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Abstract

Suppose we replace \knowledge" by \belief with probability p" in standard de¯nitions of

common knowledge. Very di®erent notions arise depending the exact de¯nition of common

knowledge used in the substitution. This paper demonstrates those di®erences and identi¯es

which notion is relevant in each of three contexts: equilibrium analysis in incomplete information

games, best response dynamics in incomplete information games, and agreeing to disagree/no

trade results.

1. Introduction

Suppose we replace \knowledge" in the de¯nition of common knowledge by belief with high prob-

ability; what notion of approximate common knowledge do we get? The answer is surprisingly

sensitive to the exact de¯nition of common knowledge in that construction.
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tract (SPESCT910057). This version was prepared for the 1996 SITE Summer Workshop on Epistemic and other

Foundational Issues in Game Theory.
y Department of Economics, University of Pennsylvania, 3718 Locust Walk, Philadelphia PA 19104-6297. E-Mail:
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Consider (as I shall throughout this paper) the case where there are two individuals, 1 and

2. Say that one individual p-believes event E if he assigns it probability at least p. Event E is

common p-belief if both p-believe E, both p-believe that both p-believe E, both p-believe that both

p-believe that both p-believe E, and so on.1 Event E is iterated p-belief for 1 if 1 p-believes E, 1

p-believes that 2 p-believes E, 1 p-believes that 2 p-believes that 1 p-believes E, and so on. Event

E is iterated p-belief if it is iterated p-belief for both individuals.2

Common 1-belief and iterated 1-belief are equivalent to each other and to standard de¯nitions

of common knowledge.3 When p is not equal to 1, common p-belief is not equivalent to iterated

p-belief. If an event is common p-belief, it is necessarily iterated p-belief, but the converse is not

true. It might nonetheless be conjectured that for any p < 1, there should exist some q (su±ciently

close to 1) such that if an event is iterated q-belief, it must be common p-belief. This is false: in

particular, I show that for any 1=2 < r · p < 1 and " > 0, it is possible to ¯nd events which are

iterated p-belief with probability at least 1 ¡ ", but which are never common r-belief.

Monderer and Samet (1989) established that common p-belief is the natural notion of approxi-

mate common knowledge when studying the robustness to equilibria to a lack of common knowledge

of payo®s. I show that iterated p-belief is the relevant notion of approximate common knowledge

for the study of best response dynamics in incomplete information games.

Another important application of common knowledge, starting with Aumann (1976), has been

to agreeing to disagree and no trade results. The relevant notion of approximate common knowledge

for both kinds of results is weak common p-belief. An event is said to be weak common p-belief if it

is common p-belief either given individuals' actual information or if individuals ignore some of their

information.4 This notion is much weaker than common p-belief and is necessary and su±cient for

both approximate agreement results and approximate no trade results.

The paper is organized as follows. Alternative notions of approximate common knowledge are

1Monderer and Samet (1989).

2This is equivalent to (1¡ p;1)-approximate common knowledge, in the language of Stinchcombe (1988).
3Verbal hierarchical descriptions of common knowledge between two individuals in the literature are typically in

the form of iterated 1-belief (see Lewis (1969), Aumann (1976) and Brandenburger and Dekel (1987)).

4This is equivalent to weakly p-common knowledge in Geanakoplos (1994).
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introduced, characterized and related in section 2. Iterated p-belief, common p-belief and weak

common p-belief are introduced in sections 2.1 through 2.3 respectively; in section 2.4, it is shown

that in the special case when p equals 1, all three notions are equivalent; but in section 2.5, it is

shown that if p < 1, there is no necessary connection between common p-belief and the two weaker

notions. Section 3 considers applications and shows which notion is relevant for which application.

Section 4 contains discussion.

2. Approximate Common Knowledge

There are two individuals, f1; 2g; let ­ be a countable state space, with typical element !. For

each i 2 f1; 2g, let Qi be a partition of ­. Write Fi for the ¾-¯eld generated by Qi. Let P be a

probability on the countable state space.

Event E µ ­ is simple if E = E1 \ E2 and each Ei 2 Fi. Whenever event E1 \ E2 is said to

be simple, it should be understood that Ei 2 Fi, for both i. Write Qi (!) for the (unique) element

of Qi containing !. The partition Qi is interpreted as individual i's information, so that if the

true state is !, individual i knows only that the true state is an element of Qi (!). Write P (!) for

the probability of the singleton event f!g, and P [E jF ] for the conditional probability of event E,

given event F , if P [F ] > 0. Throughout the paper, I will assume that all information sets occur

with positive probability, i.e., P [Qi (!)] > 0 for all ! 2 ­ and i 2 f1; 2g. When i represents a

typical individual, j will be understood to be the other individual.

An individual p-believes an event E at state ! if the conditional probability of E, given

Qi (!), is at least p. Writing Bp
iE for the set of states where i p-believes E, we have Bp

iE ´
f! : P [E jQi (!) ] ¸ pg. The following straightforward properties of belief operators will be used

extensively:

B1: If E 2 Fi, then Bp
iE = E.

B2: If E1 \ E2 is simple, then Bp
i (E1 \ E2) = Ei \ Bp

iEj .

B3: If q ¸ p, then Bq
iE µ Bp

iE.

B4: If E µ F , then Bp
i E µ Bp

i F .
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2.1. Iterated p-Belief

Event E is iterated p-belief for 1 if 1 p-believes it, 1 p-believes that 2 p-believes it, 1 p-believes that

2 p-believes that 1 p-believes it, and so on. Writing Ipi E for the set of states where E is iterated

p-belief for i, we have:

Ip1E ´ Bp
1E \ Bp

1B
p
2E \ Bp

1B
p
2B

p
1E \ :::

Ip2E ´ Bp
2E \ Bp

2B
p
1E \ Bp

2B
p
1B

p
2E \ :::

De¯nition 2.1. (Hierarchical). Event E is iterated p-belief if it is iterated p-belief for both players.

Thus E is iterated p-belief at state ! if ! 2 IpE ´ Ip1E \ Ip2E.

This de¯nition corresponds to (1 ¡ p;1)¡approximate common knowledge, in the language of

Stinchcombe (1988). It is possible to give a rather weak \¯xed point" characterization of iterated

p-belief. Say that collection of events E is mutually p-evident if Bp
iE 2 E, for all events E 2 E and

both i.

Proposition 2.2. (Fixed Point Characterization) Event E is iterated p-belief at ! if and only if

there exists a mutually p-evident collection of events E with [1] Bp
iE 2 E for both i; and [2] ! 2 F ,

for all F 2 E.

Proof. (if) Suppose E is mutually p-evident and [1] and [2] hold. By [1], Bp
1E 2 E and Bp

2E 2
E. Now, by E mutually p-evident, Bp

1B
p
2E 2 E and Bp

2B
p
1E 2 E and so Bp

1 [Bp
2B

p
1 ]
nE 2 E,

Bp
2 [Bp

1B
p
2 ]
n

E 2 E, [Bp
2B

p
1 ]
n+1

E 2 E , [Bp
1B

p
2 ]
n+1

E 2 E, for all n ¸ 0. Since IpE is exactly the

intersection of these expressions, ! 2 IpE by [2].

(only if) Suppose E is iterated p-belief at !. Let

E =

8
><
>:

F µ ­ :
F 2

n
Bp
1 [Bp

2B
p
1 ]
n

E;Bp
2 [Bp

1B
p
2 ]
n

E; [Bp
2B

p
1 ]
n+1

E; [Bp
1B

p
2 ]
n+1

E
o

;

for some n ¸ 0

9
>=
>;

.

By de¯nition of iterated p-belief, [2] holds. By construction of E, [1] holds and E is mutually

p-evident. 2
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Example 2.3. ­ = f1; 2; 3; 4; 5; 6g; Q1 = (f1; 2g ; f3g ; f4g ; f5; 6g); Q2 = (f1; 3; 4g ; f2; 5; 6g);
P (!) = 1=6 for all ! 2 ­.

If E¤ = f1; 2; 3g, then I0:6E¤ = f3g. Let us verify this, ¯rst using the hierarchical de¯nition, and

then using the ¯xed point characterization: B0:6
1 E¤ = f1; 2; 3g; B0:6

2 E¤ = f1; 3; 4g; B0:6
2 B0:6

1 E¤ =

f1; 3; 4g; and B0:6
1 B0:6

2 E¤ = f3; 4g. But now since B0:6
1 f1; 3; 4g = f3; 4g and B0:6

2 f3; 4g = f1; 3; 4g,

I0:61 E¤ = f3g, I0:62 E¤ = f1; 3; 4g and I0:6E¤ = f3g. On the other hand, consider the collection of

events E =(f1; 3; 4g ; f3; 4g). Observe that [1] B0:6
i E¤ 2 E for both i; [2] 3 2 E for all E 2 E; and

[3] B0:6
i E 2 E for all E 2 E and both i.

2.2. Common p-Belief

An event E is common p-belief if both p-believe it, both p-believe that both p-believe it, and so on.

Formally, de¯ne a \both p-believe" operator as follows: Bp
¤E ´ Bp

1E \ Bp
2E.

De¯nition 2.4. (Hierarchical) Event E is common p-belief at ! if

! 2 CpE ´ \
n¸1

[Bp
¤ ]
nE ´ Bp

¤E \ Bp
¤B

p
¤E \ Bp

¤B
p
¤B

p
¤E \ :::

This notion can be given a tight ¯xed point characterization. Event F is p-evident if F µ Bp
¤F .

Thus event F is p-evident exactly if E = fE : F µ Eg is mutually p-evident. By B2, a simple event

F1 \ F2 is p-evident if F1 µ Bp
1F2 and F2 µ Bp

2F1.

Proposition 2.5. (Fixed Point Characterization) The following statements are equivalent; [1]

event E is common p-belief at !; [2] there exists a p-evident event F such that ! 2 F and F µ Bp
¤E;

[3] there exists a simple p-evident event F1 \ F2 such that ! 2 F1 \ F2 and Fi µ Bp
iE for both i.

The equivalence of [1] and [2] is due to Monderer and Samet (1989), who de¯ned common

p-belief using the ¯xed point characterization.

Common p-belief may di®er from iterated p-belief. In example 2.3, B0:6
1 E¤ = f1; 2; 3g; B0:6

2 E¤ =

f1; 3; 4g, so B0:6
¤ E¤ = f1; 3g. Now B0:6

1 B0:6
¤ E¤ = f3g and B0:6

2 B0:6
¤ E¤ = f1; 3; 4g, giving

£
B0:6
¤

¤2
E¤ =

f3g. Now B0:6
1

³£
B0:6
¤

¤2
E¤

´
= f3g and B0:6

2

£
B0:6
¤

¤2
E¤ = ;, giving

£
B0:6
¤

¤3
E¤ = ;, and thus

C0:6E¤ = ;.
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2.3. Weak Common p-Belief

More information can reduce the degree of common p-belief of an event. Consider the following

example.

Example 2.6. ­ = f0; 1; 2; :::g; Q1 = (­); Q2 = (­); P (!) = ± (1 ¡ ±)! for all ! 2 ­, where

± 2 (0; 1).

Thus individuals 1 and 2 have no information. Consider the event E¤ = f1; 2; 3:::g; P [E¤] =

1 ¡ ±, so for any p · 1 ¡ ±, Bp
1E

¤ = ­, Bp
2E

¤ = ­, so Bp
¤E¤ = ­ and CpE¤ = ­. Thus for

su±ciently small ±, E¤ is always common p-belief (for any given p < 1).

Now suppose that individuals 1 and 2 received some information about the state of the world.

In particular, the example becomes:

Example 2.7. ­ = f0; 1; 2; :::g; Q1 = (f0g ; f1; 2g ; f3; 4g ; ::); Q2 = (f0; 1g; f2; 3g; ::::g); P (!) =

± (1 ¡ ±)! for all ! 2 ­, where ± 2 (0; 1).

Now for any p ¸ 1=2 and ! ¸ 1, Bp
¤ (f!; ! + 1; ::g) = f! + 1; ! + 2; ::g. Thus Bp

¤E¤ = f2; 3; ::g,

[Bp
¤ ]
n

E¤ = fn + 1; n + 2; ::g for all n ¸ 0 and so CpE¤ = ;.

This suggests the following alternative notion of approximate common knowledge. Suppose that

each individual i had access to information partition Qi, but need not acquire that information.

What is the maximum attainable degree of common p-belief of a given event? Thus say that event

E is weak common p-belief if event E is common p-belief given the individuals' information or any

worse information. Formally, write Q ´ (Q1;Q2) and index belief and common p-belief operators

as follows (in this section only): Bp
QiE ´ f! : P [E jQi (!) ] ¸ pg, Bp

QE ´ Bp
Q1E \ Bp

Q2E and

Cp
QE ´ \

n¸1

h
Bp
Q

in
E. Say that Q0 is a coarsening of Q if Qi (!) µ Q0

i (!) for both i and all ! 2 ­.

Write C(Q) for the coarsenings of Q.

De¯nition 2.8. (Hierarchical). Event E is weak common p-belief at ! (under Q) if event E is

common p-belief at ! under some coarsening of Q, i.e., if ! 2 W pE ´ [
Q02C(Q)

Cp
Q0E.

Simple event F1 \ F2 is weakly p-evident if it is empty or P [F1jF2] ¸ p and P [F2jF1] ¸ p.
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Proposition 2.9. (Fixed Point Characterization). Event E is weak common p-belief at ! if and

only if there exists a weakly p-evident event F1 \ F2 with ! 2 F1 \ F2 and P [EjFi] ¸ p for both i.

This notion is due to Geanakoplos (1994, p. 1482) who called it weakly p¡common knowledge.

Proof. Suppose ! 2 W pE. Then ! 2 Cp
Q0E for some Q0 2 C(Q). By proposition 2.5, there exists

simple event F1 \ F2 with [1] Fi µ Bp
Q0i

E for both i and [2] Fi µ Bp
Q0i

Fj for both i. But [1] implies

P [EjFi] ¸ p for both i, and [2] implies P [Fj jFi ] ¸ p for both i. On the other hand, suppose there

exists a weakly p-evident event F1 \ F2 with ! 2 F1 \ F2 and Fi µ Bp
iE for both i. Let

Q0
i (!) =

8
><
>:

Fi, if ! 2 Fi

­nFi, if ! =2 Fi
:

By construction Fi µ Bp
Q0i

E for both i, so F1 \ F2 µ Bp
Q0E. But F1 \ F2 µ Fi \ Bp

Q0i
Fj =

Bp
Q0i

(F1 \ F2) for both i (by B2). Thus F1 \ F2 µ Bp
Q0E µ

h
Bp
Q0

i2
E µ Cp

Q0E. 2

Corollary 2.10. If P [E] ¸ p, then W pE = ­.

Proof. Since ­ 2 Fi for both i, ­ is weakly p-evident. 2

2.4. The Relation between Alternative Notions for p = 1

Iterated 1-belief, common 1-belief and weak common 1-belief are all equivalent

Proposition 2.11. For all events E: I1E = C1E = W 1E.

Proof. Observe ¯rst that for each i and all collections of events
n
Ek

o1
k=1

, B1
i

µ
\
k¸1

Ek

¶
= \

k¸1
B1
iE

k. Thus I1E µ B1
i I
1E for each i, i.e., I1E is 1-evident. Now since I1E µ B1

¤E (by de¯nition),

I1E µ C1E by lemma 2.5. But lemma 2.14 below shows CpE µ IpE for all p, so I1E = C1E.

Now suppose Q0 2 C(Q). For all events E: B1
Q0i

E µ B1
QiE for each i, so B1

Q0E µ B1
QE, so

C1
Q0E µ C1

QE; thus C1E µ W 1E. But lemma 2.15 below shows that CpE µ W pE for all p, so

C1E = W 1E. 2

The \truth axiom" requires that 1-beliefs are always correct, i.e., B1
iE µ E for all events E

and each i. In our setting, the truth axiom is equivalent to requiring that P has full support, i.e.,
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P (!) > 0 for all ! 2 ­. Under the truth axiom with p = 1, all three notions outlined above are

equivalent to the following de¯nition of common knowledge.

Let F¤ = F1 \ F2. Now F¤ is the ¾-¯eld generated by the meet of the individuals' partitions.

De¯nition 2.12 (Aumann (1976)). Event E is common knowledge at ! if

! 2 CKE ´ f! : ! 2 F µ E, for some F 2 F¤g .

Lemma 2.13. For events E: (a) CKE µ I1E = C1E = W 1E; (b) under the truth axiom,

CKE = I1E = C1E = W 1E.

Proof. (a) If F 2 F¤, then F is 1-evident. If F is 1-evident and F µ E, then F µ B1
¤F µ B1

¤E.

Thus ! 2 CKE ) ! 2 F µ E, for some F 2 F¤ ) ! 2 F µ B1
¤E, for some 1-evident F ) ! 2

C1E, by lemma 2.5.

(b) Under the truth axiom, if F is 1-evident then F 2 F¤. Under the truth axiom, if F is

1-evident and F µ B1
¤E, then F µ E. Thus ! 2 C1E ) ! 2 F µ B1

¤E, for some 1-evident

F ) ! 2 F µ E, for some F 2 F¤ ) ! 2 CKE. 2

2.5. The Relation Between Alternative Notions for p < 1

The equivalence of the alternative notions of approximate common knowledge does not, in general,

hold if p < 1. This is because the belief operator typically fails to satisfy the distributive property

that if event E is believed with probability at least p, and event F is believed with probability at

least p, then event E \F is believed with probability at least p, so it is possible that Bp
i E \Bp

i F 6=
Bp
i (E \ F ).

The following two lemmas show that common p-belief is in general a stronger notion than either

iterated p-belief or weak common p-belief.

Lemma 2.14. For all events E and p 2 (0; 1]: CpE µ IpE.

Proof. For any event E and individual i, Bp
¤E µ Bp

iE. Thus Bp
¤B

p
¤E µ Bp

2B
p
1E \ Bp

1B
p
2E; by

an iterative argument, we have [Bp
¤ ]
2n¡1

(E) µ Bp
1 [Bp

2B
p
1 ]
n¡1

E \ Bp
2 [Bp

1B
p
2 ]
n

E and [Bp
¤ ]
2n

(E) µ

8



[Bp
2B

p
1 ]
n

E \ [Bp
1B

p
2 ]
n

E, for all n ¸ 1. So

CpE ´ \
n¸1

[Bp
¤ ]
nE µ Ip1E \ Ip2E ´ IpE. 2

Lemma 2.15. For all events E and p 2 (0; 1]: CpE µ W pE.

Proof. CpE ´ Cp
QE µ [

Q02C(Q)
Cp
Q0E ´ W pE. 2

2.5.1. The Unbounded State Space Case

With no restrictions on the size of the state space ­, there need be no connection between common

p-belief and the two weaker variants. In particular, we have:

Remark 2.16. For all 1=2 < r · p < 1 and 0 < " < 1, it is possible to construct an information

system containing an event E with P [IpE] ¸ 1 ¡ ", P [W pE] ¸ 1 ¡ " and CrE = ;.

This is shown by the following example:

Example 2.17. This example is parameterized by 1=2 < r · p < 1 and 0 < " < 1. Write N

for the smallest integer satisfying N ¸ Max
n

1
2r¡1 ;

2
1¡p

o
and M for the smallest integer satisfying

M ¸ Max
n
N2(N+1)

" ; N
2(N+1)

1¡p
o
. Each individual i observes a signal si 2 S = f1; :::;N + Mg. A

state consists of the pair of signals observed by the two individuals, so ! ´ (s1; s2) and ­ ´ S2.

Individuals' partitions re°ect the fact that they observe only their own signals. Thus Qi ((s1; s2)) =

f(s01; s02) 2 ­ : si = s0ig. Let P (!) = ¼ (!)

,
P
!02­

¼ (!0) , for all ! 2 ­, where ¼ is de¯ned as follows:5

5Formally, we have ¼(s1; s2) = N2(N¡n)+1, if s1 = s2 = n and n = 1; :::; N ; ¼(s1; s2) = N2(N¡n), if s1 = n + 1,

s2 = n and n = 1; :::; N ; ¼(s1; s2) = N , if s1 = s2 = n and n = N; :::;N +M ¡ 1; ¼(s1; s2) = N , if s1 = n+ 1, s2 = n
and n = N + 1; :::; N +M ¡ 2; ¼(s1; s2) = 1, if s1 = N + 1 and s2 = 1; :::; N ; ¼(s1; s2) = 1, if s1 = N +M and

s2 = N + 1; ::; N +M ¡ 1; ¼(1; N +M) = N2N ; ¼(N +M;N +M) = N2N+1; ¼(s1; s2) = 0, otherwise.
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1 2 3 ¢ N-1 N N+1 N+2 ¢ N+M-2 N+M-1 N+M

1 N2N¡1 0 0 ¢ 0 0 0 0 ¢ 0 0 N2N

2 N2N¡2 N2N¡3 0 ¢ 0 0 0 0 ¢ 0 0 0

3 0 N2N¡4 N2N¡5 ¢ 0 0 0 0 ¢ 0 0 0

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
N-1 0 0 0 ¢ N3 0 0 0 ¢ 0 0 0

N 0 0 0 ¢ N2 N 0 0 ¢ 0 0 0

N+1 1 1 1 ¢ 1 1 N 0 ¢ 0 0 0

N+2 0 0 0 ¢ 0 0 N N ¢ 0 0 0

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
N+M-2 0 0 0 ¢ 0 0 0 0 ¢ N 0 0

N+M-1 0 0 0 ¢ 0 0 0 0 ¢ N N 0

N+M 0 0 0 ¢ 0 0 1 1 ¢ 1 1 N2N+1

The following notion will be useful. Let X be some collection of possible signals, i.e., X µ
f1; 2; ::;N + Mg. Write E+

i (X) for the set of states where individual i's signal is in X, i.e.,

E+
i (X) = f(s1; s2) : si 2 Xg; and write E¡

i (X) for the set of states where individual i's signal is

not in X, i.e., E¡
i (X) = f(s1; s2) : si =2 Xg. Let E¤ = E¡

1 (1).

We ¯rst characterize IpE¤. Some calculations for this example are summarized in the appendix

on page 24; in particular, the following properties of the operator Bp
i are veri¯ed:

Bp
2

³
E¡
1 (n)

´
= E¡

2 (n) , for all n = 1; ::;N , (2.1)

Bp
1

³
E¡
2 (n)

´
= E¡

1 (n + 1) , for all n = 1; ::;N ¡ 1, (2.2)

Bp
1

³
E¡
2 (N)

´
= ­. (2.3)

Since E¤ 2 F1, Bp
1E

¤ = E¤ (by B1); by (2.1), Bp
2B

p
1E

¤ = Bp
2E

¤ = E¡
2 (1); by (2.2), Bp

1B
p
2B

p
1E

¤ =

Bp
1B

p
2E

¤ = E¡
1 (2); by (2.1), [Bp

2B
p
1 ]
2
E¤ = Bp

2B
p
1B

p
2E

¤ = E¡
2 (2). Iteratively applying (2.1) and

(2.2) gives

[Bp
1B

p
2 ]
n¡1

Bp
1E

¤ = [Bp
1B

p
2 ]
n¡1

E¤ = E¡
1 (n) and [Bp

2B
p
1 ]
n

E¤ = [Bp
2B

p
1 ]
n¡1

Bp
2E

¤ = E¡
2 (n). (2.4)
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for all n = 1; ::;N . By (2.4) and (2.3),

[Bp
1B

p
2 ]
N

E¤ = Bp
1

h
[Bp
2B

p
1 ]
N¡1

Bp
2E

¤
i

= Bp
1

h
E¡
2 (N)

i
= ­.

Thus Ip1E
¤ = E¡

1 (1; :::;N), Ip2E
¤ = E¡

2 (1; :::;N) and IpE¤ = E¡
1 (1; :::; N) \ E¡

2 (1; :::; N). So

P [IpE] = P [E¡
1 (1; :::;N) \ E¡

2 (1; :::;N)] ¸ 1 ¡ " (see appendix).

Now we characterize CrE¤. The following properties of the operator Br
i are veri¯ed in the

appendix:

Br
2

³
E¡
1 (1; ::; n)

´
µ E¡

2 (n) , for all n = 1; ::;N + M , (2.5)

Br
1

³
E¡
2 (1; ::; n)

´
µ E¡

1 (n + 1) , for all n = 1; ::;N + M ¡ 1. (2.6)

Now by B1 and (2.5),

Br
¤E

¤ = Br
1E

¤ \ Br
2E

¤ µ E¡
1 (1) \ E¡

2 (1) . (2.7)

So [Br
¤]
2E = Br

1B
r
¤E \ Br

2B
r
¤E

µ Br
1

h
E¡
1 (1) \ E¡

2 (1)
i
\ Br

2

h
E¡
1 (1) \ E¡

2 (1)
i
, by (2.7) and B4

= E¡
1 (1) \ Br

1E
¡
2 (1) \ Br

2E
¡
1 (1) \ E¡

2 (1), by B2

µ E¡
1 (1; 2) \ E¡

2 (1), by (2.6).

Iteratively applying (2.5) and (2.6), we have

[Br
¤]
2n¡2E¤ µ E¡

1 (1; ::; n) \ E¡
2 (1; ::; n ¡ 1)

and [Br
¤]
2n¡1E¤ µ E¡

1 (1; ::; n) \ E¡
2 (1; ::; n) .

for all n = 2; :::;N + M . Thus CrE¤ = [Br
¤]
2N+2M¡1E¤ = ;.

Finally observe that P [E¤] ¸ p (see appendix), so, by corollary 2.10, W pE¤ = ­ and P [W pE¤] =

1.

The assumption in remark 2.16 that r > 1=2 is important: if r < 1=2, then event E is common

r-belief with high probability whenever it is iterated p-belief with high probability.

Remark 2.18. If r < 1=2 and r · p < 1, then for all events E: P [CrE] ¸ 1¡(1¡P [IpE])
³
1¡r
1¡2r

´
.

11



Proof. Kajii and Morris (1995) have shown that if r < 1=2, then for every simple event F :

P [CrF ] ¸ 1 ¡ (1 ¡ P [F ])

µ
1 ¡ r

1 ¡ 2r

¶
. (2.8)

But Bp
¤E is simple and IpE µ Bp

¤E. So

P [CrE] = P [CrBr
¤E]

¸ P [CrBp
¤E]

¸ 1 ¡ (1 ¡ P [Bp
¤E])

µ
1 ¡ r

1 ¡ 2r

¶
, by (2.8)

¸ 1 ¡ (1 ¡ P [IpE])

µ
1 ¡ r

1 ¡ 2r

¶
. 2

On the other hand, for any 0 < r · p < 1, it is possible to construct an information system

with ! 2 IpE but ! =2 CrE, for some state ! and event E.

Remark 2.19. For all 1=2 < r · p < 1 and " > 0, it is possible to construct an information

system containing an event E with P [W pE] = 1 and IrE = CrE = ;.

Consider example 2.7, with ± < min f"; 1 ¡ pg. For any r ¸ 1=2, Br
1E

¤ = E¤, Br
2B

r
1E

¤ =

Br
2E

¤ = f2; 3; ::g, Br
1B

r
2B

r
1E

¤ = Br
1B

r
2E

¤ = f3; 4; ::g, etc.. Thus IrE¤ = CrE¤ = ;. But P [E¤] =

1 ¡ ± > p, so E¤ is weakly p-evident, W pE¤ = E¤ and P [W pE¤] = P [E¤] = 1 ¡ ± ¸ 1 ¡ ".

2.5.2. The Bounded State Space Case

If the state space is bounded, proposition 2.2 can be used to give a bound on the di®erence between

iterated p-belief and common p-belief.

Proposition 2.20. Suppose ­ has n elements. Then for all events E: IpE µ C1¡2n(1¡p)E and

I1¡2
¡n(1¡p)E µ CpE.

Propostion 2.20 implies in particular that for any p < 1, there exists some q < 1 (which depends

on p and n) such that whenever an event is iterated q-belief, it is also common p-belief.

Proof. Suppose E1; :::; EK is an arbitrary collection of events and ! 2 Bp
iE

1 \ Bp
iE

2 \ :: \
Bp
iE

K . Then P
h
Ek

¯̄
¯ Qi (!)

i
¸ p for each k ) P

h³
­nEk

´¯̄
¯ Qi (!)

i
· 1 ¡ p for each k )

12



P

·
K[
k=1

³
­nEk

´¯̄
¯̄ Qi (!)

¸
· K(1 ¡ p) ) P

·
K\
k=1

Ek

¯̄
¯̄ Qi (!)

¸
=

·
­

Âµ
K[
k=1

³
­nEk

´¶¯̄
¯̄ Qi (!)

¸
¸

1 ¡ K(1 ¡ p). Thus ! 2 B
1¡K(1¡p)
i

³
E1 \ E2 \ :: \ EK

´
; so

Bp
iE

1 \ Bp
iE

2 \ :: \ Bp
iE

K µ B
1¡K(1¡p)
i

³
E1 \ E2 \ :: \ EK

´
. (2.9)

By proposition 2.2, ! 2 IpE implies there exists a mutually p-evident collection of events E
with ! 2 A = \

F2E
F , Bp

1E 2 E and Bp
2E 2 E; thus A µ Bp

iE µ B
1¡K(1¡p)
i E for each i; E has at

most 2n elements, so, by (2.9), A = \
F2E

F µ \
F2E

Bp
i F µ B

1¡2n(1¡p)
i

µ
\
F2E

F

¶
= B

1¡2n(1¡p)
i A for

each i: thus A is (1 ¡ 2n (1 ¡ p))-evident and ! 2 C1¡2n(1¡p)E by proposition 2.5. 2

This result gives a (very loose) lower bound on the number of states required to allow a given

divergence between iterated and common p-belief. Thus if there are n states and there exists a

state ! with ! 2 Ip (E) and ! =2 Cr (E), then corollary 2.20 implies that r ¸ 1¡2n (1 ¡ p), so that

n ¸ log2(1 ¡ r) ¡ log2 (1 ¡ p). For example, if p = 0:999 and r = 0:501, then we must have n ¸ 9.

On the other hand, example 2.17 gives a (very loose) upper bound on the number of states required

to allow a given divergence. If p = 0:999 and r = 0:501 (and " ¸ 0:001), then the construction of

example 2.17 has approximately 5 £ 1013213 states!

3. Applications

3.1. Game Theory

To illustrate the signi¯cance of approximate common knowledge in game theory, I will focus on

simple examples. In particular, I will be interested in symmetric two player, two action, games

with two strict Nash equilibria:

G 0 1

0 x00; x00 x01; x10

1 x10; x01 x11; x11

where x00 > x10, x11 > x01. The best response dynamics are completely characterized by the

probability q such that each player is indi®erent between his two actions if the other plays action

13



0 with probability q, i.e.,

q =
(x11 ¡ x01)

(x11 ¡ x01) + (x00 ¡ x10)

Our analysis will depend only on the parameter q. Thus our analysis of the general game G
would be the same if we restricted attention to:

G0 0 1

0 1 ¡ q; 1 ¡ q 0; 0

1 0; 0 q; q

3.1.1. Best Response Dynamics and Iterated p-Belief

Two individuals are endowed with the information structure discussed earlier in the paper. They

are playing the (degenerate) incomplete information game where each has the two actions 0 and

1 available and payo®s are always given by the matrix G. A pure strategy for individual i would

usually be written as a Qi-measurable function ¾i : ­ ! fa; bg. I will ¯nd it useful, however,

to identify an individual's strategy with the set of states where he plays action 0, i.e., Ei =

f! : ¾i (!) = 0g. Player i's pure strategy set is thus Fi.
I want to study the incomplete information game best response dynamics. Assume that q is

generic so that there is a unique best response. Suppose individual 1 is choosing strategy E1, i.e.,

playing 0 at all states in E1 and 1 at all states not in E1. We can characterize best response

functions in terms of belief operators. If 2 assigns probability more than q to the event E1, his best

response is to play 0; if he assigns probability less than q, his best response would be to play 1.

Thus Bq
2E1 is 2's best response to E1 and Bq

1E2 is 1's best response to E2. Thus we have a best

response function, ½ : F1 £ F2 ! F1 £ F2, with ½ (E1; E2) = (Bq
1E2; B

q
2E1). Now we have:

Proposition 3.1. If players initially chose strategies (E1; E2) and revise their strategies by best

response dynamics, then action pro¯le (0; 0) is always played if and only if the events E1 and E2

are iterated q-belief, i.e.,

\
n¸0

[[½n]1 (E1; E2) \ [½n]2 (E1; E2)] = IqE1 \ IqE2.

14



Proof. First observe that (by B2) Iq1E1 = E1 \Bq
1B

q
2E1 \ ::; while Iq1E2 = Bq

1E2 \Bq
1B

q
2B

q
1E2 \ ::,

so

\
n¸0

[½n]1 (E1; E2) = E1 \ Bq
1E2 \ Bq

1B
q
2E1 \ Bq

1B
q
2B

q
1E2 \ :: = Iq1E1 \ Iq1E2

and \
n¸0

[½n]2 (E1; E2) = E2 \ Bq
2E1 \ Bq

2B
q
1E2 \ Bq

2B
q
1B

q
2E1 \ :: = Iq2E1 \ Iq2E2.

Thus \
n¸0

[[½n]1 (E1; E2) \ [½n]2 (E1; E2)] = Iq1E1 \ Iq1E2 \ Iq2E1 \ Iq2E2 = IqE1 \ IqE2. 2

The following example is in the spirit of Rubinstein (1989).

Example 3.2. Let the information structure be that of example 2.7. Suppose that initially player

2 played action 0 everywhere except at states 0 and 1, and player 1 played action 0 everywhere

except at state 0. Thus E1 = f1; 2; ::g and E2 = f2; 3; ::g. Now suppose that q > 1=2, so that (1; 1)

is the risk dominant equilibrium of the game. Then best response dynamics gives us:

½n (E1; E2) =

8
><
>:

(fn + 1; n + 2; :::g ; fn + 2; n + 3::::g) , if n is even

(fn + 2; n + 3; :::g ; fn + 1; n + 2::::g) , if n is odd
.

Thus \
n¸0

([½n]1 (E1; E2) \ [½n]2 (E1; E2)) = IqE1 \ IqE2 = ;.

The incomplete information game best response dynamics do not have a natural interpretation.

However, Morris (1996) shows that incomplete information game best response dynamics are for-

mally equivalent to best response dynamics in a certain class of local interaction games. The latter

has been a topic of recent research.

3.1.2. Equilibrium, Iterated Deletion of Dominated Strategies and Common p-Belief

Consider the following related problem. Suppose individuals are endowed again with the informa-

tion system discussed earlier. Now they are playing an incomplete information game where payo®s

are given by the matrix G at all states, except that each individual i has a dominant strategy to

play 1 at all states not in event Ei 2 Fi. As before, identify individual i's strategy with the set of

states where he plays 0.

15



Proposition 3.3. (Bq
1C

q (E1 \ E2) ; Bq
2C

q (E1 \ E2)) is a pure strategy equilibrium of this game.

On the other hand, if pure strategy Fi survives iterated deletion of strictly dominated strategies,

then Fi µ Bq
iC

q (E1 \ E2).

This is a version of results in Morris, Rob and Shin (1995). Monderer and Samet (1989) ¯rst

proved general results relating common p-belief to equilibria of incomplete information games.

Proof. [1] I will show that strategy Bq
1C

q (E1 \ E2) is a best response to Bq
2C

q (E1 \ E2). If ! 2
Bq
1C

q (E1 \ E2) µ E1, player i attaches probability at least q to player 2 choosing action 0. Since

payo®s are given by matrix G, action 0 is a best response. If ! 2 E1nBq
1C

q (E1 \ E2), player i

attaches probability at most q to player 2 choosing action 0. Since payo®s are given by matrix G,

action 1 is a best response. Finally, if ! =2 E1, action 1 is a dominant action.

[2] Let Uni µ Fi be the set of player i strategies which survive n rounds iterated deletion of

strictly interim dominated strategies. Clearly, Fi 2 U1i ) Fi µ Ei. I will show by induction on

n ¸ 2 that Fi 2 Uni ) Fi µ Bq
i [Bq

¤]
n¡2

(E1 \ E2). Suppose Fi 2 U2i : since U2i µ U1i , Fi µ Ei; since

player i attaches positive probability only to strategies Fj µ Ej , we must have Fi µ Bq
iEj. So Fi µ

Ei\Bq
iEj = Bp

i (E1\E2) (by B2). Now suppose that the inductive hypothesis is true for n. Suppose

Fi 2 Un+1i : since Un+1i µ Uni , Fi µ Bq
i [Bq

¤]
n¡2

(E1 \ E2); since player i attaches positive probability

only to strategies Fj µ Bq
j [Bq

¤]
n¡2 (E1 \ E2), we must have Fi µ Bq

iB
q
j [Bq

¤]
n¡2 (E1 \ E2). So

Fi µ Bq
i [Bq

¤]
n¡2 (E1 \ E2) \ Bq

iB
q
j [Bq

¤]
n¡2 (E1 \ E2) = Bq

i

³
[Bq
¤]
n¡1 (E1 \ E2)

´
(by B2). 2

Example 3.4. Suppose the game G is as follows:

G 0 1

0 9; 9 ¡10; 0

1 0;¡10 0; 0

Note that q = 10=19, so equilibrium (1; 1) is (just) risk dominant; but equilibrium (0; 0) is Pareto-

dominant. Now suppose the information structure is given by example 2.17, where 1=2 < r < 10=19.

Let player 2's payo®s always be given by matrix G; player 1's payo®s are given by matrix G, except

that player has a dominant strategy to play action 1 if he observes signal 1. Thus E1 = E¤ = E¡
1 (1)

and E2 = ­. Since Cq (E1 \ E2) µ Cr (E1 \ E2) = Cr
³
E¡
1 (1)

´
= ; (by B4), the unique strategy
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surviving iterated deletion of dominated strategies for each player is ;. Thus action 0 is never

played despite the fact that it is iterated p-belief that payo®s are given by G, with high probability

and for any p.

3.2. Agreeing to Disagree, No Trade and Weak Common p-Belief

Write X for the set of functions, x : ­ ! [0; 1]. Let E (xjF ) be the expected value of x 2 X given

event F with P [F ] > 0:

E (xjF ) =

Ã
P
!2F

x (!)P (!)

!

Ã
P
!2F

P (!)

! .

Let Ei be the expectation operator for individual i, so that Ei (x j! ) = E (x jQi (!)). Let

¦+i (x; q) be the set of states where individual i's expected value of x is at least q, let ¦¡i (x; q) be

the set of states where individual i's expected value of x is at most q, and let ¦i (x; q) be the set of

states where individual i's expected value of x is exactly q:

¦+i (x; q) = f! : Ei (xj!) ¸ qg

¦¡i (x; q) = f! : Ei (xj!) · qg

¦i (x; q) = f! : Ei (xj!) = qg = ¦+i (x; q) \ ¦¡i (x; q)

Let T (x; q1; q2) be the set of states where individual 1's expected value of x is at least q1, while

individual 2's expected value is no more than q2:

T (x; q1; q2) = ¦+1 (x; q1) \ ¦¡2 (x; q2) = f! : E1 (xj!) ¸ q1 and E2 (xj!) · q2g .

If T (x; q1; q2) is empty for all x 2 X and all q1 and q2 with q1 signi¯cantly bigger than q2, then we

say there is approximate no trade.

Let D (x; q1; q2) be the set of states where individual 1's expected value of x is exactly q1, while

individual 2's expected value is exactly q2.

D (x; q1; q2) = ¦1 (x; q1) \ ¦2 (x; q2) = f! : E1 (xj!) = q1 and E2 (xj!) = q2g

Thus 1 and 2 disagree by jq1 ¡ q2j about the expected value of x. If D (x; q1; q2) is empty for all

x 2 X and all q1 and q2 with jq1 ¡ q2j large, then we say there is approximate agreement.
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Proposition 3.5. If there is weak common p-belief that individuals are prepared to trade, then

the gains from trade must be small for large p. Speci¯cally, if W p (T (x; q1; q2)) 6= ;, then q1¡ q2 ·
2(1 ¡ p).

Since D (x; q1; q2) µ T (x; q1; q2), the trade result extends to agreeing to disagree.

Corollary 3.6. If there is weak common p-belief that individuals disagree, then the disagreement

must be small for large p. Speci¯cally, if W p (D (x; q1; q2)) 6= ;, then q1 ¡ q2 · 2(1 ¡ p).

Monderer and Samet (1989) ¯rst proved a version of corollary 3.6, for common p-belief. Neeman

(1996) improved the bound to 1 ¡ p. Geanakoplos (1994) observed that essentially the same proof

works for weak common p-belief. Sonsino (1995) showed a version of proposition 3.5 for common

p-belief (but see Neeman (1995) for an argument why results like proposition 3.5 implicitly assume

that individuals are irrational).

Proof. (of proposition 3.5). First observe that T (x; q1; q2) is a simple event, by construction.

Thus W p (T (x; q1; q2)) is non-empty if and only if there exists F1 2 F1n; and F2 2 F2n; with

F1 µ ¦+1 (x; q1), F2 µ ¦¡2 (x; q2), P [F1jF2] ¸ p and P [F2jF1] > p. Observe that

q1 · E(xjF1)

= E (xjF1 \ F2) :P [F2jF1] + E (xj (F1nF2)) : (1 ¡ P [F2jF1])

· E (xjF1 \ F2) :P [F2jF1] + 1 ¡ P [F2jF1]

· E (xjF1 \ F2) + (1 ¡ p) ,

while q2 ¸ E(xjF2)

= E (xjF1 \ F2) :P [F1jF2] + E (xj (F2nF1)) : (1 ¡ P [F1jF2])

¸ E (xjF1 \ F2) :P [F1jF2]

¸ E (xjF1 \ F2) ¡ (1 ¡ p) .

Thus q1 ¡ q2 · 2 (1 ¡ p). 2

The following is a partial converse to proposition 3.5.
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Proposition 3.7. Suppose E is a ¯nite simple event, P [E] > 0 and W pE = ;. Then there exists

x 2 X such that E µ D (x; 1=2 + (1=4)(1 ¡ p); 1=2 ¡ (1=4)(1 ¡ p)).

Since D (x; q1; q2) µ T (x; q1; q2), the agreeing to disagree result extends to trade.

Corollary 3.8. Suppose E is a ¯nite simple event, P [E] > 0 and W pE = ;. Then there exists

x 2 X such that E µ T (x; 1=2 + (1=4)(1 ¡ p); 1=2 ¡ (1=4)(1 ¡ p)).

Proof. Write E = E1 \ E2, each Ei 2 Fi. Write Q¤
i = fF 2 Qi : F µ Eig and Ti = Q¤

i [ f­nEig.

Note that Ti is a ¯nite partition of ­ which coarsens Qi. For any (F1; F2) 2 T1£T2, let ¼ (F1; F2) =
P

!2F1\F2
P (!). Consider the following linear programming problem. Choose y : T1 £ T2 ! [0; 1]

and ± 2 [0; 1=2] to maximize ± subject to

[i]
P

F22T2
y (F1; F2)¼ (F1; F2) =

³
1
2 + ±

´ P
F22T2

¼ (F1; F2) , for all F1 2 Q¤
1

[ii]
P

F12T1
y (F1; F2)¼ (F1; F2) =

³
1
2 ¡ ±

´ P
F12T1

¼ (F1; F2) , for all F2 2 Q¤
2

[iii] y(F1; F2) ¸ 0, for all (F1; F2) 2 T1 £ T2

[iv] y(F1; F2) · 1, for all (F1; F2) 2 T1 £ T2

(3.1)

Observe ¯rst that the maximand ± is less than 1=2. If ± = 1=2, then we would have E(xjE1) = 1

and E(xjE2) = 0, which implies P [E1 \ E2] = 0, a contradiction.

By standard linear programming arguments, we have that if (y; ±) is a solution to this problem,

we must have ¸1 : T1 ! <, ¸2 : T2 ! <, ³ : T1 £ T2 ! <+ and » : T1 £ T2 ! <+, such that:

[i] ¸1(F1)¼ (F1; F2) ¡ ¸2(F2)¼ (F1; F2) + ³ (F1; F2) ¡ » (F1; F2) = 0, for all (F1; F2) 2 Q¤
1 £ Q¤

2.

[ii] ¸1(F1)¼ (F1;­nE2) + ³ (F1; ­nE2) ¡ » (F1; ­nE2) = 0, for all F1 2 Q¤
1.

[iii] ¡ ¸2(F2)¼ (­nE1; F2) + ³ (­nE1; F2) ¡ » (­nE1; F2) = 0, for all F2 2 Q¤
2.

[iv] ³ (F1; F2) > 0 ) y(F1; F2) = 0.

[v] » (F1; F2) > 0 ) y(F1; F2) = 1.

(3.2)

First suppose that ¸i (Fi) · 0 for all Fi 2 Q¤
i and both i. Then ± would remain a solution if we

replace [i] and [ii] in (3.1) with:
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[i']
P

F22T2
y (F1; F2)¼ (F1; F2) ·

³
1
2 + ±

´ P
F22T2

¼ (F1; F2) , for all F1 2 Q¤
1.

[ii']
P

F12T1
y (F1; F2)¼ (F1; F2) ¸

³
1
2 ¡ ±

´ P
F12T1

¼ (F1; F2) , for all F2 2 Q¤
2.

(3.3)

But this revised problem has solution 1=2 (e.g., set y(F1; F2) = 1=2, for all (F1; F2) 2 T1 £ T2).

This contradicts our earlier result that ± < 1=2.

Now suppose that there exists F ¤
i with ¸i (F

¤
i ) > 0 and ¸i (F

¤
i ) > ¸j (Fj) for all Fj 2 Q¤

j .

Without loss of generality, take i = 1. But now parts [i] and [ii] of (3.2) imply that » (F ¤
1 ; F2) > 0

for all F2 2 T2; so by part [v] of (3.2), y(F ¤
1 ; F2) = 1 for all F2 2 T2; so by part [i] of (3.1), ± = 1=2,

again a contradiction.

So if we let ¸¤ be the largest value in the range of ¸1 and ¸2, and let Q¤¤
i = fFi 2 Q¤

i : ¸i (Fi) = ¸¤g,

we know that each Q¤¤
i is non-empty. By (3.2), we must have y(F1; F2) = 1 if F1 2 Q¤¤

1 and

F2 =2 Q¤¤
2 ; and y(F1; F2) = 0 if F2 2 Q¤¤

2 and F1 =2 Q¤¤
1 . So parts [i] and [ii] of (3.1) become:

[i]
P

F22Q¤¤2
y¤ (F1; F2)¼ (F1; F2) +

P
F22T2nQ¤¤2

¼ (F1; F2) =
³
1
2 + ±

´ P
F22T2

¼ (F1; F2) , for all F1 2 Q¤¤
1 .

[ii]
P

F12Q¤¤1
y¤ (F1; F2)¼ (F1; F2) =

³
1
2 ¡ ±

´ P
F12T1

¼ (F1; F2) , for all F2 2 Q¤¤
2 .

Now let F ¤
i = [

Fi2Q¤¤i
Fi, ® = E (xjF ¤

1 \ F ¤
2 ), pi = P

h
F ¤
j jF ¤

i

i
for each j 6= i and x (!) =

y¤ (T1(!); T2(!)), where Ti (!) is the element of Ti containing state !.

We have 1=2 ¡ ± = E2 (xjF ¤
2 ) · ®, so

1=2 + ± = E1 (xjF ¤
1 )

= p1® + (1 ¡ p1)

¸ p1 (1=2 ¡ ±) + (1 ¡ p1).

Re-arranging gives ± ¸ (1=2)(1 ¡ p1)=(1 + p1) ¸ (1=4)(1 ¡ p1). Analogously, we have 1=2 + ± =

E1 (xjF ¤
1 ) ¸ ®, so

1=2 ¡ ± = E2 (xjF ¤
2 )

= p2®

· p2 (1=2 + ±) .
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Re-arranging gives ± ¸ (1=2)(1 ¡ p2)=(1 + p2) ¸ (1=4)(1 ¡ p2). But since E1 \ E2 is not weakly

p-evident, we must have either p1 or p2 less than p. Thus ± ¸ (1=4)(1 ¡ p). 2

4. Notes

1. The Common Prior Assumption. Throughout this paper, I assumed the common prior

assumption. For the characterizations of common p-belief, iterated p-belief and the game

theoretic results, it made no di®erence. On the other hand, the characterization of weak

common p-belief and the no trade / agreement results depend on the common prior. Assuming

a common prior made it harder to show the large divergence between common p-belief and

iterated p-belief.

2. Many Individuals. I focussed on the case of two individuals for simplicity. Many of the

results generalize to many individuals. For example, iterated p-belief is naturally de¯ned

(hierarchically) as follows. Let I be a collection of individuals, each with a partition Qi

giving belief operator Bp
i . Let F (n) be the collection of functions f : f1; :::; ng ! I. De¯ne

IpE ´ \
n¸1; f2F (n)

Bp
f(1)B

p
f(2)::::B

p
f(n)E:

Say that collection of events E µ 2­ is mutually p-evident if Bp
i F 2 E for all F 2 E . Then

proposition 2.2 remains true essentially as stated: Event E is iterated p-belief at ! if and

only if there exists a mutually p-evident collection of events E with [1] BpE 2 E for all i 2 I;

and [2] ! 2 F , for all F 2 E.

3. Yet Another Notion of Approximate Common Knowledge. BÄorgers (1994) and Mon-

derer and Samet (1990) use the following notion of repeated common p-belief:

RpE ´ Bp
¤E \ Bp

¤ (E \ Bp
¤E) \ Bp

¤ (E \ Bp
¤ (E \ Bp

¤E)) \ :::

More formally, de¯ne an operator Bp
¤(:; E) : 2­ ! 2­ by Bp

¤(F ;E) = Bp
1(F \E)\Bp

2(F \E),

and let RpE = \
n¸1

[Bp
¤ (:;E)]

n
E. By de¯nition, for all events E, RpE µ CpE. As noted
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by Monderer and Samet (1990), we have CpE µ R2p¡1E for all events E.6 Thus common

p-belief and repeated common p-belief will deliver the same results for p close to 1.

4. The Relation Between Iterated p-Belief and Weak Common p-Belief. Common p-

belief implies iterated p-belief and weak common p-belief (see lemmas 2.14 and 2.15). Iterated

p-belief may be much weaker than common p-belief (see remark 2.16). Weak common p-belief

may be much weaker than both iterated p-belief and common p-belief (see remark 2.19).

However, we did not show whether iterated p-belief is necessarily a stronger requirement than

weak common p-belief. Speci¯cally, for arbitrary 1=2 < r · p < 1, is it possible to have

! 2 IpE but ! =2 W rE ? This remains an open question.

5. Attaining Approximate Common Knowledge. Can approximate common knowledge

be achieved in practice? Consider ¯rst common p-belief. Presumably it is not possible to

in¯nite levels of belief by decentralized communication. In practice, it is the observation

of almost public events (i.e., p-evident events) that will generate common p-belief. Iterated

p-belief has no such natural ¯xed point characterization. Thus it seems unlikely that iterated

p-belief (with p close to one) will often be attained in settings where common p-belief is not

(our examples notwithstanding). On the other hand, if there is a common prior, we have

given one natural su±cient condition for an event to be weak common p-belief with high

probability: it is enough that the event has high ex ante probability (see corollary 2.10). No

almost public event is required to attain weak common p-belief.
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5. Appendix

We present some properties used in example 2.17.

First note that the de¯nitions of N and M imply:

[1]
1

N + 1
· 2

N + 2
· 1

2
; [2]

N + 1

2N + 1
· r; [3]

N2N+1

N2N+1 + M
· 1

2
; [4]

N

N + 1
¸ p; and [5]

2N ¡ 1

2N
¸ p.

These inequalities will be used extensively in the following calculations.

Ex Ante Probabilities

² P
h
E¡
1 (1; ::;N) \ E¡

2 (1; ::;N)
i

¸ max (1 ¡ "; p).

Write F = E¡
1 (1; ::; N) \ E¡

2 (1; ::; N).

¼ [F ] = M ¡ 1 + (2M ¡ 3)N + N2N+1

¸ M

¸ N2(N+1)

" .

¼ [­nF ] = N ¡ 1 +
³
1 + N + :: + N2N

´

= N ¡ 1 + N2N+1¡1
N¡1

· N + N2N+1

· N2(N+1).

Thus P [F ] = ¼[F ]
¼[F ]+¼[­nF ] ¸ N2(N+1)="

N2(N+1)="+N2(N+1) = 1
1+" ¸ 1 ¡ ". A symmetric argument shows

P [F ] ¸ p.

² P [E¤] ¸ p.

E¡
1 (1; ::; N) \ E¡

2 (1; ::; N) µ E¤, so P [E¤] ¸ P
h
E¡
1 (1; ::; N) \ E¡

2 (1; ::; N)
i

¸ p.
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Properties of Bp
i

² Bp
2

³
E¡
1 (n)

´
= E¡

2 (n), for all n = 1; ::;N .

For n = 1,

P
h
E¡
1 (n)

¯̄
¯E+
2 (m)

i
=

8
>>>><
>>>>:

N2N¡2+1
N2N¡1+N2N¡2+1 · 2

N+2 · 1
2 < p, if m = 1

N2N+1

N2N+N2N+1 = N
N+1 ¸ p, if m = M + N

1, for all other m

.

For n = 2; ::; N ¡ 1,

P
h
E¡
1 (n)

¯̄
¯E+
2 (m)

i
=

8
>>>><
>>>>:

N2(N¡n)+1
N2(N¡n)+1+N2(N¡n)+1 · 2

N+2 · 1
2 < p, if m = n

N2(N¡n)+1+1
N2(N¡n)+1+N2(N¡n)+1 ¸ N

N+1 ¸ p, if m = n ¡ 1

1, for all other m

.

For n = N ,

P
h
E¡
1 (n)

¯̄
¯E+
2 (m)

i
=

8
>>>><
>>>>:

1
N+1 · 1

2 < p, if m = N

N3+1
N3+N2+1 ¸ N

N+1 ¸ p, if m = N ¡ 1

1, for all other m

.

² Bp
1

³
E¡
2 (n)

´
= E¡

1 (n + 1), for all n = 1; ::; N ¡ 1.

For n = 1; ::; N ¡ 1,

P
h
E¡
2 (n)

¯̄
¯E+
1 (m)

i
=

8
>>>>>>><
>>>>>>>:

1
N+1 · 1

2 < p, if m = n + 1

N
N+1 ¸ p, if m = n

2N¡1
2N ¸ p, if m = N + 1

1, for all other m

.

² Bp
1

³
E¡
2 (N)

´
= ­.

P
h
E¡
2 (N)

¯̄
¯E+
1 (m)

i
=

8
>>>><
>>>>:

N
N+1 ¸ p, if m = N

2N¡1
2N ¸ p, if m = N + 1

1, for all other m

.
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Properties of Br
i

² Br
2

³
E¡
1 (1; ::; n)

´
µ E¡

2 (n), for all n = 1; ::;N + M .

For n = 1; ::; N ¡ 1,

P
h
E¡
1 (1; ::; n)

¯̄
¯E+
2 (n)

i
=

N2(N¡n) + 1

N2(N¡n)+1 + N2(N¡n) + 1
· 2

N + 2
· 1

2
< r.

For n = N ,

P
h
E¡
1 (1; ::; n)

¯̄
¯E+
2 (n)

i
=

1

N + 1
· 1

2
< r.

For n = N + 1; :::;N + M ¡ 2,

P
h
E¡
1 (1; ::; n)

¯̄
¯E+
2 (n)

i
=

N + 1

2N + 1
< r.

For n = N + M ¡ 1,

P
h
E¡
1 (1; ::; n)

¯̄
¯E+
2 (n)

i
=

1

N + 1
· 1

2
< r:

For n = N + M ,

P
h
E¡
1 (1; ::; n)

¯̄
¯E+
2 (n)

i
= 0 < r.

² Br
1

³
E¡
2 (1; ::; n)

´
µ E¡

1 (n + 1), for all n = 1; ::; N + M ¡ 1.

For n = 1; ::; N ¡ 1,

P
h
E¡
2 (1; ::; n)

¯̄
¯E+
1 (n + 1)

i
=

1

N + 1
· 1

2
< r.

For n = N; :::; N + M ¡ 2,

P
h
E¡
2 (1; ::; n)

¯̄
¯E+
1 (n + 1)

i
=

1

2
< r.

For n = N + M ¡ 1,

P
h
E¡
2 (1; ::; n)

¯̄
¯E+
1 (n + 1)

i
=

N2N+1

N2N+1 + M
· 1

2
< r.
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