-1}$ | 0 | 0 | . | 0 | 0 | 0 | 0 | . | 0 | 0 | $N^{2 N}$ |
| 2 | $N^{2 N-2}$ | $N^{2 N-3}$ | 0 | . | 0 | 0 | 0 | 0 | . | 0 | 0 | 0 |
| 3 | 0 | $N^{2 N-4}$ | $N^{2 N-5}$ | . | 0 | 0 | 0 | 0 | . | 0 | 0 | 0 |
| . | . | . | . | . | . | . | . | . | . | . | . | . |
| $\mathrm{~N}-1$ | 0 | 0 | 0 | . | N^{3} | 0 | 0 | 0 | . | 0 | 0 | 0 |
| N | 0 | 0 | 0 | . | N^{2} | N | 0 | 0 | . | 0 | 0 | 0 |
| $\mathrm{~N}+1$ | 1 | 1 | 1 | . | 1 | 1 | N | 0 | . | 0 | 0 | 0 |
| $\mathrm{~N}+2$ | 0 | 0 | 0 | . | 0 | 0 | N | N | . | 0 | 0 | 0 |
| . | . | . | . | . | . | . | . | . | . | . | . | . |
| $\mathrm{~N}+\mathrm{M}-2$ | 0 | 0 | 0 | . | 0 | 0 | 0 | 0 | . | N | 0 | 0 |
| $\mathrm{~N}+\mathrm{M}-1$ | 0 | 0 | 0 | . | 0 | 0 | 0 | 0 | . | N | N | 0 |
| $\mathrm{~N}+\mathrm{M}$ | 0 | 0 | 0 | . | 0 | 0 | 1 | 1 | . | 1 | 1 | $N^{2 N+1}$ |

The following notion will be useful. Let X be some collection of possible signals, i.e., $X \subseteq$ $\{1,2, . ., N+M\}$. Write $E_{i}^{+}(X)$ for the set of states where individual i 's signal is in X, i.e., $E_{i}^{+}(X)=\left\{\left(s_{1}, s_{2}\right): s_{i} \in X\right\}$; and write $E_{i}^{-}(X)$ for the set of states where individual i 's signal is not in X, i.e., $E_{i}^{-}(X)=\left\{\left(s_{1}, s_{2}\right): s_{i} \notin X\right\}$. Let $E^{*}=E_{1}^{-}(1)$.

We first characterize $I^{p} E^{*}$. Some calculations for this example are summarized in the appendix on page 24; in particular, the following properties of the operator B_{i}^{p} are verified:

$$
\begin{gather*}
B_{2}^{p}\left(E_{1}^{-}(n)\right)=E_{2}^{-}(n), \text { for all } n=1, . ., N, \tag{2.1}\\
B_{1}^{p}\left(E_{2}^{-}(n)\right)=E_{1}^{-}(n+1), \text { for all } n=1, . ., N-1, \tag{2.2}\\
B_{1}^{p}\left(E_{2}^{-}(N)\right)=- \tag{2.3}
\end{gather*}
$$

Since $E^{*} \in \mathcal{F}_{1}, B_{1}^{p} E^{*}=E^{*}$ (by B1); by (2.1), $B_{2}^{p} B_{1}^{p} E^{*}=B_{2}^{p} E^{*}=E_{2}^{-}(1) ;$ by (2.2), $B_{1}^{p} B_{2}^{p} B_{1}^{p} E^{*}=$ $B_{1}^{p} B_{2}^{p} E^{*}=E_{1}^{-}(2) ;$ by (2.1), $\left[B_{2}^{p} B_{1}^{p}\right]^{2} E^{*}=B_{2}^{p} B_{1}^{p} B_{2}^{p} E^{*}=E_{2}^{-}$(2). Iteratively applying (2.1) and (2.2) gives

$$
\begin{equation*}
\left[B_{1}^{p} B_{2}^{p}\right]^{n-1} B_{1}^{p} E^{*}=\left[B_{1}^{p} B_{2}^{p}\right]^{n-1} E^{*}=E_{1}^{-}(n) \text { and }\left[B_{2}^{p} B_{1}^{p}\right]^{n} E^{*}=\left[B_{2}^{p} B_{1}^{p}\right]^{n-1} B_{2}^{p} E^{*}=E_{2}^{-}(n) \tag{2.4}
\end{equation*}
$$

for all $n=1, . ., N$. By (2.4) and (2.3),

$$
\left[B_{1}^{p} B_{2}^{p}\right]^{N} E^{*}=B_{1}^{p}\left[\left[B_{2}^{p} B_{1}^{p}\right]^{N-1} B_{2}^{p} E^{*}\right]=B_{1}^{p}\left[E_{2}^{-}(N)\right]=-.
$$

Thus $I_{1}^{p} E^{*}=E_{1}^{-}(1, \ldots, N), I_{2}^{p} E^{*}=E_{2}^{-}(1, \ldots, N)$ and $I^{p} E^{*}=E_{1}^{-}(1, \ldots, N) \cap E_{2}^{-}(1, \ldots, N)$. So $P\left[I^{p} E\right]=P\left[E_{1}^{-}(1, \ldots, N) \cap E_{2}^{-}(1, \ldots, N)\right] \geq 1-\varepsilon$ (see appendix).

Now we characterize $C^{r} E^{*}$. The following properties of the operator B_{i}^{r} are verified in the appendix:

$$
\begin{gather*}
B_{2}^{r}\left(E_{1}^{-}(1, . ., n)\right) \subseteq E_{2}^{-}(n), \text { for all } n=1, . ., N+M, \tag{2.5}\\
B_{1}^{r}\left(E_{2}^{-}(1, . ., n)\right) \subseteq E_{1}^{-}(n+1), \text { for all } n=1, . ., N+M-1 . \tag{2.6}
\end{gather*}
$$

Now by B1 and (2.5),

$$
\begin{equation*}
B_{*}^{r} E^{*}=B_{1}^{r} E^{*} \cap B_{2}^{r} E^{*} \subseteq E_{1}^{-}(1) \cap E_{2}^{-}(1) . \tag{2.7}
\end{equation*}
$$

$$
\begin{aligned}
\text { So }\left[B_{*}^{r}\right]^{2} E & =B_{1}^{r} B_{*}^{r} E \cap B_{2}^{r} B_{*}^{r} E \\
& \subseteq B_{1}^{r}\left[E_{1}^{-}(1) \cap E_{2}^{-}(1)\right] \cap B_{2}^{r}\left[E_{1}^{-}(1) \cap E_{2}^{-}(1)\right], \text { by }(2.7) \text { and B4 } \\
& =E_{1}^{-}(1) \cap B_{1}^{r} E_{2}^{-}(1) \cap B_{2}^{r} E_{1}^{-}(1) \cap E_{2}^{-}(1), \text { by B2 } \\
& \subseteq E_{1}^{-}(1,2) \cap E_{2}^{-}(1), \text { by }(2.6) .
\end{aligned}
$$

Iteratively applying (2.5) and (2.6), we have

$$
\begin{aligned}
{\left[B_{*}^{r}\right]^{2 n-2} E^{*} } & \subseteq E_{1}^{-}(1, . ., n) \cap E_{2}^{-}(1, . ., n-1) \\
\text { and }\left[B_{*}^{r}\right]^{2 n-1} E^{*} & \subseteq E_{1}^{-}(1, . ., n) \cap E_{2}^{-}(1, . ., n) .
\end{aligned}
$$

for all $n=2, \ldots, N+M$. Thus $C^{r} E^{*}=\left[B_{*}^{r}\right]^{2 N+2 M-1} E^{*}=\emptyset$.
Finally observe that $P\left[E^{*}\right] \geq p$ (see appendix), so, by corollary $2.10, W^{p} E^{*}=-\operatorname{and} P\left[W^{p} E^{*}\right]=$ 1.

The assumption in remark 2.16 that $r>1 / 2$ is important: if $r<1 / 2$, then event E is common r-belief with high probability whenever it is iterated p-belief with high probability.

Remark 2.18. If $r<1 / 2$ and $r \leq p<1$, then for all events $E: P\left[C^{r} E\right] \geq 1-\left(1-P\left[I^{p} E\right]\right)\left(\frac{1-r}{1-2 r}\right)$.

Proof. Kajii and Morris (1995) have shown that if $r<1 / 2$, then for every simple event F :

$$
\begin{equation*}
P\left[C^{r} F\right] \geq 1-(1-P[F])\left(\frac{1-r}{1-2 r}\right) . \tag{2.8}
\end{equation*}
$$

But $B_{*}^{p} E$ is simple and $I^{p} E \subseteq B_{*}^{p} E$. So

$$
\begin{align*}
P\left[C^{r} E\right] & =P\left[C^{r} B_{*}^{r} E\right] \\
& \geq P\left[C^{r} B_{*}^{p} E\right] \\
& \geq 1-\left(1-P\left[B_{*}^{p} E\right]\right)\left(\frac{1-r}{1-2 r}\right), \text { by }(2.8) \tag{2.8}\\
& \geq 1-\left(1-P\left[I^{p} E\right]\right)\left(\frac{1-r}{1-2 r}\right) .
\end{align*}
$$

On the other hand, for any $0<r \leq p<1$, it is possible to construct an information system with $\omega \in I^{p} E$ but $\omega \notin C^{r} E$, for some state ω and event E.

Remark 2.19. For all $1 / 2<r \leq p<1$ and $\varepsilon>0$, it is possible to construct an information system containing an event E with $P\left[W^{p} E\right]=1$ and $I^{r} E=C^{r} E=\emptyset$.

Consider example 2.7, with $\delta<\min \{\varepsilon, 1-p\}$. For any $r \geq 1 / 2, B_{1}^{r} E^{*}=E^{*}, B_{2}^{r} B_{1}^{r} E^{*}=$ $B_{2}^{r} E^{*}=\{2,3, .\},. B_{1}^{r} B_{2}^{r} B_{1}^{r} E^{*}=B_{1}^{r} B_{2}^{r} E^{*}=\{3,4, .$.$\} , etc.. Thus I^{r} E^{*}=C^{r} E^{*}=\emptyset$. But $P\left[E^{*}\right]=$ $1-\delta>p$, so E^{*} is weakly p-evident, $W^{p} E^{*}=E^{*}$ and $P\left[W^{p} E^{*}\right]=P\left[E^{*}\right]=1-\delta \geq 1-\varepsilon$.

2.5.2. The Bounded State Space Case

If the state space is bounded, proposition 2.2 can be used to give a bound on the difference between iterated p-belief and common p-belief.

Proposition 2.20. Suppose - has n elements. Then for all events $E: I^{p} E \subseteq C^{1-2^{n}(1-p)} E$ and $I^{1-2^{-n}(1-p)} E \subseteq C^{p} E$.

Propostion 2.20 implies in particular that for any $p<1$, there exists some $q<1$ (which depends on p and n) such that whenever an event is iterated q-belief, it is also common p-belief.

Proof. Suppose E^{1}, \ldots, E^{K} is an arbitrary collection of events and $\omega \in B_{i}^{p} E^{1} \cap B_{i}^{p} E^{2} \cap . . \cap$ $B_{i}^{p} E^{K}$. Then $P\left[E^{k} \mid Q_{i}(\omega)\right] \geq p$ for each $k \Rightarrow P\left[\left(-\backslash E^{k}\right) \mid Q_{i}(\omega)\right] \leq 1-p$ for each $k \Rightarrow$
$P\left[\bigcup_{k=1}^{K}\left(-\backslash E^{k}\right) \mid Q_{i}(\omega)\right] \leq K(1-p) \Rightarrow P\left[\bigcap_{k=1}^{K} E^{k} \mid Q_{i}(\omega)\right]=\left[-\backslash\left(\bigcup_{k=1}^{K}\left(-\backslash E^{k}\right)\right) \mid Q_{i}(\omega)\right] \geq$ $1-K(1-p)$. Thus $\omega \in B_{i}^{1-K(1-p)}\left(E^{1} \cap E^{2} \cap . . \cap E^{K}\right)$; so

$$
\begin{equation*}
B_{i}^{p} E^{1} \cap B_{i}^{p} E^{2} \cap . . \cap B_{i}^{p} E^{K} \subseteq B_{i}^{1-K(1-p)}\left(E^{1} \cap E^{2} \cap . . \cap E^{K}\right) \tag{2.9}
\end{equation*}
$$

By proposition $2.2, \omega \in I^{p} E$ implies there exists a mutually p-evident collection of events \mathcal{E} with $\omega \in A=\bigcap_{F \in \mathcal{E}} F, B_{1}^{p} E \in \mathcal{E}$ and $B_{2}^{p} E \in \mathcal{E}$; thus $A \subseteq B_{i}^{p} E \subseteq B_{i}^{1-K(1-p)} E$ for each $i ; \mathcal{E}$ has at most 2^{n} elements, so, by (2.9), $A=\bigcap_{F \in \mathcal{E}} F \subseteq \cap_{F \in \mathcal{E}} B_{i}^{p} F \subseteq B_{i}^{1-2^{n}(1-p)}\left(\cap_{F \in \mathcal{E}} F\right)=B_{i}^{1-2^{n}(1-p)} A$ for each i : thus A is $\left(1-2^{n}(1-p)\right)$-evident and $\omega \in C^{1-2^{n}(1-p)} E$ by proposition 2.5.

This result gives a (very loose) lower bound on the number of states required to allow a given divergence between iterated and common p-belief. Thus if there are n states and there exists a state ω with $\omega \in I^{p}(E)$ and $\omega \notin C^{r}(E)$, then corollary 2.20 implies that $r \geq 1-2^{n}(1-p)$, so that $n \geq \log _{2}(1-r)-\log _{2}(1-p)$. For example, if $p=0.999$ and $r=0.501$, then we must have $n \geq 9$. On the other hand, example 2.17 gives a (very loose) upper bound on the number of states required to allow a given divergence. If $p=0.999$ and $r=0.501$ (and $\varepsilon \geq 0.001$), then the construction of example 2.17 has approximately 5×10^{13213} states!

3. Applications

3.1. Game Theory

To illustrate the significance of approximate common knowledge in game theory, I will focus on simple examples. In particular, I will be interested in symmetric two player, two action, games with two strict Nash equilibria:

\mathcal{G}	0	1
0	x_{00}, x_{00}	x_{01}, x_{10}
1	x_{10}, x_{01}	x_{11}, x_{11}

where $x_{00}>x_{10}, x_{11}>x_{01}$. The best response dynamics are completely characterized by the probability q such that each player is indifferent between his two actions if the other plays action

0 with probability q, i.e.,

$$
q=\frac{\left(x_{11}-x_{01}\right)}{\left(x_{11}-x_{01}\right)+\left(x_{00}-x_{10}\right)}
$$

Our analysis will depend only on the parameter q. Thus our analysis of the general game \mathcal{G} would be the same if we restricted attention to:

\mathcal{G}^{\prime}	0	1
0	$1-q, 1-q$	0,0
1	0,0	q, q

3.1.1. Best Response Dynamics and Iterated p-Belief

Two individuals are endowed with the information structure discussed earlier in the paper. They are playing the (degenerate) incomplete information game where each has the two actions 0 and 1 available and payoffs are always given by the matrix \mathcal{G}. A pure strategy for individual i would usually be written as a \mathcal{Q}_{i}-measurable function $\sigma_{i}:-\rightarrow\{a, b\}$. I will find it useful, however, to identify an individual's strategy with the set of states where he plays action 0 , i.e., $E_{i}=$ $\left\{\omega: \sigma_{i}(\omega)=0\right\}$. Player i 's pure strategy set is thus \mathcal{F}_{i}.

I want to study the incomplete information game best response dynamics. Assume that q is generic so that there is a unique best response. Suppose individual 1 is choosing strategy E_{1}, i.e., playing 0 at all states in E_{1} and 1 at all states not in E_{1}. We can characterize best response functions in terms of belief operators. If 2 assigns probability more than q to the event E_{1}, his best response is to play 0 ; if he assigns probability less than q, his best response would be to play 1 . Thus $B_{2}^{q} E_{1}$ is 2's best response to E_{1} and $B_{1}^{q} E_{2}$ is 1 's best response to E_{2}. Thus we have a best response function, $\rho: \mathcal{F}_{1} \times \mathcal{F}_{2} \rightarrow \mathcal{F}_{1} \times \mathcal{F}_{2}$, with $\rho\left(E_{1}, E_{2}\right)=\left(B_{1}^{q} E_{2}, B_{2}^{q} E_{1}\right)$. Now we have:

Proposition 3.1. If players initially chose strategies $\left(E_{1}, E_{2}\right)$ and revise their strategies by best response dynamics, then action profile $(0,0)$ is always played if and only if the events E_{1} and E_{2} are iterated q-belief, i.e.,

$$
\cap_{n \geq 0}\left[\left[\rho^{n}\right]_{1}\left(E_{1}, E_{2}\right) \cap\left[\rho^{n}\right]_{2}\left(E_{1}, E_{2}\right)\right]=I^{q} E_{1} \cap I^{q} E_{2} .
$$

Proof. First observe that (by B2) $I_{1}^{q} E_{1}=E_{1} \cap B_{1}^{q} B_{2}^{q} E_{1} \cap .$. ; while $I_{1}^{q} E_{2}=B_{1}^{q} E_{2} \cap B_{1}^{q} B_{2}^{q} B_{1}^{q} E_{2} \cap .$. , So

$$
\begin{aligned}
\cap_{n \geq 0}^{\cap}\left[\rho^{n}\right]_{1}\left(E_{1}, E_{2}\right) & =E_{1} \cap B_{1}^{q} E_{2} \cap B_{1}^{q} B_{2}^{q} E_{1} \cap B_{1}^{q} B_{2}^{q} B_{1}^{q} E_{2} \cap . .=I_{1}^{q} E_{1} \cap I_{1}^{q} E_{2} \\
\text { and } \cap_{n \geq 0}^{\cap}\left[\rho^{n}\right]_{2}\left(E_{1}, E_{2}\right) & =E_{2} \cap B_{2}^{q} E_{1} \cap B_{2}^{q} B_{1}^{q} E_{2} \cap B_{2}^{q} B_{1}^{q} B_{2}^{q} E_{1} \cap . .=I_{2}^{q} E_{1} \cap I_{2}^{q} E_{2} .
\end{aligned}
$$

Thus $\cap_{n \geq 0}\left[\left[\rho^{n}\right]_{1}\left(E_{1}, E_{2}\right) \cap\left[\rho^{n}\right]_{2}\left(E_{1}, E_{2}\right)\right]=I_{1}^{q} E_{1} \cap I_{1}^{q} E_{2} \cap I_{2}^{q} E_{1} \cap I_{2}^{q} E_{2}=I^{q} E_{1} \cap I^{q} E_{2}$.
The following example is in the spirit of Rubinstein (1989).

Example 3.2. Let the information structure be that of example 2.7. Suppose that initially player 2 played action 0 everywhere except at states 0 and 1, and player 1 played action 0 everywhere except at state 0 . Thus $E_{1}=\{1,2, .$.$\} and E_{2}=\{2,3, .$.$\} . Now suppose that q>1 / 2$, so that $(1,1)$ is the risk dominant equilibrium of the game. Then best response dynamics gives us:

$$
\rho^{n}\left(E_{1}, E_{2}\right)=\left\{\begin{array}{l}
(\{n+1, n+2, \ldots\},\{n+2, n+3 \ldots\}), \text { if } n \text { is even } \\
(\{n+2, n+3, \ldots\},\{n+1, n+2 \ldots\}), \text { if } n \text { is odd }
\end{array}\right.
$$

Thus $\cap_{n \geq 0}\left(\left[\rho^{n}\right]_{1}\left(E_{1}, E_{2}\right) \cap\left[\rho^{n}\right]_{2}\left(E_{1}, E_{2}\right)\right)=I^{q} E_{1} \cap I^{q} E_{2}=\emptyset$.
The incomplete information game best response dynamics do not have a natural interpretation. However, Morris (1996) shows that incomplete information game best response dynamics are formally equivalent to best response dynamics in a certain class of local interaction games. The latter has been a topic of recent research.

3.1.2. Equilibrium, Iterated Deletion of Dominated Strategies and Common p-Belief

Consider the following related problem. Suppose individuals are endowed again with the information system discussed earlier. Now they are playing an incomplete information game where payoffs are given by the matrix \mathcal{G} at all states, except that each individual i has a dominant strategy to play 1 at all states not in event $E_{i} \in \mathcal{F}_{i}$. As before, identify individual i 's strategy with the set of states where he plays 0 .

Proposition 3.3. $\left(B_{1}^{q} C^{q}\left(E_{1} \cap E_{2}\right), B_{2}^{q} C^{q}\left(E_{1} \cap E_{2}\right)\right)$ is a pure strategy equilibrium of this game. On the other hand, if pure strategy F_{i} survives iterated deletion of strictly dominated strategies, then $F_{i} \subseteq B_{i}^{q} C^{q}\left(E_{1} \cap E_{2}\right)$.

This is a version of results in Morris, Rob and Shin (1995). Monderer and Samet (1989) first proved general results relating common p-belief to equilibria of incomplete information games.

Proof. [1] I will show that strategy $B_{1}^{q} C^{q}\left(E_{1} \cap E_{2}\right)$ is a best response to $B_{2}^{q} C^{q}\left(E_{1} \cap E_{2}\right)$. If $\omega \in$ $B_{1}^{q} C^{q}\left(E_{1} \cap E_{2}\right) \subseteq E_{1}$, player i attaches probability at least q to player 2 choosing action 0 . Since payoffs are given by matrix \mathcal{G}, action 0 is a best response. If $\omega \in E_{1} \backslash B_{1}^{q} C^{q}\left(E_{1} \cap E_{2}\right)$, player i attaches probability at most q to player 2 choosing action 0 . Since payoffs are given by matrix \mathcal{G}, action 1 is a best response. Finally, if $\omega \notin E_{1}$, action 1 is a dominant action.
[2] Let $\mathcal{U}_{i}^{n} \subseteq \mathcal{F}_{i}$ be the set of player i strategies which survive n rounds iterated deletion of strictly interim dominated strategies. Clearly, $F_{i} \in \mathcal{U}_{i}^{1} \Rightarrow F_{i} \subseteq E_{i}$. I will show by induction on $n \geq 2$ that $F_{i} \in \mathcal{U}_{i}^{n} \Rightarrow F_{i} \subseteq B_{i}^{q}\left[B_{*}^{q}\right]^{n-2}\left(E_{1} \cap E_{2}\right)$. Suppose $F_{i} \in \mathcal{U}_{i}^{2}$: since $\mathcal{U}_{i}^{2} \subseteq \mathcal{U}_{i}^{1}, F_{i} \subseteq E_{i}$; since player i attaches positive probability only to strategies $F_{j} \subseteq E_{j}$, we must have $F_{i} \subseteq B_{i}^{q} E_{j}$. So $F_{i} \subseteq$ $E_{i} \cap B_{i}^{q} E_{j}=B_{i}^{p}\left(E_{1} \cap E_{2}\right)$ (by B2). Now suppose that the inductive hypothesis is true for n. Suppose $F_{i} \in \mathcal{U}_{i}^{n+1}$: since $\mathcal{U}_{i}^{n+1} \subseteq \mathcal{U}_{i}^{n}, F_{i} \subseteq B_{i}^{q}\left[B_{*}^{q}\right]^{n-2}\left(E_{1} \cap E_{2}\right)$; since player i attaches positive probability only to strategies $F_{j} \subseteq B_{j}^{q}\left[B_{*}^{q}\right]^{n-2}\left(E_{1} \cap E_{2}\right)$, we must have $F_{i} \subseteq B_{i}^{q} B_{j}^{q}\left[B_{*}^{q}\right]^{n-2}\left(E_{1} \cap E_{2}\right)$. So $F_{i} \subseteq B_{i}^{q}\left[B_{*}^{q}\right]^{n-2}\left(E_{1} \cap E_{2}\right) \cap B_{i}^{q} B_{j}^{q}\left[B_{*}^{q}\right]^{n-2}\left(E_{1} \cap E_{2}\right)=B_{i}^{q}\left(\left[B_{*}^{q}\right]^{n-1}\left(E_{1} \cap E_{2}\right)\right)$ (by B2).

Example 3.4. Suppose the game \mathcal{G} is as follows:

\mathcal{G}	0	1
0	9,9	$-10,0$
1	$0,-10$	0,0

Note that $q=10 / 19$, so equilibrium $(1,1)$ is (j just) risk dominant; but equilibrium $(0,0)$ is Paretodominant. Now suppose the information structure is given by example 2.17, where $1 / 2<r<10 / 19$. Let player 2's payoffs always be given by matrix \mathcal{G}; player 1's payoffs are given by matrix \mathcal{G}, except that player has a dominant strategy to play action 1 if he observes signal 1 . Thus $E_{1}=E^{*}=E_{1}^{-}(1)$ and $E_{2}=-$. Since $C^{q}\left(E_{1} \cap E_{2}\right) \subseteq C^{r}\left(E_{1} \cap E_{2}\right)=C^{r}\left(E_{1}^{-}(1)\right)=\emptyset$ (by B4), the unique strategy
surviving iterated deletion of dominated strategies for each player is \emptyset. Thus action 0 is never played despite the fact that it is iterated p-belief that payoffs are given by \mathcal{G}, with high probability and for any p.

3.2. Agreeing to Disagree, No Trade and Weak Common p-Belief

Write \mathcal{X} for the set of functions, $x:-\longrightarrow[0,1]$. Let $\mathbf{E}(x \mid F)$ be the expected value of $x \in \mathcal{X}$ given event F with $P[F]>0$:

$$
\mathbf{E}(x \mid F)=\frac{\left(\sum_{\omega \in F} x(\omega) P(\omega)\right)}{\left(\sum_{\omega \in F} P(\omega)\right)}
$$

Let \mathbf{E}_{i} be the expectation operator for individual i, so that $\mathbf{E}_{i}(x \mid \omega)=\mathbf{E}\left(x \mid Q_{i}(\omega)\right)$. Let $\Pi_{i}^{+}(x, q)$ be the set of states where individual i 's expected value of x is at least q, let $\Pi_{i}^{-}(x, q)$ be the set of states where individual i 's expected value of x is at most q, and let $\Pi_{i}(x, q)$ be the set of states where individual i 's expected value of x is exactly q :

$$
\begin{aligned}
\Pi_{i}^{+}(x, q) & =\left\{\omega: \mathbf{E}_{i}(x \mid \omega) \geq q\right\} \\
\Pi_{i}^{-}(x, q) & =\left\{\omega: \mathbf{E}_{i}(x \mid \omega) \leq q\right\} \\
\Pi_{i}(x, q) & =\left\{\omega: \mathbf{E}_{i}(x \mid \omega)=q\right\}=\Pi_{i}^{+}(x, q) \cap \Pi_{i}^{-}(x, q)
\end{aligned}
$$

Let $\mathcal{T}\left(x, q_{1}, q_{2}\right)$ be the set of states where individual 1 's expected value of x is at least q_{1}, while individual 2 's expected value is no more than q_{2} :

$$
\mathcal{T}\left(x, q_{1}, q_{2}\right)=\Pi_{1}^{+}\left(x, q_{1}\right) \cap \Pi_{2}^{-}\left(x, q_{2}\right)=\left\{\omega: \mathbf{E}_{1}(x \mid \omega) \geq q_{1} \text { and } \mathbf{E}_{2}(x \mid \omega) \leq q_{2}\right\} .
$$

If $\mathcal{T}\left(x, q_{1}, q_{2}\right)$ is empty for all $x \in \mathcal{X}$ and all q_{1} and q_{2} with q_{1} significantly bigger than q_{2}, then we say there is approximate no trade.

Let $\mathcal{D}\left(x, q_{1}, q_{2}\right)$ be the set of states where individual 1 's expected value of x is exactly q_{1}, while individual 2 's expected value is exactly q_{2}.

$$
\mathcal{D}\left(x, q_{1}, q_{2}\right)=\Pi_{1}\left(x, q_{1}\right) \cap \Pi_{2}\left(x, q_{2}\right)=\left\{\omega: \mathbf{E}_{1}(x \mid \omega)=q_{1} \text { and } \mathbf{E}_{2}(x \mid \omega)=q_{2}\right\}
$$

Thus 1 and 2 disagree by $\left|q_{1}-q_{2}\right|$ about the expected value of x. If $\mathcal{D}\left(x, q_{1}, q_{2}\right)$ is empty for all $x \in \mathcal{X}$ and all q_{1} and q_{2} with $\left|q_{1}-q_{2}\right|$ large, then we say there is approximate agreement.

Proposition 3.5. If there is weak common p-belief that individuals are prepared to trade, then the gains from trade must be small for large p. Specifically, if $W^{p}\left(\mathcal{T}\left(x, q_{1}, q_{2}\right)\right) \neq \emptyset$, then $q_{1}-q_{2} \leq$ $2(1-p)$.

Since $\mathcal{D}\left(x, q_{1}, q_{2}\right) \subseteq \mathcal{T}\left(x, q_{1}, q_{2}\right)$, the trade result extends to agreeing to disagree.

Corollary 3.6. If there is weak common p-belief that individuals disagree, then the disagreement must be small for large p. Specifically, if $W^{p}\left(\mathcal{D}\left(x, q_{1}, q_{2}\right)\right) \neq \emptyset$, then $q_{1}-q_{2} \leq 2(1-p)$.

Monderer and Samet (1989) first proved a version of corollary 3.6, for common p-belief. Neeman (1996) improved the bound to $1-p$. Geanakoplos (1994) observed that essentially the same proof works for weak common p-belief. Sonsino (1995) showed a version of proposition 3.5 for common p-belief (but see Neeman (1995) for an argument why results like proposition 3.5 implicitly assume that individuals are irrational).

Proof. (of proposition 3.5). First observe that $\mathcal{T}\left(x, q_{1}, q_{2}\right)$ is a simple event, by construction. Thus $W^{p}\left(\mathcal{T}\left(x, q_{1}, q_{2}\right)\right)$ is non-empty if and only if there exists $F_{1} \in \mathcal{F}_{1} \backslash \emptyset$ and $F_{2} \in \mathcal{F}_{2} \backslash \emptyset$ with $F_{1} \subseteq \Pi_{1}^{+}\left(x, q_{1}\right), F_{2} \subseteq \Pi_{2}^{-}\left(x, q_{2}\right), P\left[F_{1} \mid F_{2}\right] \geq p$ and $P\left[F_{2} \mid F_{1}\right]>p$. Observe that

$$
\begin{aligned}
q_{1} & \leq \mathbf{E}\left(x \mid F_{1}\right) \\
& =\mathbf{E}\left(x \mid F_{1} \cap F_{2}\right) \cdot P\left[F_{2} \mid F_{1}\right]+\mathbf{E}\left(x \mid\left(F_{1} \backslash F_{2}\right)\right) \cdot\left(1-P\left[F_{2} \mid F_{1}\right]\right) \\
& \leq \mathbf{E}\left(x \mid F_{1} \cap F_{2}\right) \cdot P\left[F_{2} \mid F_{1}\right]+1-P\left[F_{2} \mid F_{1}\right] \\
& \leq \mathbf{E}\left(x \mid F_{1} \cap F_{2}\right)+(1-p),
\end{aligned}
$$

$$
\begin{aligned}
\text { while } q_{2} & \geq \mathbf{E}\left(x \mid F_{2}\right) \\
& =\mathbf{E}\left(x \mid F_{1} \cap F_{2}\right) \cdot P\left[F_{1} \mid F_{2}\right]+\mathbf{E}\left(x \mid\left(F_{2} \backslash F_{1}\right)\right) \cdot\left(1-P\left[F_{1} \mid F_{2}\right]\right) \\
& \geq \mathbf{E}\left(x \mid F_{1} \cap F_{2}\right) \cdot P\left[F_{1} \mid F_{2}\right] \\
& \geq \mathbf{E}\left(x \mid F_{1} \cap F_{2}\right)-(1-p) .
\end{aligned}
$$

Thus $q_{1}-q_{2} \leq 2(1-p)$.

The following is a partial converse to proposition 3.5.

Proposition 3.7. Suppose E is a finite simple event, $P[E]>0$ and $W^{p} E=\emptyset$. Then there exists $x \in \mathcal{X}$ such that $E \subseteq \mathcal{D}(x, 1 / 2+(1 / 4)(1-p), 1 / 2-(1 / 4)(1-p))$.

Since $\mathcal{D}\left(x, q_{1}, q_{2}\right) \subseteq \mathcal{T}\left(x, q_{1}, q_{2}\right)$, the agreeing to disagree result extends to trade.

Corollary 3.8. Suppose E is a finite simple event, $P[E]>0$ and $W^{p} E=\emptyset$. Then there exists $x \in \mathcal{X}$ such that $E \subseteq \mathcal{T}(x, 1 / 2+(1 / 4)(1-p), 1 / 2-(1 / 4)(1-p))$.

Proof. Write $E=E_{1} \cap E_{2}$, each $E_{i} \in \mathcal{F}_{i}$. Write $\mathcal{Q}_{i}^{*}=\left\{F \in \mathcal{Q}_{i}: F \subseteq E_{i}\right\}$ and $T_{i}=\mathcal{Q}_{i}^{*} \cup\left\{-\backslash E_{i}\right\}$. Note that T_{i} is a finite partition of - which coarsens \mathcal{Q}_{i}. For any $\left(F_{1}, F_{2}\right) \in T_{1} \times T_{2}$, let $\pi\left(F_{1}, F_{2}\right)=$ $\sum_{\omega \in F_{1} \cap F_{2}} P(\omega)$. Consider the following linear programming problem. Choose $y: T_{1} \times T_{2} \rightarrow[0,1]$ and $\delta \in[0,1 / 2]$ to maximize δ subject to

$$
\begin{align*}
& \text { [i] } \sum_{F_{2} \in T_{2}} y\left(F_{1}, F_{2}\right) \pi\left(F_{1}, F_{2}\right)=\left(\frac{1}{2}+\delta\right) \sum_{F_{2} \in T_{2}} \pi\left(F_{1}, F_{2}\right) \text {, for all } F_{1} \in \mathcal{Q}_{1}^{*} \\
& \text { [ii] } \sum_{F_{1} \in T_{1}} y\left(F_{1}, F_{2}\right) \pi\left(F_{1}, F_{2}\right)=\left(\frac{1}{2}-\delta\right) \sum_{F_{1} \in T_{1}} \pi\left(F_{1}, F_{2}\right) \text {, for all } F_{2} \in \mathcal{Q}_{2}^{*} \tag{3.1}\\
& \text { [iii] } y\left(F_{1}, F_{2}\right) \geq 0 \text {, for all }\left(F_{1}, F_{2}\right) \in T_{1} \times T_{2} \\
& \text { [iv] } y\left(F_{1}, F_{2}\right) \leq 1 \text {, for all }\left(F_{1}, F_{2}\right) \in T_{1} \times T_{2}
\end{align*}
$$

Observe first that the maximand δ is less than $1 / 2$. If $\delta=1 / 2$, then we would have $\mathbf{E}\left(x \mid E_{1}\right)=1$ and $\mathbf{E}\left(x \mid E_{2}\right)=0$, which implies $P\left[E_{1} \cap E_{2}\right]=0$, a contradiction.

By standard linear programming arguments, we have that if (y, δ) is a solution to this problem, we must have $\lambda_{1}: T_{1} \rightarrow \Re, \lambda_{2}: T_{2} \rightarrow \Re, \zeta: T_{1} \times T_{2} \rightarrow \Re_{+}$and $\xi: T_{1} \times T_{2} \rightarrow \Re_{+}$, such that:

$$
\begin{align*}
& \text { [i] } \lambda_{1}\left(F_{1}\right) \pi\left(F_{1}, F_{2}\right)-\lambda_{2}\left(F_{2}\right) \pi\left(F_{1}, F_{2}\right)+\zeta\left(F_{1}, F_{2}\right)-\xi\left(F_{1}, F_{2}\right)=0, \text { for all }\left(F_{1}, F_{2}\right) \in \mathcal{Q}_{1}^{*} \times \mathcal{Q}_{2}^{*} . \\
& \text { [ii] } \lambda_{1}\left(F_{1}\right) \pi\left(F_{1},-\backslash E_{2}\right)+\zeta\left(F_{1},-\backslash E_{2}\right)-\xi\left(F_{1},-\backslash E_{2}\right)=0, \text { for all } F_{1} \in \mathcal{Q}_{1}^{*} . \\
& \text { [iii] }-\lambda_{2}\left(F_{2}\right) \pi\left(-\backslash E_{1}, F_{2}\right)+\zeta\left(-\backslash E_{1}, F_{2}\right)-\xi\left(-\backslash E_{1}, F_{2}\right)=0 \text {, for all } F_{2} \in \mathcal{Q}_{2}^{*} . \\
& \text { [iv] } \zeta\left(F_{1}, F_{2}\right)>0 \Rightarrow y\left(F_{1}, F_{2}\right)=0 . \\
& \text { [v] } \xi\left(F_{1}, F_{2}\right)>0 \Rightarrow y\left(F_{1}, F_{2}\right)=1 . \tag{3.2}
\end{align*}
$$

First suppose that $\lambda_{i}\left(F_{i}\right) \leq 0$ for all $F_{i} \in \mathcal{Q}_{i}^{*}$ and both i. Then δ would remain a solution if we replace [i] and [ii] in (3.1) with:

$$
\begin{align*}
& {\left[\mathrm{i}^{\prime}\right] \sum_{F_{2} \in T_{2}} y\left(F_{1}, F_{2}\right) \pi\left(F_{1}, F_{2}\right) \leq\left(\frac{1}{2}+\delta\right) \sum_{F_{2} \in T_{2}} \pi\left(F_{1}, F_{2}\right), \text { for all } F_{1} \in \mathcal{Q}_{1}^{*} .} \tag{3.3}\\
& {\left[\mathrm{ii}^{\prime}\right] \sum_{F_{1} \in T_{1}} y\left(F_{1}, F_{2}\right) \pi\left(F_{1}, F_{2}\right) \geq\left(\frac{1}{2}-\delta\right) \sum_{F_{1} \in T_{1}} \pi\left(F_{1}, F_{2}\right), \text { for all } F_{2} \in \mathcal{Q}_{2}^{*}}
\end{align*}
$$

But this revised problem has solution $1 / 2$ (e.g., set $y\left(F_{1}, F_{2}\right)=1 / 2$, for all $\left.\left(F_{1}, F_{2}\right) \in T_{1} \times T_{2}\right)$. This contradicts our earlier result that $\delta<1 / 2$.

Now suppose that there exists F_{i}^{*} with $\lambda_{i}\left(F_{i}^{*}\right)>0$ and $\lambda_{i}\left(F_{i}^{*}\right)>\lambda_{j}\left(F_{j}\right)$ for all $F_{j} \in \mathcal{Q}_{j}^{*}$. Without loss of generality, take $i=1$. But now parts [i] and [ii] of (3.2) imply that $\xi\left(F_{1}^{*}, F_{2}\right)>0$ for all $F_{2} \in T_{2}$; so by part [v] of $(3.2), y\left(F_{1}^{*}, F_{2}\right)=1$ for all $F_{2} \in T_{2}$; so by part [i] of $(3.1), \delta=1 / 2$, again a contradiction.

So if we let λ^{*} be the largest value in the range of λ_{1} and λ_{2}, and let $\mathcal{Q}_{i}^{* *}=\left\{F_{i} \in \mathcal{Q}_{i}^{*}: \lambda_{i}\left(F_{i}\right)=\lambda^{*}\right\}$, we know that each $\mathcal{Q}_{i}^{* *}$ is non-empty. By (3.2), we must have $y\left(F_{1}, F_{2}\right)=1$ if $F_{1} \in \mathcal{Q}_{1}^{* *}$ and $F_{2} \notin \mathcal{Q}_{2}^{* *}$; and $y\left(F_{1}, F_{2}\right)=0$ if $F_{2} \in \mathcal{Q}_{2}^{* *}$ and $F_{1} \notin \mathcal{Q}_{1}^{* *}$. So parts [i] and [ii] of (3.1) become:
[i] $\sum_{F_{2} \in \mathcal{Q}_{2}^{* *}} y^{*}\left(F_{1}, F_{2}\right) \pi\left(F_{1}, F_{2}\right)+\sum_{F_{2} \in T_{2} \backslash \mathcal{Q}_{2}^{* *}} \pi\left(F_{1}, F_{2}\right)=\left(\frac{1}{2}+\delta\right) \sum_{F_{2} \in T_{2}} \pi\left(F_{1}, F_{2}\right)$, for all $F_{1} \in \mathcal{Q}_{1}^{* *}$.
[ii] $\sum_{F_{1} \in \mathcal{Q}_{1}^{* *}} y^{*}\left(F_{1}, F_{2}\right) \pi\left(F_{1}, F_{2}\right)=\left(\frac{1}{2}-\delta\right) \sum_{F_{1} \in T_{1}} \pi\left(F_{1}, F_{2}\right)$, for all $F_{2} \in \mathcal{Q}_{2}^{* *}$.
Now let $F_{i}^{*}=\underset{F_{i} \in \mathcal{Q}_{i}^{* *}}{\cup} F_{i}, \alpha=\mathbf{E}\left(x \mid F_{1}^{*} \cap F_{2}^{*}\right), p_{i}=P\left[F_{j}^{*} \mid F_{i}^{*}\right]$ for each $j \neq i$ and $x(\omega)=$ $y^{*}\left(T_{1}(\omega), T_{2}(\omega)\right)$, where $T_{i}(\omega)$ is the element of T_{i} containing state ω.

We have $1 / 2-\delta=\mathbf{E}_{2}\left(x \mid F_{2}^{*}\right) \leq \alpha$, so

$$
\begin{aligned}
1 / 2+\delta & =\mathbf{E}_{1}\left(x \mid F_{1}^{*}\right) \\
& =p_{1} \alpha+\left(1-p_{1}\right) \\
& \geq p_{1}(1 / 2-\delta)+\left(1-p_{1}\right)
\end{aligned}
$$

Re-arranging gives $\delta \geq(1 / 2)\left(1-p_{1}\right) /\left(1+p_{1}\right) \geq(1 / 4)\left(1-p_{1}\right)$. Analogously, we have $1 / 2+\delta=$ $\mathbf{E}_{1}\left(x \mid F_{1}^{*}\right) \geq \alpha$, so

$$
\begin{aligned}
1 / 2-\delta & =\mathbf{E}_{2}\left(x \mid F_{2}^{*}\right) \\
& =p_{2} \alpha \\
& \leq p_{2}(1 / 2+\delta)
\end{aligned}
$$

Re-arranging gives $\delta \geq(1 / 2)\left(1-p_{2}\right) /\left(1+p_{2}\right) \geq(1 / 4)\left(1-p_{2}\right)$. But since $E_{1} \cap E_{2}$ is not weakly p-evident, we must have either p_{1} or p_{2} less than p. Thus $\delta \geq(1 / 4)(1-p)$.

4. Notes

1. The Common Prior Assumption. Throughout this paper, I assumed the common prior assumption. For the characterizations of common p-belief, iterated p-belief and the game theoretic results, it made no difference. On the other hand, the characterization of weak common p-belief and the no trade / agreement results depend on the common prior. Assuming a common prior made it harder to show the large divergence between common p-belief and iterated p-belief.
2. Many Individuals. I focussed on the case of two individuals for simplicity. Many of the results generalize to many individuals. For example, iterated p-belief is naturally defined (hierarchically) as follows. Let \mathcal{I} be a collection of individuals, each with a partition \mathcal{Q}_{i} giving belief operator B_{i}^{p}. Let $F(n)$ be the collection of functions $f:\{1, \ldots, n\} \rightarrow \mathcal{I}$. Define

$$
I^{p} E \equiv \underset{n \geq 1,}{ } \cap_{f \in F(n)} B_{f(1)}^{p} B_{f(2)}^{p} \ldots . B_{f(n)}^{p} E .
$$

Say that collection of events $\mathcal{E} \subseteq 2$ is mutually p-evident if $B_{i}^{p} F \in \mathcal{E}$ for all $F \in \mathcal{E}$. Then proposition 2.2 remains true essentially as stated: Event E is iterated p-belief at ω if and only if there exists a mutually p-evident collection of events \mathcal{E} with [1] $B^{p} E \in \mathcal{E}$ for all $i \in \mathcal{I}$; and $[2] \omega \in F$, for all $F \in \mathcal{E}$.
3. Yet Another Notion of Approximate Common Knowledge. Börgers (1994) and Monderer and Samet (1990) use the following notion of repeated common p-belief:

$$
R^{p} E \equiv B_{*}^{p} E \cap B_{*}^{p}\left(E \cap B_{*}^{p} E\right) \cap B_{*}^{p}\left(E \cap B_{*}^{p}\left(E \cap B_{*}^{p} E\right)\right) \cap \ldots
$$

More formally, define an operator $B_{*}^{p}(. ; E): 2 \rightarrow 2$ by $B_{*}^{p}(F ; E)=B_{1}^{p}(F \cap E) \cap B_{2}^{p}(F \cap E)$, and let $R^{p} E=\cap_{n \geq 1}\left[B_{*}^{p}(. ; E)\right]^{n} E$. By definition, for all events $E, R^{p} E \subseteq C^{p} E$. As noted
by Monderer and Samet (1990), we have $C^{p} E \subseteq R^{2 p-1} E$ for all events $E .^{6}$ Thus common p-belief and repeated common p-belief will deliver the same results for p close to 1 .
4. The Relation Between Iterated p-Belief and Weak Common p-Belief. Common p belief implies iterated p-belief and weak common p-belief (see lemmas 2.14 and 2.15). Iterated p-belief may be much weaker than common p-belief (see remark 2.16). Weak common p-belief may be much weaker than both iterated p-belief and common p-belief (see remark 2.19). However, we did not show whether iterated p-belief is necessarily a stronger requirement than weak common p-belief. Specifically, for arbitrary $1 / 2<r \leq p<1$, is it possible to have $\omega \in I^{p} E$ but $\omega \notin W^{r} E$? This remains an open question.
5. Attaining Approximate Common Knowledge. Can approximate common knowledge be achieved in practice? Consider first common p-belief. Presumably it is not possible to infinite levels of belief by decentralized communication. In practice, it is the observation of almost public events (i.e., p-evident events) that will generate common p-belief. Iterated p-belief has no such natural fixed point characterization. Thus it seems unlikely that iterated p-belief (with p close to one) will often be attained in settings where common p-belief is not (our examples notwithstanding). On the other hand, if there is a common prior, we have given one natural sufficient condition for an event to be weak common p-belief with high probability: it is enough that the event has high ex ante probability (see corollary 2.10). No almost public event is required to attain weak common p-belief.

References

[1] Aumann, R.: Agreeing to Disagree. The Annals of Statistics 4, 1236-1239 (1976)
[2] Börgers, T.: Weak Dominance and Approximate Common Knowledge. Journal of Economic Theory 64, 265-276 (1994)

[^3][3] Brandenburger, A. and Dekel E.: Common Knowledge with Probability One. Journal of Mathematical Economics 16, 237-245 (1987)
[4] Geanakoplos, J.: Common Knowledge. chapter 40 of Handbook of Game Theory, Volume 2, edited by R. Aumann and S. Hart. Amsterdam: Elsevier Science (1994)
[5] Kajii, A. and Morris S.: The Robustness of Equilibria to Incomplete Information. CARESS Working Paper \#95-19 (1995)
[6] Lewis, D.: Conventions. Cambridge, MA: Harvard University Press (1969)
[7] Monderer, D. and Samet D.: Approximating Common Knowledge with Common Beliefs. Games and Economic Behavior 1, 170-190 (1990)
[8] Monderer, D. and Samet D.: Proximity of Information in Games with Incomplete Information. forthcoming in Mathematics of Operations Research (1990)
[9] Morris, S.: Strategic Local Interaction. (1996)
[10] Morris, S., Postlewaite, A. and Shin, H.: Depth of Knowledge and the Effect of Higher Order Uncertainty. Economic Theory 6, 453-467 (1995)
[11] Morris, S., Rob, R. and Shin, H.: p-Dominance and Belief Potential. Econometrica 63, 145-147 (1995)
[12] Neeman, Z.: Common Beliefs and the Existence of Speculative Trade. forthcoming in Games and Economic Behavior (1995)
[13] Neeman, Z.: Approximating Agreeing to Disagree Results with Common p-Beliefs. Games and Economic Behavior 12, 162-164 (1996)
[14] Rubinstein, A.: The Electronic Mail Game: Strategic Behavior under Almost Common Knowledge. American Economic Review 79, 385-391 (1989)
[15] Sonsino, D.: 'Impossibility of Speculation' Theorems with Noisy Information. Games and Economic Behavior 8, 406-423 (1995)
[16] Stinchcombe, M.: Approximate Common Knowledge. (1988)

5. Appendix

We present some properties used in example 2.17.
First note that the definitions of N and M imply:
${ }_{[1]} \frac{1}{N+1} \leq \frac{2}{N+2} \leq \frac{1}{2} ;[2] \frac{N+1}{2 N+1} \leq r ;[3] \frac{N^{2 N+1}}{N^{2 N+1}+M} \leq \frac{1}{2} ;[4] \frac{N}{N+1} \geq p ;$ and $[5] \frac{2 N-1}{2 N} \geq p$.
These inequalities will be used extensively in the following calculations.

Ex Ante Probabilities

- $P\left[E_{1}^{-}(1, . ., N) \cap E_{2}^{-}(1, . ., N)\right] \geq \max (1-\varepsilon, p)$.

Write $F=E_{1}^{-}(1, . ., N) \cap E_{2}^{-}(1, . ., N)$.

$$
\begin{aligned}
\pi[F] & =M-1+(2 M-3) N+N^{2 N+1} \\
& \geq M \\
& \geq \frac{N^{2(N+1)}}{\varepsilon} . \\
\pi[-\backslash F] & =N-1+\left(1+N+. .+N^{2 N}\right) \\
& =N-1+\frac{N^{2 N+1}-1}{N-1} \\
& \leq N+N^{2 N+1} \\
& \leq N^{2(N+1)} .
\end{aligned}
$$

Thus $P[F]=\frac{\pi[F]}{\pi[F]+\pi[\backslash F]} \geq \frac{N^{2(N+1)} / \varepsilon}{N^{2(N+1)} / \varepsilon+N^{2(N+1)}}=\frac{1}{1+\varepsilon} \geq 1-\varepsilon$. A symmetric argument shows $P[F] \geq p$.

- $P\left[E^{*}\right] \geq p$.
$E_{1}^{-}(1, . ., N) \cap E_{2}^{-}(1, . ., N) \subseteq E^{*}$, so $P\left[E^{*}\right] \geq P\left[E_{1}^{-}(1, . ., N) \cap E_{2}^{-}(1, . ., N)\right] \geq p$.

Properties of B_{i}^{p}

- $B_{2}^{p}\left(E_{1}^{-}(n)\right)=E_{2}^{-}(n)$, for all $n=1, . ., N$.

For $n=1$,

$$
P\left[E_{1}^{-}(n) \mid E_{2}^{+}(m)\right]=\left\{\begin{array}{l}
\frac{N^{2 N-2}+1}{N^{2 N-1}+N^{2 N-2}+1} \leq \frac{2}{N+2} \leq \frac{1}{2}<p, \text { if } m=1 \\
\frac{N^{2 N+1}}{N^{2 N}+N^{2 N+1}}=\frac{N}{N+1} \geq p, \text { if } m=M+N \\
1, \text { for all other } m
\end{array}\right.
$$

For $n=2, . ., N-1$,

$$
P\left[E_{1}^{-}(n) \mid E_{2}^{+}(m)\right]=\left\{\begin{array}{l}
\frac{N^{2(N-n)+1}}{N^{2(N-n)+1}+N^{2(N-n)}+1} \leq \frac{2}{N+2} \leq \frac{1}{2}<p, \text { if } m=n \\
\frac{N^{2(N-n)+1}+1}{N^{2(N-n)+1}+N^{2(N-n)}+1} \geq \frac{N}{N+1} \geq p, \text { if } m=n-1 \\
1, \text { for all other } m
\end{array}\right.
$$

For $n=N$,

$$
P\left[E_{1}^{-}(n) \mid E_{2}^{+}(m)\right]=\left\{\begin{array}{l}
\frac{1}{N+1} \leq \frac{1}{2}<p, \text { if } m=N \\
\frac{N^{3}+1}{N^{3}+N^{2}+1} \geq \frac{N}{N+1} \geq p, \text { if } m=N-1 \\
1, \text { for all other } m
\end{array} .\right.
$$

- $B_{1}^{p}\left(E_{2}^{-}(n)\right)=E_{1}^{-}(n+1)$, for all $n=1, . ., N-1$.

For $n=1, . ., N-1$,

$$
P\left[E_{2}^{-}(n) \mid E_{1}^{+}(m)\right]=\left\{\begin{array}{l}
\frac{1}{N+1} \leq \frac{1}{2}<p, \text { if } m=n+1 \\
\frac{N}{N+1} \geq p, \text { if } m=n \\
\frac{2 N-1}{2 N} \geq p, \text { if } m=N+1 \\
1, \text { for all other } m
\end{array} .\right.
$$

- $B_{1}^{p}\left(E_{2}^{-}(N)\right)=-$.

$$
P\left[E_{2}^{-}(N) \mid E_{1}^{+}(m)\right]=\left\{\begin{array}{l}
\frac{N}{N+1} \geq p, \text { if } m=N \\
\frac{2 N-1}{2 N} \geq p, \text { if } m=N+1 \\
1, \text { for all other } m
\end{array}\right.
$$

Properties of B_{i}^{r}

- $B_{2}^{r}\left(E_{1}^{-}(1, . ., n)\right) \subseteq E_{2}^{-}(n)$, for all $n=1, . ., N+M$.

For $n=1, . ., N-1$,

$$
P\left[E_{1}^{-}(1, . ., n) \mid E_{2}^{+}(n)\right]=\frac{N^{2(N-n)}+1}{N^{2(N-n)+1}+N^{2(N-n)}+1} \leq \frac{2}{N+2} \leq \frac{1}{2}<r
$$

For $n=N$,

$$
P\left[E_{1}^{-}(1, . ., n) \mid E_{2}^{+}(n)\right]=\frac{1}{N+1} \leq \frac{1}{2}<r
$$

For $n=N+1, \ldots, N+M-2$,

$$
P\left[E_{1}^{-}(1, . ., n) \mid E_{2}^{+}(n)\right]=\frac{N+1}{2 N+1}<r .
$$

For $n=N+M-1$,

$$
P\left[E_{1}^{-}(1, . ., n) \mid E_{2}^{+}(n)\right]=\frac{1}{N+1} \leq \frac{1}{2}<r .
$$

For $n=N+M$,

$$
P\left[E_{1}^{-}(1, . ., n) \mid E_{2}^{+}(n)\right]=0<r
$$

- $B_{1}^{r}\left(E_{2}^{-}(1, . ., n)\right) \subseteq E_{1}^{-}(n+1)$, for all $n=1, . ., N+M-1$.

For $n=1, . ., N-1$,

$$
P\left[E_{2}^{-}(1, . ., n) \mid E_{1}^{+}(n+1)\right]=\frac{1}{N+1} \leq \frac{1}{2}<r .
$$

For $n=N, \ldots, N+M-2$,

$$
P\left[E_{2}^{-}(1, . ., n) \mid E_{1}^{+}(n+1)\right]=\frac{1}{2}<r .
$$

For $n=N+M-1$,

$$
P\left[E_{2}^{-}(1, . ., n) \mid E_{1}^{+}(n+1)\right]=\frac{N^{2 N+1}}{N^{2 N+1}+M} \leq \frac{1}{2}<r
$$

[^0]: * This paper incorporates material from "Trade and Almost Common Knowledge," University of Cambridge Economic Theory Discussion Paper \#194. In particular, it corrects lemma 4 of that paper, which was false. I am grateful for financial support to visit Cambridge from an ESRC research grant (R000232865) and EEC contract (SPESCT910057). This version was prepared for the 1996 SITE Summer Workshop on Epistemic and other Foundational Issues in Game Theory.
 ${ }^{\dagger}$ Department of Economics, University of Pennsylvania, 3718 Locust Walk, Philadelphia PA 19104-6297. E-Mail: smorris@econ.sas.upenn.edu.

[^1]: ${ }^{1}$ Monderer and Samet (1989).
 ${ }^{2}$ This is equivalent to $(1-p, \infty)$-approximate common knowledge, in the language of Stinchcombe (1988).
 ${ }^{3}$ Verbal hierarchical descriptions of common knowledge between two individuals in the literature are typically in the form of iterated 1-belief (see Lewis (1969), Aumann (1976) and Brandenburger and Dekel (1987)).
 ${ }^{4}$ This is equivalent to weakly p-common knowledge in Geanakoplos (1994).

[^2]: ${ }^{5}$ Formally, we have $\pi\left(s_{1}, s_{2}\right)=N^{2(N-n)+1}$, if $s_{1}=s_{2}=n$ and $n=1, \ldots, N ; \pi\left(s_{1}, s_{2}\right)=N^{2(N-n)}$, if $s_{1}=n+1$, $s_{2}=n$ and $n=1, \ldots, N ; \pi\left(s_{1}, s_{2}\right)=N$, if $s_{1}=s_{2}=n$ and $n=N, \ldots, N+M-1 ; \pi\left(s_{1}, s_{2}\right)=N$, if $s_{1}=n+1, s_{2}=n$ and $n=N+1, \ldots, N+M-2 ; \pi\left(s_{1}, s_{2}\right)=1$, if $s_{1}=N+1$ and $s_{2}=1, \ldots, N ; \pi\left(s_{1}, s_{2}\right)=1$, if $s_{1}=N+M$ and $s_{2}=N+1, . ., N+M-1 ; \pi(1, N+M)=N^{2 N} ; \pi(N+M, N+M)=N^{2 N+1} ; \pi\left(s_{1}, s_{2}\right)=0$, otherwise.

[^3]: ${ }^{6} \omega \in R^{p} E$ if and only if there exists F such that $\omega \in F \subseteq B_{*}^{p}(E \cap F)$; but if $\omega \in C^{p} E$, then there exists F with $\omega \in F$ and, for both $i, F \subseteq B_{i}^{p} F$ and $F \subseteq B_{i}^{p} E$; the latter implies $F \subseteq B_{i}^{2 p-1}(E \cap F)$ for both i (see equation 2.9), so $\omega \in R^{2 p-1} E$.

