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Abstract 

 

This paper studies the use of a discrete instrumental variable to 
identify the causal effect of a endogenous, mis-measured, binary treat- 
ment. We begin by showing that the only existing identification result 
for this case, which appears in Mahajan (2006), is incorrect. As such, 
identification in this model remains an open question. We begin by 
proving that the treatment effect is unidentified based on conditional 
first-moment information, regardless of the number of values that the 
instrument may take. We go on to derive a novel partial identification 
result based on conditional second moments that can be used to test 
for the presence of mis-classification and to construct simple and in- 
formative bounds for the treatment effect. In certain special cases, we 
can in fact obtain point identification of the treatment effect based on 
second moment information alone. When this is not possible, we show 
that adding conditional third moment information point identifies the 
treatment effect and the measurement error process. 

 

Keywords: Instrumental variables, Measurement error, Endogeneity, 
Binary regressor, Partial Identification 
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1 Introduction 

Many treatments of interest in applied work are binary. To take a partic- 

ularly prominent example, consider treatment status in a randomized con- 

trolled trial. Even if the randomization is pristine, which yields a valid binary 

instrument (the offer of treatment), subjects may select into treatment based 

on unobservables, and given the many real-world complications that arise in 

the field, measurement error may be an important concern. This paper stud- 

ies the use of a discrete instrumental variable to identify the causal effect of 

an endogenous, mis-measured, binary treatment in a model with additively 

separable errors. Specifically, we consider the following model 

y = h(T ∗, x) + ε (1) 
 

where T∗ ∈ {0, 1} is a mis-measured, endogenous treatment, x is a vector 

of exogenous controls, and ε is a mean-zero error. Since T∗ is potentially 

endogenous, E[ε|T ∗, x] may not be zero. Our goal is to non-parametrically 

estimate the average treatment effect (ATE) function 
 

τ (x) = h(1, x) − h(0, x). (2) 

 

using a single discrete instrumental variable z ∈ {zk}
K

 . We assume through- 

out that z is a relevant instrument for T∗, in other words 
 

P(T ∗ = 1|zj, x) /= P(T ∗ = 1|zk, x), ∀k /= j. (3) 

While the structural relationship involves T∗, we observe only a noisy mea- 

sure T , polluted by non-differential measurement error. In particular, we 

assume that 

P(T = 1|T ∗ = 0, z, x)  =  α0(x) (4) 

P(T = 0|T ∗ = 1, z, x)  =  α1(x) (5) 
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where the mis-classification error rates α0(x) and α1(x) can depend on x but 

not z, and additionally that, conditional on true treatment status, observed 

treatment status provides no additional information about the error term, in 

other words 

E[ε|T ∗, T, z, x] = E[ε|T ∗, z, x]. (6) 

Although a relevant case for applied work, the setting we consider here 

has received little attention in the literature. The only existing result for the 

case of an endogenous treatment appears in an important paper by Mahajan 

(2006), who is primarily concerned with the case of an exogenous treatment. 

As we show below, Mahajan’s identification result for the endogenous treat- 

ment case is incorrect. As far as we are aware, this leaves the problem 

considered in this paper completely unsolved. 

We begin by showing that the proof in Appendix A.2 of Mahajan (2006) 

leads to a contradiction. Throughout his paper, Mahajan (2006) maintains 

an assumption (Assumption 4) which he calls the “Dependency Condition.” 

This assumption requires that the instrumental variable be relevant. When 

extending his result for an exogenous treatment to the more general case 

of an endogenous one, however, he must impose an additional condition on 

the model (Equation 11), which turns out to imply the lack of a first-stage, 

violating the Dependency Condition. Since one cannot impose the condition 

in Equation 11 of Mahajan (2006), we go on to study the prospects for 

identification in this model more broadly. We consider two possibilities. 

First, since Mahajan’s identification results require only a binary instrument, 

we borrow an idea from Lewbel (2007) and explore whether expanding the 

support of the instrument yields identification based on moment equations 

similar to those used by Mahajan (2006). While allowing the instrument 

to take on additional values does increase the number of available moment 

conditions, we show that these moments cannot point identify the treatment 

effect, regardless of how many (finite) values the instrument takes on. 

We then consider a new source of identifying information that arises from 
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imposing stronger assumptions on the instrumental variable. If the instru- 

ment is not merely mean independent but in fact statistically independent of 

the regression error term, as in a randomized controlled trial or a true nat- 

ural experiment, additional moment conditions become available. We show 

that adding a conditional second moment independence assumption on the 

instrument identifies the difference of mis-classification rates α1(x) − α0(x). 

Because these rates must equal each other when there is no mis-classification 

error, our result can be used to test a necessary condition for the absence 

of measurement error. It can also be used to construct simple and informa- 

tive partial identification bounds for the treatment effect. When one of the 

mis-classification rates is known, this identifies the treatment effect. More 

generally, however, this is not the case. We go on to show that a conditional 

third moment independence assumption on the instrument point identifies 

both α0(x) and α1(x) and hence the ATE function τ (x). Both our point 

identification and partial identification results require only a binary instru- 

ment, and lead to simple, closed-form method of moments estimators that 

should be straightforward to apply in practice. 

The remainder of this paper is organized as follows. In section 2 we 

discuss the literature in relation to the problem considered here. Section 3 

introduces notation and assumptions, and presents our main results. Section 

4 concludes. 

 

2 Related Literature 

Measurement error is a pervasive feature of economic data, motivating a long 

tradition of measurement error modelling in econometrics. The textbook case 

considers a continuous regressor (treatment) subject to classical measurement 

error in a linear model. In this setting, the measurement error is assumed to 

be unrelated to the true, unobserved, value of the treatment of interest. Re- 

gardless of whether this unobserved treatment is exogenous or endogenous, 
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a single valid instrument suffices to identify its effect. When an instrument 

is unavailable, Lewbel (1997) shows that higher moment assumptions can 

be used to construct one, provided that the mis-measured treatment is ex- 

ogenous. When it is endogenous, Lewbel (2012) uses a heteroskedasticity 

assumption to obtain identification. 

Departures from the linear, classical measurement error setting pose seri- 

ous identification challenges. One strand of the literature considers relaxing 

the assumption of linearity while maintaining that of classical measurement 

error. Schennach (2004), for example, uses repeated measures of each mis- 

measured treatment to obtain identification, while Schennach (2007) uses 

an instrumental variable. Both papers consider the case of exogenous treat- 

ments.1 More recently, Song et al. (2015) rely on a repeated measure of 

the mis-measured treatment and the existence of a set of additional regres- 

sors, conditional upon which the treatment of interest is unrelated to the 

unobservables, to obtain identification. Another strand of the literature con- 

siders relaxing the assumption of classical measurement error, by allowing 

the measurement error to be related to the true value of the unobserved 

treatment. Chen et al. (2005) obtain identification in a general class of mo- 

ment condition models with mis-measured data by relying on the existence 

of an auxiliary dataset from which they can estimate the measurement error 

process. In contrast, Hu and Shennach (2008) and Song (2015) rely on an 

instrumental variable and an additional conditional location assumption on 

the measurement error distribution. More recently, Hu et al. (2015) use a 

continuous instrument to identify the ratio of partial effects of two continuous 

regressors, one measured with error, in a linear single index model. 

Many treatments of interest in economics, however, are binary, and in this 

case classical measurement error is impossible. Because a true 1 can only be 

mis-measured as a 0 and a true 0 can only be mis-measured as a 1, the mea- 
 

 

1For comprehensive reviews of the challenges of addressing measurement error in non- 
linear models, see Chen et al. (2011) and Schennach (2013). 



3Ignoring covariates, the observable moments in this case are the joint probability dis- 
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surement error must be negatively correlated with the true treatment status 

(Aigner, 1973; Bollinger, 1996). For this reason, even in a textbook linear 

model, the instrumental variables estimator can only remove the effect of 

endogeneity, not that of measurement error (Frazis and Loewenstein, 2003). 

Measurement error in a discrete variable is usually called mis-classification.2 

The simplest form of mis-classification is so-called non-differential measure- 

ment error. In this case, conditional on true treatment status, and possibly 

a set of exogenous covariates, the measurement error is assumed to be unre- 

lated to all other variables in the system. 

A number of papers have studied this problem without the use of in- 

strumental variables under the assumption that the mis-measured binary 

treatment is exogenous. The first to address this problem was Aigner (1973), 

who characterized the asymptotic bias of the OLS estimator in this setting, 

and proposed a technique for correcting it using outside information on the 

mis-classification process. Another early contribution by Bollinger (1996) 

provides partial identification bounds. More recently, Chen et al. (2008a) 

use higher moment assumptions to obtain identification in a linear regression 

model, and Chen et al. (2008b) extend these results to the non-parametric 

setting. van Hasselt and Bollinger (2012) and Bollinger and van Hasselt 

(2015) provide additional partial identification results. 

Continuing under the assumption of an exogenous treatment, a number 

of other papers in the literature have considered the identifying power of an 

instrumental variable, or something like one. Black et al. (2000) and Kane 

et al. (1999) more-or-less simultaneously pointed out that when two alter- 

native measures of treatment are available, both subject to non-differential 

measurement error, a non-linear GMM estimator can be used to recover 

the treatment effect. In essence, one measure serves as an instrument for 

the other although the estimator is quite different from IV.3 Subsequently, 

2For general results on the partial identification of discrete probability distributions 
using mis-classified observations, see Molinari (2008). 



4For example, one could consider using the results of Hausman et al. (1998), who study 
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Frazis and Loewenstein (2003) correctly note that an instrumental variable 

can take the place of one of the measures of treatment in a linear model with 

an exogenous treatment, allowing one to implement a variant of the GMM 

estimator proposed by Black et al. (2000) and Kane et al. (1999). However, 

as we will show below, the assumptions required to obtain this result are are 

stronger than Frazis and Loewenstein (2003) appear to realize: the usual IV 

assumption that the instrument is mean independent of the regression error 

is insufficient for identification. 

Mahajan (2006) extends the results of Black et al. (2000) and Kane et al. 

(1999) to a more general nonparametric regression setting using a binary 

instrument in place of one of the treatment measures. Although unaware of 

Frazis and Loewenstein (2003), Mahajan (2006) makes the correct assump- 

tion over the instrument and treatment to guarantee identification of the 

conditional mean function. When the treatment is in fact exogenous, this 

coincides with the treatment effect. Hu (2008) derives related results when 

the mis-classified discrete regressor may take on more than two values. Lew- 

bel (2007) provides an identification result for the same model as Mahajan 

(2006) under different assumptions. In particular, the variable that plays 

the role of the “instrument” need not satisfy the exclusion restriction pro- 

vided that it does not interact with the treatment and takes on at least three 

distinct values. 

Much less is known about the case in which a binary, or discrete, treat- 

ment is not only mis-measured but endogenous. Frazis and Loewenstein 

(2003) briefly discuss the prospects for identification in this setting. Al- 

though they do not provide a formal proof they argue, in the context of their 

parametric linear model, that the treatment effect is unlikely to be identified 

unless one is willing to impose strong and somewhat unnatural conditions.4
 

 
 

tribution of the two binary treatment measures and the conditional means of the outcome 
variable given the two measures. Although the system is highly non-linear, it can be 
manipulated to yield an explicit solution for the treatment effect provided that the true 
treatment is exogenous. 
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The first paper to provide a formal result for this case is Mahajan (2006). He 

extends his main result to the case of an endogenous treatment, providing an 

explicit proof of identification under the usual IV assumption in a model with 

additively separable errors. As we show below, however, Mahajan’s proof is 

incorrect. 

The results we derive here most closely relate to the setting considered 

in Mahajan (2006) in that we study non-parametric identification of the 

effect of a binary, endogenous treatment, using a discrete instrument. Unlike 

Mahajan (2006) we consider and indeed show the necessity of using higher- 

moment information to identify the causal effect of interest. Unlike Kreider 

et al. (2012), who partially identify the effects of food stamps on health 

outcomes of children under weak measurement error assumptions, we do not 

rely on auxiliary data. Unlike Shiu (2015), who considers a sample selection 

model with a discrete, mis-measured, endogenous regressor, we do not rely on 

a parametric assumption about the form of the first-stage. Moreover, unlike 

the identification strategies from the existing literature described above, we 

do not rely upon continuity of the instrument, a large support condition, or 

restrictions on the relationship between the true, unmeasured treatment and 

its observed surrogate, subject to the condition that the measurement error 

process is non-differential. 

 

3 Main Results 
 

3.1   Notation and Basic Properties of the Model 

Consider the model described in Equations 1–6. Our arguments below, like 

those of Mahajan (2006) and Lewbel (2007), proceed by holding the exoge- 
 

 

regressions with a mis-classified, discrete outcome variable, as a first-stage in an IV setting. 
In principle, this approach would fully identify the mis-classification error process. Using 
these results, however, requires either an explicit, nonlinear, parametric model for the first 
stage, or an identification at infinity argument. 
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T = 1 

z = 1 z = 1 . . . z = K 

 

Table 1: Observables, using the shorthand p0k = qk (1 − pk ) and p1k = qkpk . 

 
nous covariates fixed at some level xa. As such, there is no loss of generality 

from suppressing dependence on x in our notation. It should be understood 

throughout that any conditioning statements are evaluated at x = xa. To 

this end let c = h(0, xa) and define β = h(1, xa) − h(0, xa).   Using this 

notation, Equation 1 can be re-expressed as a simple linear model, namely 
 

y = βT ∗ + u (7) 

 
where we define u = c + ε, an error term that need not be mean zero. We 
maintain throughout that β /= 0. If it were zero, this would imply that 

T ∗
 

is irrelevant for y which can be directly tested regardless of whether any 

mis-classification is present and regardless of whether T ∗ is endogenous.5 

From the perspective of non-parametric identification, the observables in 

this problem are the conditional distribution of y given (T, z), the conditional 

probabilities of T given z, and the marginal probabilities of z. For now, 

following the existing literature, we will restrict attention to the conditional 

mean of y. Below we consider using higher moments of y. Let ȳt,k denote 

E[y|T = t, z = zk ], let pk  denote P(T = 1|z = zk ) and let qk  = P(z = zk ). 

Table 1 depicts the observable first moments for this problem. 

The observed cell means ȳtk depend on a number of unobservable param- 

eters which we now define. Let m∗
 denote the conditional mean of u given 

T∗ = t and z = zk , E[u|T ∗ = t, z = zk ], and let p∗ denote P(T ∗ = 1|z = zk ). 
 

 

5This is because, as we will see below, the Wald Estimator is identified and is propor- 
tional to the treatment effect. This estimator exists provided that we have a valid and 
relevant instrument that takes on at least two values. 

ȳ01  

p01 

ȳ02  

p02 
. . . 

ȳ0K 

p0K 

ȳ11  

p11 

ȳ12  

p12 
. . . 

ȳ1K 

p1K 
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T ∗ = 0 

T ∗ = 1 

z = 1 z = 1 . . . z = K 

 
Table 2: Unobservables, using the shorthand p∗ = qk (1 −p∗ ) and p∗ = qkp

∗ . 
0k k 1k k 

 

These quantities are depicted in Table 2. By the Law of Total Probability 

and the definitions of pk and p∗ , 

pk =  P(T = 1|z = zk, T
∗ = 0)(1 − p∗ ) + P(T = 1|z = zk, T

∗ = 1)p∗ 
k k 

=  α0(1 − p∗ ) + (1 − α1)p
∗
 

k k 

 

since the misclassification probabilities do not depend on z by Equations 4–5. 

Rearranging, 
 

    pk − α0   1 − pk − α1 
pk = 

— α0 — α1 
, 1 − pk = 

1 − α0 — α1 
. (8) 

 

Equation 8 implies that p∗ is observable given knowledge of α0 and α1, since 

pk is observable. Note that for these equations to be meaningful, we require 
that α0 +α1 /= 0. Indeed, the existing literature (Black et al., 2000; Frazis 

and 

Loewenstein, 2003; Kane et al., 1999; Lewbel, 2007; Mahajan, 2006) imposes 

the stronger condition that α0 + α1 < 1, namely that the measurement error 

is not so severe that 1−T is a better predictor of T∗ than T is, and vice-versa. 

In its absence the treatment effect would only be identified up to sign. Our 

identification and partial identification results, presented below, will not in 

fact require that α0 + α1  < 1. 

A key assumption below will be the conditional mean independence of 
the error term and instrument, in other words E [ε|z] = 0. Since we have 

1 

m∗ 
01 

p∗ 
01 

m∗ 
02 

p∗ 
02 

. . . 
m∗ 

0K 

p∗ 
0K 

m∗ 
11 

p∗ 

m∗ 
12 

p∗ . . . 
m∗ 

1K 

p∗ 
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defined u = c + ε, this assumption can be expressed in terms of m∗  as 
 

(1 − p∗ )m∗
 + p∗m∗

 = c (9) 
k 0k k 1k 

 

for all k = 1, . . . , K. This restriction imposes that a particular weighted 

sum over the rows of a given column of Table 2 takes the same value across 

columns. 

 
3.2 Mahajan’s  Approach 

Here we show that Mahajan’s proof of identification for an endogenous treat- 

ment is incorrect. The problem is subtle so we give his argument in full detail. 

We continue to supress dependence on the exogenous covariates x. 

The first step of Mahajan’s argument is to show that if one could recover 

the conditional mean function of y given T∗ , then a valid and relevant binary 

instrument would suffice to identify the treatment effect. 

Assumption 1 (Mahajan A2). Suppose that y = c + βT∗ + ε where 

(i) E[ε|z] = 0 

(ii) P(T ∗ = 1|zk ) /= P(T ∗ = 1|zi') for all k /= /! 

(iii) P(T = 1|T ∗ = 0, z) = α0, P(T = 0|T ∗ = 1, z) = α1 

(iv) α0 + α1 /= 1 

Lemma 1 (Mahajan A2). Under Assumption 1, knowledge of the mis-classification 

error rates α0, α1  suffices to identify β. 

Proof of Lemma 1. Since z is a valid instrument that does not influence the 

mis-classification probabilities 
( 

pk − α0 
\

 

E[y|zk ] = c + βE[T ∗|zk ] + E[ε|zk ] = c + βp∗ = c + β 
1 − α0 − α1 
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by Equation 8.  Since pk is observed, and z takes on two values, this is a 

system of two linear equations in c, β provided that α0, α1  are known.  A 
unique solution exists if and only if p1 /= p2. 

In his Theorem 1, Mahajan (2006) proves that α0, α1 can in fact be iden- 

tified under the following assumptions.6 

Assumption 2 (Mahajan A1). Define ν = y − E[y|T ∗] so that by construc- 

tion we have E[ν|T ∗] = 0. Assume that 

(i) E[ν|T ∗, T, z] = 0.7
 

(ii) P(T ∗ = 1|zk ) /= P(T ∗ = 1|zi') for all k /= /! 

(iii) P(T = 1|T ∗ = 0, z) = α0, P(T = 0|T ∗ = 1, z) = α1 

(iv) α0 + α1 < 1 

(v) E[y|T ∗ = 0] /= E[y|T ∗ = 1] 

Lemma 2 (Mahajan Theorem 1). Under Assumptions 2, the error rates 

α0, α1 are identified as is the conditional mean function E[y|T ∗]. 

Proof of Lemma 2. See Mahajan (2006) Appendix A.1. 
 

Notice that the identification of the error rates in Lemma 2 does not de- 
pend on the interpretation of the conditional mean function E[y|T ∗]. If T∗

 

is an exogenous treatment, the conditional mean coincides with the treat- 

ment effect; if it is endogenous, this is not the case. Either way, the mean- 

ing of α0, α1 is unchanged: these parameters simply characterize the mis- 

classification process. Based on this observation, Mahajan (2006) claims 

that he can rely on Lemma 2 to identify α0, α1 and thus the causal effect β 

when the treatment is endogenous via Lemma 1. To do this, he must build 
 

 

6Technically, one additional assumption is required, namely that the conditional mean 
of y given T∗ and any covariates would be identified if T∗ were observed. 

7This is Mahajan’s Equation (I). 
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a bridge between Assumption 1 and Assumption 2 that allows T∗ to be en- 

dogenous. Mahajan (2006) does this by imposing one additional assumption: 

Equation 11 in his paper. 

Assumption 3 (Mahajan Equation 11). Let y = c + βT∗ + ε where E[ε|T ∗] 

may not be zero and suppose that 
 

E[ε|T ∗, T, z] = E[ε|T ∗]. 

Lemma 3. Suppose that y = c + βT∗ + ε where E[ε|z] = 0 and define the 

unobserved projection error ν = y− E[y|T ∗]. Then Assumption 3 implies that 

E[ν|T ∗, T, z] = 0, which is Assumption 2(i). 

Proof of Lemma 3. Taking conditional expectations of the causal model, 
 

E[y|T ∗] = c + βT∗ + E[ε|T ∗] 

 

which implies that 
 

ν = y − c − βT∗ − E[ε|T ∗] = ε − E[ε|T ∗]. 

Now, taking conditional expectations of both sides given T∗, T, z, we see that 
 

E[ν|T ∗, T, z] = E[ε|T ∗, T, z] − E [E ( ε| T∗) | T, T∗, z] 

= E[ε|T ∗, T, z] − E [ ε| T∗] = 0 

by Assumption 3, since E[ε|T ∗] is (T ∗, T, z)–measurable. 

To summarize, Mahajan’s claim is equivalent to the proposition that un- 

der Assumptions 1(i), 2(ii)–(v), and 3, β is identified even if T∗ is endogenous. 

Although Lemmas 1, 2 and 3 are all correct, Mahajan’s claim is not. While 

Assumption 3 does guarantee that Assumption 2(i) holds, when combined 

with Assumption 1(i) it also implies that 2(ii) fails if T∗ is endogenous. The 
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failure of Assumption 2(ii) in turn leads to a division by zero in the solution 

to the linear system following Mahajan’s displayed Equation 26: the system 

no longer has a unique solution so identification fails. 

 

Proposition 1 (Lack of a First Stage). Suppose that Assumptions 1(i) and 

3 hold and E[ε|T ∗] /= 0. Then P(T ∗  = 1|z1) = P(T ∗  = 1|z2),  
violating 

Assumption 2(ii). 
 

Proof of Proposition 1. By the Law of Iterated Expectations, 
 

E[ε|T ∗, z] = ET |T ∗,z [E (ε|T ∗, T, z)] = ET |T ∗,z [E (ε|T ∗)] = E [ε|T ∗] (10) 

 
where the second equality follows from Assumption 3 and the final equality 
comes from the fact that E[ε|T ∗] is (T ∗, z)–measurable. Using our notation 

from above let u = c + ε and define m∗
 = E[u|T ∗ = t, z = zk ].  Since c is 

a constant, by Equation 10 we see that m∗ ∗
 and m∗

 = m∗ .  Now, 

by Assumption 1(i) we have E[ε|z] = 0 so that E[u|z1] = E[u|z2] = c. Again 

using iterated expectations, 
 

E [u|z1] = ET ∗|z1 [E (u|T ∗, z1)] = (1 − p∗)m∗
 + p∗m∗  = c 

1 01 1 11 

E [u|z2] = ET ∗|z2 [E (u|T ∗, z2)] = (1 − p∗)m∗
 + p∗m∗  = c 

2 02 2 12 

 

The preceding two equations, combined with m∗
 

∗  and m∗ ∗
 

imply that p∗ = p∗ unless m∗
 = m∗

 = m∗
 = m∗

 = c. But this four-way 
1 2 01 11 02 12 

equality is ruled out by the assumption that E[ε|T ∗] /= 0. 

To understand the economic intuition behind Proposition 1, consider a 

simple example in which we randomize the offer of a job training program to 

a sample of workers to study the impact on future earnings. In this context 

z indicates whether a particular individual is offered job training by the 

experimenter while T∗ indicates whether she actually obtains job training 

from any source, inside or outside of the experiment. We observe not T∗ but 

= m 
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a self-report T that is measured with error. In this example u contains all of 

the unobservable factors that determine an individual’s wage. 

Assumption 3 allows for endogenous treatment receipt: E[u|T ∗ = 1] may 

be different from E[u|T ∗ = 0]. We might expect, for example, that individuals 

who obtain job training are more motivated than those who do not, and 

hence earn higher wages on average. However, Assumption 3 imposes that 

E [u|T ∗ = t, z1] = E [u|T ∗ = t, z2] for t = 0, 1.  This has two implications. 

First, it means that, among those who do not obtain job training, the average 

value of u is the same for those who were offered training and those who 

were not. Second, it means that, among those who did obtain job training, 

the average value of u is the same for those who were offered training and 

those who were not. In other words, Assumption 3 requires that there is no 

selection on unobservables. This is exactly the opposite of what we would 

expect in the job training example. For example, individuals who are offered 

job training but refuse it, are likely to be very different from those who are 

not offered training and fail to obtain it from an outside source. And herein 

lies the problem: Assumption 3 simultaneously allows endogeneity and rules 

out selection. Given that the offer of job training is randomly assigned, and 

hence a valid instrument, the only way to avoid a contradiction is if there 

is no first stage: the fraction of individuals who take up job training cannot 

depend on the offer of training. 

 
3.3 Lack of Identification From Conditional Means 

We have seen that Mahajan (2006)’s approach cannot identify β when the 

treatment is endogenous: Assumption 3 in fact implies that the instrument 

is irrelevant. But this alone does not establish that a valid instrument is 

insufficient to identify β when the treatment is endogenous. We now show 

that conditional mean information is in fact insufficient for identification, 

regardless of how many values the instrument takes on. 

To begin, consider the model in Equation 7 without any restrictions on 
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the m∗ , that is without imposing the IV restriction given in Equation 9. In 

this fully general case, the 2K + 3 unknown parameters are β, α0, α1 and the 

conditional means of u, namely m∗ . In contrast, there are only 2K available 

moment conditions. 

Lemma 4. Suppose that E [ε|T ∗, T, z] = E [ε|T ∗, z]. Then, under Assump- 

tion 1 (ii)–(iv), 
 

ŷ0k = α1(pk − α0)(β + m∗
 ) + (1 − α0)(1 − pk − α1)m

∗
 (11) 

1 − α0 − α1 

 

ŷ1k = (1 − α1)(pk − α0)(β + m∗
 ) + α0(1 − pk − α1)m

∗
 

 

(12) 
1 − α0 − α1 

where ŷ0k = (1 − pk )ȳ0k and ŷ1k = pk ȳ1k . 

Proof of Lemma 4. The result follows by combining Equation 8 with Bayes’ 

rule and the Law of Iterated Expectations applied to Equation 7. 
 

Notice that the observable “weighted” cell mean ŷtk defined in the preced- 

ing lemma depends on both m∗
 

∗ 

1−t,k 
since the cell in which T = t from 

Table 1 is in fact a mixture of both the cells T∗ = 0 and T∗ = 1 from Table 2, 

for a particular column k. Clearly we have fewer equations than unknowns. 

What additional restrictions could we consider imposing on the system? In a 

very interesting paper, Lewbel (2007) proposes using a three-valued “instru- 

ment” that does not satisfy the exclusion restriction. By assuming instead 

that there is no interaction between the instrument and the treatment, he 

is able to prove identification of the treatment effect. Using our notation 

it is easy to see why Lewbel (2007) requires a three-valued instrument. His 

moment conditions are equivalent to Equations 11 and 12 with the additional 

restriction that m∗ ∗
 for all k = 1, . . . , K. This leaves the number of 

equations unchanged at 2K, but reduces the number of unknowns to K + 3. 

The smallest K for which K + 3 is at least as large as 2K is 3.8 

8The context considered by Lewbel (2007) is slightly different from the one we pursue 

and m 
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Unlike Lewbel (2007) we, along with Mahajan (2006) and others, assume 
that E[ε|z] = 0 so that Equation 9 holds. 

Corollary 1. Suppose that E [ε|T ∗, T, z] = E [ε|T ∗, z]. Then, under Assump- 

tion 1, 
 

( 
β 

\ 

ŷ0k = α1(pk − α0) 
1 − α0 − α1 

+ (1 − α0)c − (pk − α0)m
∗
 (13) 

( 
β 

\ 

ŷ1k  = (1 − α1)(pk − α0) 
1 − α0 − α1 

+ α0c + (pk − α0)m
∗
 (14) 

 

where ŷ0k = (1 − pk )ȳ0k and ŷ1k = pk ȳ1k . 

Proof of Corollary 1. Using Equation 8 and rearranging, 
 

(1 − pk − α1)m
∗
 

1 − α0 − α1 

= c − (pk − α0 )m1k∗ 

.
 

1 − α0 − α1 
 

The result follows by substituting into Equations 11–12 from Lemma 4. 
 

Equations 13 and 14 also make it clear why the IV estimator is inconsis- 

tent in the face of non-differential measurement error, and that this incon- 

sistency does not depend on the endogeneity of the treatment, as noted by 

Frazis and Loewenstein (2003). Adding together Equations 13 and 14 yields 
 

( 
β 

\ 

ŷ0k + ŷ1k = c + (pk − α0) 
1 − α0 − α1 

 

completely eliminating the m∗
 from the system. Taking the difference of 

the preceding expression expression evaluated at two different values of the 
 

 

here, in that his “instrument” is more like a covariate: it is allowed to have a direct effect 
on the outcome of interest. For this reason, Lewbel (2007) cannot use the exogeneity of 
the treatment to obtain identification based on a two-valued instrument. 
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instrument, zk and zi', and rearranging 

(ŷ0k + ŷ1k ) − (ŷ0i' + ŷ1i' ) 

 

 
  β   

W = 

k − pi' 

= 
1 − α0 − α1 

(15) 

 

which is the well-known Wald IV estimator, since ŷ0k + ŷ1k = E[y|z = zk ]. 

Imposing E[ε|z] = 0 replaces the K unknown parameters {m∗
 }k=1  in 

Equations 11–12 with a single parameter c, leaving us with the same 2K 

equations but only K + 4 unknowns. When K = 2 (a binary instrument) we 

have 4 equations and 6 unknowns. So how can one identify β in this case? 

The literature has imposed additional assumptions which, using our notation, 

can once again be mapped into restrictions on the m∗ . Black et al. (2000), 

Kane et al. (1999), and Mahajan (2006) make a joint exogeneity assumption 
on (T ∗, z), namely E[ε|T ∗, z] = 0. Notice that this is strictly stronger than 

assuming that the instrument is valid and the treatment is exogenous. In our 

notation, this joint exogeneity assumption is equivalent to imposing m∗ = c 

for all t, k. This reduces the parameter count to 4 regardless of the value of 

K. Thus, when the instrument is binary, we have exactly as many equations 

as unknowns. The arguments in Black et al. (2000), Kane et al. (1999), and 

Mahajan (2006) are all equivalent to solving Equations 13 and 14 for β under 

the added restriction that m∗
 = c, establishing identification for this case. 

Frazis and Loewenstein (2003) use the same argument in a linear model with 

a potentially continuous instrument, but impose only the weaker conditions 

that the treatment is exogenous and the instrument is valid. Nevertheless, a 

crucial step in their derivation implicitly assumes the stronger joint exogene- 

ity assumption used by Black et al. (2000), Kane et al. (1999) and Mahajan 

(2006). Without this assumption, their proof does not in fact go through. 

If one wishes to allow for an endogenous treatment, the joint exogeneity 

assumption m∗
 = c is unusable and we have 2K equations in K+4 unknowns. 

Based on the identification arguments described above, there would seem to 

be two possible avenues for identification of the treatment effect when a valid 

p 
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instrument is available. One idea would be to impose alternative conditions 

on the m∗
 that are compatible with an endogenous treatment. If z is binary, 

two additional restrictions would suffice to equate the counts of moments 

and unknowns. As we showed in Proposition 1, however, this approach fails. 

Another idea, inspired by Lewbel (2007), would be to rely on an instrument 

that takes on more than two values. Following this approach would suggest 

a 4-valued instrument, the smallest value of K for which 2K = K + 4. 

Unfortunately this approach fails as well, as we now show. 

 

Theorem 1 (Lack of Identification). Suppose that Assumption 1 holds and 

additionally that E[ε|T ∗, T, z] = E[ε|T ∗, z] (non-differential measurement er- 

ror). Then regardless of how many values z takes on, generically β is uniden- 

tified based on the observables contained in Table 1. 

 

Proof of Theorem 1. Recall from the discussion preceding Equation 15 that 
the Wald estimator W = β/(1 − α0 − α1) is identified in this model so long 

as K is at least 2. Rearranging, we find that: 
 

α0  = (1 − α1) − β/W 

(pk − α0) = pk − (1 − α1) + β/W 

1 − α0 = α1 + β/W 
 

Substituting these into Equations 13 and 14 and summing the two, we find, 

after some algebra, that 

 

ŷ0k + ŷ1k + W(1 − pk ) = c + β + Wα1. 

 
Since the left-hand side of this expression depends only on observables and 
the identified quantity W, this shows that the right-hand side is itself identi- 

fied in this model. For simplicity, we define Q = c + β + Wα1. Since W and 

Q are both identified, varying either necessarily changes the observables, so 

we must hold both of them constant. We now show that Equations 13 and 
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14 can be expressed in terms of W and Q. Conveniently, this eliminates α0 

from the system. After some algebra, 
 

ŷ0k = α1(Q − m∗
 ) + β(c − m∗

 )/W + (1 − pk ) [m
∗
 − Wα1] (16) 

ŷ1k = (1 − α1)Q + β(m∗
 − c)/W − (1 − pk ) [m

∗
 + W(1 − α1)] (17) 

 

Now, rearranging Equation 17 we see that 
 

Q − ŷ1k − W(1 − pk ) = α1(Q − m∗
 ) + β(c − m∗

 )/W + (1 − pk ) [m
∗
 — Wα1] 

(18) 

Notice that the right-hand side of Equation 18 is the same as that of Equation 
16 and that Q − ŷ1k − W(1 − pk ) is precisely ŷ0k . In other words, given the 

constraint that W and Q must be held fixed, we only have one equation for 

each value that the instrument takes on. Finally, we can solve this equation 

for m∗
 as 

1k = 
W

 

 

(ŷ0k − α1Q) − β(Q − β − Wα1) + W2(1 − pk )α1 

 

 
(19) 

m∗ 

W(1 − pk − α1) − β 
 

using the fact that c = Q−β−Wα1. Equation 19 is a manifold parameterized 

by (β, α1) that is unique to each value that the instrument takes on. Thus, 
K 

by adjusting {m∗
 }k=1 according to Equation 19 we are free to vary β while 

holding all observable moments fixed. 
 

The preceding argument establishes lack of identification by deriving a 
K 

parametric relationship between β and α0, α1, {m∗
 }k=1 . So long as we adjust 

the other parameters according to this relationship, we are free to vary β 

while leaving all observable moments unchanged. This holds regardless of 

the number of values, K, that the instrument takes on. 
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3.4 Identification Based on Higher Moments 

Having shown that the moment conditions from Table 1 do not identify β 

regardless of the value of K, we now consider exploiting the information 

contained in higher moments of y. When z is not merely mean-independent 

but in fact statistically independent of ε, as in a randomized controlled trial 

or a true natural experiment, the following assumptions hold automatically. 

Assumption 4 (Second Moment Independence). E[ε2|z] = E[ε2] 

Assumption 5 (Third Moment Independence). E[ε3|z] = E[ε3] 

Theorem 2. Under Assumption 4 and the conditions of Theorem 1 the dif- 

ference of mis-classification rates, (α1 −α0) is identified provided that z takes 

on at least two values. 
 

Proof of Theorem 2. First define 
 

ki' =  (pk − α0)m1k − (pi' − α0)mki' (20) 
µ∗ ∗ ∗ 

∆y2 = E(y2|zk ) − E(y2|zi') (21) 

∆yT = E(yT |zk ) − E(yT |zi') (22) 

 

By iterated expectations it follows, after some algebra, that 

 
 

∆y2 = βW(pk − pi') + 2Wµ∗ 

∆yT =  (1 − α1)W(pk − pi') + µ∗ 

(23) 

(24) 
 

Now, solving Equation 24 for µ∗ , substituting the result into Equation 23 

and rearranging, 
 

 

R ≡ β − 2(1 − α1)W = 
∆y2 − 2W∆yT 

W(pk − pi') 
. (25) 

 

Since W is identified it follows that R is identified. Rearranging the preceding 
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equality and substituting β = W(1 − α0 − α1) to eliminate β, we find that 

α1 − α0 = 1 + R/W. (26) 

Because both R and W are identified, it follows that the difference of error 

rates is also identified. 
 

The preceding result can be used in several ways. One possibility is to 

test for the presence of mis-classification error. If the treatment is measured 

without error, then α0 must equal α1. By examining the identified quantities 

R and W, one could possibly discover that this requirement it violated. 

Moreover, in some settings mis-classification may be one-sided. In a smoking 

and birthweight example, it seems unlikely that mothers who did not smoke 

during pregnancy would falsely claim to have smoked. If either of α0, α1 is 

known, Theorem 2 point identifies the unknown error rate and hence β, using 
the fact that β = W(1 − α0 − α1). When neither of the error rates is known 

a priori, the same basic idea can be used to construct bounds for β. We now 

show that by augmenting Theorem 2 with information on conditional third 

moments, we can point identify β. 
 

Theorem 3. Under Assumptions 4-5 and the conditions of Theorem 1, the 

mis-classification rates α0 and α1 and the treatment effect β are identified 

provided that z takes on at least two values. 

Proof of Theorem 3. First define 
 

v∗ 2 ∗ 

tk = E(u |T = t, z = zk ) (27) 
ki' =  (pk − α0)v1k − (pi' − α0)v1i' (28) 

λ∗ ∗ ∗ 

∆y3 = E(y3|zk ) − E(y3|zi') (29) 

∆y2T = E(y2T |zk ) − E(y2T |zi') (30) 

where u, as above, is defined as ε + c. By iterated expectations it follows, 
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after some algebra, that 
 

∆y3 =  β2W(pk − pi') + 3βWµ∗ + 3Wλ∗ (31) 

∆y2T = β(1 − α1)W(pk − pi') + 2(1 − α1)Wµ∗ 
∗ 
ki' (32) 

 

where, as above, the identified quantity W equals β/(1 − α0 − α1) and µ∗ 

is as defined in Equation 20. Now, substituting for λ∗ in Equation 31 using 

Equation 32 and rearranging, we find that 

 
  

∆y3 − 3W∆y2T = βW(pk − pi') [β − 3W(1 − α1)] + 3WRµ∗ (33) 
 

where R is as defined in Equation 25. Now, using Equation 24 to eliminate 

µki' from the preceding equation, we find after some algebra that 
 

S ≡ β2 − 3W(1 − α1)(β + R) = 
∆y3 − 3W 

l
∆y2T + R∆yT 

l 

W(pk − pi') 

 

. (34) 

 

Notice that S is identified.  Finally, by eliminating β from the preceding 

expression using Equation 25, we obtain a quadratic equation in (1 − α1), 

namely 

2W2(1 − α1)2 + 2RW(1 − α1) + (S − R2) = 0. (35) 

Note that, since, W, R and S are all identified, we can solve Equation 35 for 

(1 − α1). The solutions are as follows 
 

1 ( 

(1 − α1) = −  
W 

 1  √ 
± 3R2 

W 

\ 

— 2S (36) 

 

It can be shown that 3R2 − 2S = [R + 2W(1 − α1)]
2  so the quantity under 

the radical is guaranteed to be positive, yielding two real solutions. One of 
these is (1 − α1), but what about the other root? Using Equation 26 we can 

re-express Equation 35 as a quadratic in α0. Surprisingly, after simplifying, 

we obtain a quadratic with identical coefficients. This implies that the second 

+ λ 
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root of Equation 35 identifies α0. Since we know the sign of the difference 

α1 − α0 from Theorem 2, we know which mis-classification rate is larger 

and hence can correctly label the two roots. Finally, substituting into β = 

W(1 − α0 − α1), we identify the treatment effect. 

Note that, in contrast to all other results in the literature (Black et al., 

2000; Frazis and Loewenstein, 2003; Kane et al., 1999; Lewbel, 2007; Maha- 

jan, 2006), our proof does not require the assumption that α0 + α1 < 1 to 

identify β. 

 

4  Conclusion 

This paper has presented the first point identification result for the effect 

of an endogenous, binary, mis-measured treatment using a discrete instru- 

ment. While our results require us to impose stronger conditions on the 

instrument, these conditions are satisfied in a number of empirically relevant 

examples, for example randomized controlled trials and true natural exper- 

iments. We obtain identification by augmenting conditional first moments 

with additional information contained in second and third moments and fur- 

ther derive a partial identification result based on first and second moments 

alone. By appealing to higher moments we can accommodate any amount 

of mis-classification, dispensing with a standard assumption from the litera- 

ture that mis-classification is not “too severe.” In addition, and contrary to 

an incorrect previous result in Mahajan (2006), we showed that appealing 

to higher moments is necessary if one wishes to obtain identification: first 

moment information alone cannot identify the causal effect of an endoge- 

nous, mis-classified binary treatment regardless of the number of values the 

instrument may take. While we have restricted our attention in this paper 

to the case of homogeneous treatment effects, a promising avenue for future 

research would be to consider the heterogenous case. 
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