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Abstract

This paper studies the averaging generalized method of moments (GMM) estimator
that combines a conservative GMM estimator based on valid moment conditions and
an aggressive GMM estimator based on both valid and possibly misspeci�ed moment
conditions, where the weight is the sample analog of an infeasible optimal weight. It is
an alternative to pre-test estimators that switch between the conservative and agressive
estimators based on model speci�cation tests. This averaging estimator is robust in
the sense that it uniformly dominates the conservative estimator by reducing the risk
under any degree of misspeci�cation, whereas the pre-test estimators reduce the risk
in parts of the parameter space and increase it in other parts.
To establish uniform dominance of one estimator over another, we establish asymp-

totic theories on uniform approximations of the �nite-sample risk di¤erences between
two estimators. These asymptotic results are developed along drifting sequences of
data generating processes (DGPs) that model various degrees of local misspeci�cation
as well as global misspeci�cation. Extending seminal results on the James-Stein esti-
mator, the uniform dominance is established in non-Gaussian semiparametric nonlinear
models. The proposed averaging estimator is applied to estimate the human capital
production function in a life-cycle labor supply model.
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1 Introduction
Economic theories often imply optimality conditions that take the form of moment con-

ditions. Without requiring a full speci�cation of the model, the generalized method of mo-

ments (GMM) estimator (Hansen, 1982) is one of the most popular methods for estimating

moment-based models in economics and �nance (see, e.g., Cochrane, 2001; Arellano, 2003;

Hall, 2005; and Singleton, 2006 for discussions of GMM and a wide array of applications).

Properties of the GMM estimator rely on the quality of the moment conditions. While

it is appealing to use more moment restrictions for a more e¢ cient estimator, the validity

of some moment conditions may be subject to empirical examination. Various speci�cation

tests and model selection criteria are available for testing the validity of moment conditions.

However, such data-dependent decisions on model speci�cation do not always improve the

estimator. For example, consider the comparison between a pre-test GMM estimator that

only uses some additional moment restrictions if a speci�cation test (e.g., the J-test) suggests

their validity and a conservative GMM estimator that never uses these additional moment

restrictions. Measured by the mean squared error (MSE), this pre-test estimator does better

than the conservative estimator in parts of the parameter space and worse than the latter in

other parts of the parameter space. Post-model-selection estimators also exhibit this type of

non-uniform behavior (Leeb and Pötscher, 2008).

This paper aims to uniformly reduce the risk of a GMM estimator by utilizing poten-

tially misspeci�ed moment restrictions with data-dependent averaging. Instead of using tests

or model-selection criteria to switch between the �conservative�estimator that never uses

additional moments and the �aggressive� estimator that always uses additional moments,

we consider an averaging estimator that combines the two with a smooth data-dependent

weight. The averaging weight is derived as the sample analog of an infeasible optimal weight.

This paper establishes �uniform dominance� in the sense that in large sample the risk of

this averaging estimator is smaller than or equal to that of the conservative estimator for
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any DGP in a given parameter space and the former is strictly smaller than the latter for

some DGPs. For DGPs in this parameter space, the additional moment conditions may be

correctly speci�ed or misspeci�ed to any degrees. The uniform dominance result insures the

averaging estimator against any e¢ ciency loss, even if the additional moments are misspec-

i�ed and the degree of misspeci�cation is unknown.

To establish uniform dominance of one estimator over another, the paper provides new

asymptotic theories on uniform approximations of the �nite-sample risk di¤erences between

two estimators. These results are developed along drifting sequences of DGPs with di¤er-

ent degrees of misspeci�cation. This class of DGPs include the crucial n�1=2 local sequences

that are considered by Hjort and Claeskens (2003), Saleh (2006), Hansen (2014a,b), DiTraglia

(2014) for various averaging estimators, as well as some more distant sequences. The theoret-

ical results glue all sequences together and show that they are su¢ cient to provide a uniform

approximation of the �nite-sample risk di¤erences. The proof uses the techniques developed

in Andrews and Guggenberger (2010) and Andrews, Cheng, and Guggenberger (2011) for

uniformly valid tests and applies them to uniform risk comparison in moment-based models.

This uniform dominance result is related to the Stein�s phenomenon (Stein, 1956) in

parametric models. The James-Stein (JS) estimator (James and Stein, 1961) is shown to

dominate the maximum likelihood estimator in exact normal sampling. Hansen (2014a)

considers local asymptotic analysis of the JS-type averaging estimator in general paramet-

ric models and substantially extends its application in econometrics. The present paper

focuses on the uniformity issue and studies the Stein�s phenomenon in non-Gaussian semi-

parametric nonlinear models. The weight we suggest is di¤erent from a JS-type extension

for semiparametric models. We �nd the suggested weight compares favorably to the latter

in �nite-sample experiments.

The estimator proposed in this paper is a frequentist model averaging (FMA) estimator.

FMA estimators have received much attention in recent years. Buckland, Burnham, and

Augustin (1997) and Burnham and Anderson (2002) suggest model averaging weights based
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on the AIC or BIC scores. The risk properties of similar estimators was examined by Leung

and Barron (2006). Yang (2001) and Yuan and Yang (2005) propose a mixing estimator.

Hjort and Claeskens (2003) study the asymptotic distribution and asymptotic risk of the

FMA estimator in locally misspeci�ed parametric models. The results of Hjort and Claeskens

(2003) are extended to the Cox�s proportional hazards models by Hjort and Claeskens (2006),

general semi-parametric models by Claeskens and Carroll (2007), and generalized additive

partially linear models by Zhang and Liang (2011). Hansen (2007, 2008) and Wan et al.

(2010) study the FMA estimator with the Mallows�averaging weight. Liang et al. (2011)

introduce a general random weight that includes smoothed AIC, smoothed BIC, and many

other weights as special cases. Hansen and Racine (2012) investigate the FMA estimator

with the cross-validation averaging weight. Cheng and Hansen (2014) study FMA estimators

in factor-augmented regressions. Our paper contributes to this literature by studying the

uniform asymptotic risk of the FMA estimator in moment-based semiparametric models and

providing an asymptotic framework to show uniform dominance.

The rest of the paper is organized as follows. Section 2 introduces the model and the

averaging estimator. Section 3 establishes some general results on the asymptotic risk and the

uniform dominance of one estimator over another. Section 4 de�nes the averaging estimator

and uses the general results in Section 3 to show that the averaging GMM estimator uniformly

dominates the conservative estimator. Section 5 investigates the �nite sample performance of

our averaging estimator in simulation experiments. Section 6 applies the averaging estimator

to estimate the human capital production function in a life-cycle labor supply model. Section

7 concludes. Proofs and technical arguments are given in the Appendix.

2 Model and Averaging Estimator
The observations fWi 2 RdW : i = 1; :::; ng are i.i.d. or stationary with joint distribution

F0 2 F : For some known functions g1(�; �) 2 Rr1 and g�(�; �) 2 Rr
�
; we consider estimation
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of a �nite-dimensional parameter �0(2 � � Rd�) that satis�es the moment conditions

EF0 [g1(Wi; �0)] = 0r1 ; (2.1)

EF0 [g�(Wi; �0)] = �0; (2.2)

where 0r1 denotes a r1 � 1 zero vector, the slackness parameter �0 is unknown and EF [�]

denotes the expectation taken with respect to the DGP F . We assume that the moment

conditions in (2.1) uniquely identify �0 for any F0 2 F . Although a consistent estimator of

�0 follows from the moment conditions in (2.1), it is desirable to explore the information in

(2.2) to improve e¢ ciency.

Because �0 is unknown, a data-dependent decision typically is made to switch between

the �conservative�estimator that only uses (2.1), and the �aggressive�estimator that uses

the moment conditions in both (2.1) and (2.2) with �0 imposed to be 0r�. Write

g2(W; �) = (g1(W; �)
0; g�(W; �)0)

0 2 Rr2 : (2.3)

The conservative b�1 and the aggressive GMM estimators b�2 are de�ned by
b�k � argmin

�2�

"
n�1

nX
i=1

gk(Wi; �)

#0
Wk;n

"
n�1

nX
i=1

gk(Wi; �)

#
(2.4)

for k = 1; 2, where Wk;n is a rk � rk matrix de�ned as

Wk;n =

 
n�1

nX
i=1

gk(Zi;e�1)gk(Zi;e�1)0 � gk;n(Z;e�1)gk;n(Z;e�1)0
!�1

;

where gk;n(Z;e�1) = n�1
Pn

i=1 gk(Zi;
e�1) and e�1 is a preliminary consistent GMM estimator

based on g1(Zi; �) and the identity weighting matrix.

Below is a linear IV example to illustrate the above general notations.

Example 2.1. Consider the structural equations

Y = X 0
1�1 +X

0
2�2 + u; (2.5)

X1 = �0X2 +�1Z1 +�2Z2 + v; (2.6)
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where Y is a scalar response variable, X1 is a vector of endogenous regressors, X2 is a vector

of exogenous regressors, Z1 and Z2 are vectors of instrumental variables (IVs hereafter), u

and v are residual terms. We are interested in the coe¢ cients � = (�01; �
0
2)
0. The coe¢ cients

�j (j = 0; 1; 2) are nuisance parameters. Let F0 denote the joint distribution of W =

(Y;X 0
1; X

0
2; Z

0
1; Z

0
2)
0:

In the structural equation (2.5), X1 is endogenous in the sense that each element of

EF0 [X1u] is non-zero and X2 is exogenous in the sense that EF0 [X2u] = 0dx2 : To identify

�; suppose we have valid IVs Z1 that satisfy the exogenous condition EF0 [Z1u] = 0dz1 :The

number of valid IVs Z1 is no smaller than the number of endogenous variables X1. We also

have additional IVs Z2; but their validity is uncertain, i.e., EF0 [Z2u] = �0 and �0 may not

be a zero vector. In this example,

g1(W; �) = ((Y �X 0
1�1 �X 0

2�2)X
0
2; (Y �X 0

1�1 �X 0
2�2)Z

0
1)
0
; (2.7)

g�(W; �) = (Y1 �X 0
1�1 �X 0

2�2)Z2: (2.8)

GMM estimators b�1 and b�2 follow from (2.4). �

Many estimators considered in the literature fall in the class

b�(e!) = (1� e!)b�1 + e!b�2 (2.9)

where e! 2 R could be deterministic or random. A pre-test estimator takes the form b�(e!�;p),
where e!�;p = 1fTn � c�g for some test statistic Tn with the critical value c� at the signi�cance
level �. Post-model selection estimator also follows this binary decision rule and allows c�

to change with the sample size. For averaging estimators, e! typically is data-dependent and
not restricted to 0 or 1 (see, e.g., Hjort and Claeskens, 2003 and Hansen, 2007).

Although various data-dependent choices of e! in the literature all aim to improve uponb�1 by exploring the information in (2.2), it remains to establish an asymptotic framework
to show one estimator dominates the other uniformly. Uniformity is important because e! is
data-dependent and the �nite-sample risk of b�(e!) is sensitive to the degree of misspeci�ca-

6



tion measured by �0. In a pointwise asymptotic framework where the DGP is �xed as the

sample size increases, a pre-test estimator has smaller asymptotic risk than the conservative

estimator b�1. However, it does not dominates b�1 uniformly over all the DGPs. As such,
we �rst establish some general asymptotic results that enable one to evaluate the uniform

asymptotic risk of an estimator and the risk di¤erences between two estimators over a class

of distributions. These uniform asymptotic results aim to provide good approximations to

the �nite-sample properties.

3 Asymptotic Risk and Risk Di¤erences
Let b� 2 � be the generic notation of an estimator of �0. Let ` (�) : �! R+ [ f1g be a

generic loss function. The �nite-sample and asymptotic risks of b� are de�ned as
Rn(b�) � sup

F2F
EF [`(b�)] and AsyR(b�) � lim sup

n!1
Rn(b�); (3.1)

respectively. The asymptotic risk builds the uniformity over F 2 F into the de�nition by

taking supF2F before lim supn!1. This uniform asymptotic risk is di¤erent from a pointwise

asymptotic risk which is either obtained under a �xed DGP or a particular sequence of

drifting DGP. It is comparable to the asymptotic size of a test, which is the limit of the

�nite-sample size de�ned as the supremum of the �nite-sample rejection probabilities.

To compare two estimators b� and e�, we consider the �nite-sample and asymptotic minimal
and maximal risk di¤erence (RD):

RDn(
b�;e�) � inf

F2F
EF [`(b�)� `(e�)]; AsyRD(b�;e�) � lim inf

n!1
RDn;

RDn(b�;e�) � sup
F2F

EF [`(b�)� `(e�)]; AsyRD(b�;e�) � lim sup
n!1

RDn: (3.2)

The objects of interest are the �nite-sample risk di¤erences, approximated by their asymp-

totic counterparts. One estimator b� uniformly dominates the other estimator e� if
AsyRD(b�;e�) < 0 and AsyRD(b�;e�) � 0: (3.3)
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In (3.1) and (3.2), the uniformity over F 2 F is crucial for the asymptotic results to

give a good approximation to their �nite-sample counterparts. The value of F at which

the supremum or the in�mum are attained often varies with the sample size. Therefore,

to determine the asymptotic risk of an estimator and to show one estimator dominates

another, one has to derive the asymptotic distributions of these estimators under various

sequences fFng. In the subsection below, we provide a su¢ ciently large class of sequences

fFng such that the pointwise limits along these sequences can combine to represent the

uniform asymptotic risk and risk di¤erences.1

3.1 A su¢ cient class of sequences

Let �(F ) 2 � be the unique value of � satisfying EF [g1(W; �(F ))] = 0r1. De�ne

�(F ) � EF [g�(W; �(F ))] ; (3.4)

which measures the slackness of the additional moments for any F . For k = 1 and 2, we

de�ne the Jacobian and the variance-covariance matrices of the moment functions by

Gk(F ) � EF [gk;�(W; �(F ))] ; where gk;�(W; �) �
gk(W; �)

@�0
;


k(F ) � lim
n!1

VarF

"
n�1=2

nX
i=1

gk(Wi; �(F ))

#
: (3.5)

Note that G1(F ) = S1G2(F ) and 
1(F ) = S1
2(F )S
0
1, where S1 is a selector matrix that

selects g1(W; �) out of g2(W; �). For the averaging GMM estimator studied below, let

v(F ) � (vec[G2(F )]0; vech[
2(F )]0;M2(�;F )
0)
0 , (3.6)

whereM2(�;F ) � EF [g2(W; �)] is the moment function indexed by � for any F , vec (�) denotes

vectorization, and vech (�) denotes the half vectorization of a symmetric matrix.

Example 2.1. (Cont.) In this example, �(F ) = (�01(F ); �
0
2(F ))

0 is the solution to the linear

1The metric on F induces weak convergence of the bivariate distributions (Zi; Zj) for all i; j � 1; such as
the Kolmogorov metric or the Prokhorov metric.
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equations

0r1 = EF [g1(W; �(F ))] = EF

264(Y �X 0
1�1(F )�X 0

2�2(F ))

0B@ X2

Z1

1CA
375 : (3.7)

Given �(F ), �(F ) in this example is de�ned as

�(F ) = EF [g�(W; �(F ))] = EF [(Y �X 0
1�1(F )�X 0

2�2(F ))Z2] : (3.8)

As the moment functions are linear in �, Gk(F ) (k = 1; 2) have simple expressions:

G1(F ) = �EF

264
0B@ X2X

0
1 X2X

0
2

Z1X
0
1 Z1X

0
2

1CA
375 and G2(F ) = �EF

��
ZX 0

1 ZX 0
2

��
; (3.9)

where Z = (X 0
2; Z

0
1; Z

0
2)
0. In addition, 
k(F ) and M2(�;F ) are de�ned using the moment

functions g1(W; �), g�(W; �) and �(F ) respectively. �

We consider sequences of DGPs fFng such that �(Fn) satis�es

(i) n1=2�(Fn)! d 2 Rr� or (ii) jjn1=2�(Fn)jj ! 1: (3.10)

and v(Fn) satis�es

v(Fn)! v0 � (vec[G2]0; vech[
2]0;M2(�)
0)
0
; (3.11)

where G2 2 Rr2�d� , 
2 2 Rr2�r2 , andM2(�) is a non-random function of �. Case (ii) in (3.10)

includes the intermediate case in which �(Fn)! 0r� and jjn1=2�(Fn)jj ! 1 as well the case

in which �(Fn) is bounded away from 0r�. We collect the sequences fFng that satisfy (3.10)

and (3.11) into two sets

S(d; v0) �
�
fFng : Fn 2 F ; n1=2�(Fn)! d 2 Rr� and v(Fn)! v0

	
and

S(1; v0) �
�
fFng : Fn 2 F ; jjn1=2�(Fn)jj ! 1 and v(Fn)! v0

	
: (3.12)

The DGPs in S(d; v0) include correctly speci�ed and locally misspeci�ed models up to the

magnitude of n�1=2, whereas the DGPs in S(1; v0) consist of more severely misspeci�ed
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models, including the conventional global misspeci�cation case where �(Fn) is a �xed non-

zero value as well as the intermediate case where �(Fn) converges to 0r� at a rate slower than

n�1=2:

In this model, for each sample size n, the true values of F , � and � are denoted as Fn,

�n = �(Fn), and �n = �(Fn), respectively. These true values satisfy the model speci�ed in

(2.1) and (2.2) with the subscript 0 replaced by n. Under fFng, the observations fWn;igni=1

form a triangular array. For notational simplicity, Wn;i is abbreviated to Wi.

3.2 Representation of the asymptotic risk and risk di¤erences

For two estimators b� and e�, we assume that EFn [`(b�)] and EFn [`(e�)] satisfy the following
high-level assumptions along a sequence fFng.

Assumption 3.1 The following results hold under fFng:

(i) If fFng 2 S(d; v0) for d 2 Rr
�
;

lim
n!1

EFn [`(b�)] = R(d; v0) 2 R+ and lim
n!1

EFn [`(e�)] = eR(d; v0) 2 R+:
(ii) If fFng 2 S(1; v0);

lim
n!1

EFn [`(b�)] = R(1; v0) 2 R+ [ f1g and lim
n!1

EFn [`(e�)] = eR(1; v0) 2 R+ [ f1g:
Assumption 3.1 considers the pointwise limit of the �nite-sample risk along fFng. The

key requirement is that the limit of the �nite-sample risk under fFng does not depend on the

limit of Fn directly. Instead, it depends on the limits of n1=2�(Fn) and v(Fn). Moreover, for

any sequence fFng 2 S(d; v0), the limit of the �nite-sample risk must be the same, indexed

by (d; v0). The same requirement applies to a sequence fFng 2 S(1; v0).

When e� is the conservative estimator, we can write eR(v0) = eR(d; v0) = eR(1; v0) because
its asymptotic risk dose not depend on the degree of misspeci�cation.

Let � = f(�(F ); v(F )) : F 2 Fg. The following assumption provides a set of regularity

assumptions on the set F on which we build the uniform results.
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Assumption 3.2 (i) VF = fv(F ) : F 2 Fg is a compact set.

(ii) �(F1) = 0 for some F1 2 F and �(F2) 6= 0 for some F2 2 F .

(iii) For some " > 0, if jj�jj < " and (�; v) 2 � then (a�; v) 2 � 8a 2 (0; 1].

Assumption 3.2(i) requires that the image of v(F ) is a compact set. Assumption 3.2(ii)

states that the parameter space contains both correctly speci�ed models and misspeci�ed

models. Assumption 3.2(iii) states that the space F includes some continuous perturbations

from a correctly speci�ed model.

For sequences in (3.12), we de�ne parameter spaces:

HR � f(d; v0) : there exists some sequence fFng 2 S(d; v0)g;

H1 � fv0 : there exists some sequence fFng 2 S(1; v0)g: (3.13)

The set HR corresponds to the correctly speci�ed and �mildly�misspeci�ed models. The

set H1 corresponds to the �severely�misspeci�ed models.

Theorem 3.1 Suppose Assumptions 3.1 and 3.2 hold. Then:

(a) The asymptotic risk satis�es

AsyR(b�) = max( sup
(d;v0)2HR

R(d; v0); sup
v02H1

R(1; v0)
)
:

(b) The asymptotic minimal and maximal risk di¤erences satisfy

AsyRD(b�;e�)=min� inf
(d;v0)2HR

h
R(d; v0)� eR(d; v0)i ; inf

v02H1

h
R(1; v0)� eR(1; v0)i� ;

AsyRD(b�;e�)=max( sup
(d;v0)2HR

h
R(d; v0)� eR(d; v0)i ; sup

v02H1

h
R(1; v0)� eR(1; v0)i) :

Comment 3.1 Theorem 3.1 links the uniform asymptotic risk and risk di¤erences with the

pointwise limits of EFn [`(b�)] and EFn [`(e�)] under the sequences considered in Assumption
3.1. It shows that the sequences in S(d; v0) and S(1; v0) form a su¢ cient class to study the

uniform asymptotic risk and asymptotic risk di¤erences. This class is larger than the class

of convergent sequences that satisfy Fn ! F0 for some F0 2 F . Theorem 3.1 is proved by
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the techniques used to establish the asymptotic size of non-standard tests, see Andrews and

Guggenberger (2010), Andrews, Cheng, and Guggenberger (2011), and Andrews and Cheng

(2012).2

Comment 3.2 The two estimators b� and e� are compared under all DGPs in F to establish

uniform dominance in the sense of (3.3). The smallest and largest di¤erences between their

risks are approximated by AsyRD(b�;e�) and AsyRD(b�;e�), respectively. They are di¤erent
from what one would obtain by simply comparing the individual asymptotic risks of the two

estimators.

Comment 3.3 Theorem 3.1 also applies to other non-standard estimation problems where

the asymptotic distribution is discontinuous at parts of the parameter space. It is key to

verify Assumption 3.1 after specifying �(F ) and v(F ):

3.3 Asymptotic risk with truncation

The high-level conditions in Assumption 3.1 typically are veri�ed by �rst obtaining the

asymptotic distribution of b� and e� under fFng, then taking expectations of the limits by
assuming uniform integrability. If uniform integrability is not a reasonable assumption, one

may consider the truncated loss function `�(b�) � minf`(b�); �g for some � 2 R+ following
Hansen (2014a) and generalize the asymptotic risk to

AsyR�(b�) � lim
�!1

lim sup
n!1

sup
F2F

EF [`�(b�)]: (3.14)

In this case, Assumption 3.1 can be replaced by Assumption 3.3 below.

Assumption 3.3 The following results hold under fFng.

(i) If fFng 2 S(d; v0) for d 2 Rr
�
, then for any � 2 R+ :

lim
n!1

EFn [`�(b�)] = R�(d; v0) 2 R+ and lim
n!1

EFn [`�(e�)] = eR�(d; v0) 2 R+:
2In an uncirculated working paper, Andrews and Guggenberger (2006) also considered the asymptotic

risk representation of a non-standard estimator.
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(ii) If fFng 2 S(1; v0); then for any � 2 R+ :

lim
n!1

EFn [`�(b�)] = R�(1; v0) 2 R+ and lim
n!1

EFn [`�(e�)] = eR�(1; v0) 2 R+:
For the truncated loss, the asymptotic minimal and maximal risk di¤erences are respec-

tively generalized to

AsyRD�(b�;e�) � lim
�!1

lim inf
n!1

inf
F2F

EF [`�(b�)� `�(e�)];
AsyRD

�
(b�;e�) � lim

�!1
lim sup
n!1

sup
F2F

EF [`�(b�)� `�(e�)]: (3.15)

Corollary 3.2 Suppose Assumptions 3.2 and 3.3 hold.

(a) The asymptotic risk satis�es

AsyR�(b�)= lim
�!1

AsyR��(
b�); where

AsyR��(
b�)�max( sup

(d;v0)2HR
R�(d; v0); sup

v02H1
R�(1; v0)

)
2 R+ [ f1g:

(b) The asymptotic minimal and maximal risk di¤erences satisfy

AsyRD�(b�;e�)= lim
�!1

AsyRD�
�(
b�;e�) and

AsyRD
�
(b�;e�)= lim

�!1
AsyRD

�
�(
b�;e�), where

AsyRD�
�(
b�;e�)�min� inf

(d;v0)2HR

h
R�(d; v0)� eR�(d; v0)i ; inf

v02H1

h
R�(1; v0)� eR�(1; v0)i� ;

AsyRD
�
�(
b�;e�)�max( sup

(d;v0)2HR

h
R�(d; v0)� eR�(d; v0)i ; sup

v02H1

h
R�(1; v0)� eR�(1; v0)i) :

Comment 3.4 In the formula of AsyR�(b�) in part (a), the supremum is taken before � !1

to control the truncation e¤ect uniformly over the parameter space. The order of supremum

and � !1 should not be switched. Similarly, when comparing two estimators in part (b),

we take care the truncation e¤ect on both estimators uniformly over the parameter space.
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4 Averaging GMM Estimator
In this section, we propose an averaging estimator and use the asymptotic risk di¤erence

representation in Section 3 to show that it uniformly dominates the conservative estima-

tor. We �rst study the asymptotic properties of the conservative and the aggressive GMM

estimators under di¤erent sequences of DGPs.

4.1 GMM estimator under misspeci�cation

For the aggressive GMM estimator b�2, the population criterion function is
QF (�) � EF [g2(Wi; �)]

0
�12 (F )EF [g2(Wi; �)]: (4.1)

Let ��(F ) denote the pseudo-true value that minimizes QF (�) over � 2 �. If all moment con-

ditions are correctly speci�ed, i.e., EF [g2(Wi; �(F )] = 0, this pseudo-true value is equivalent

to the true value, i.e., ��(F ) = �(F ). If some moment conditions in (2.2) are misspeci�ed,

they could be di¤erent. The identi�cation conditions for �(F ) and ��(F ) are speci�ed in

Assumption 4.1 below.

Assumption 4.1 (i) For any " > 0, there exists a constant �" > 0 such that 8F 2 F ,

inf
f�2�: k���(F )k�"g

kEF [g1(Wi; �(F ))]k > �";

inf
f�2�: k����(F )k�"g

[QF (�)�QF (��(F ))] > �":

(ii) �(F ) and ��(F ) are both in the interior of � 8F 2 F .

For any matrix A, we use �min(A) and �max(A) to denote the smallest and largest eigen-

values of A, respectively. Let C denote a generic �nite constant.

Assumption 4.2 (i) EF [sup�2�(jjg2(Wi; �)jj+ jjg2;�(Wi; �)jj)] � C 8F 2 F .

(ii) g2(W; �) is continuously di¤erentiable a.s. and its partial derivative g2;�(W; �) satis�es

jEF [g2;�(Wi; �1)� g2;�(Wi; �2)]j � Cjj�1 � �2jj 8�1; �2 2 �;8F 2 F :
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(iii) For k = 1 and 2, C�1 � �min(
k(F )) � �max(
k(F )) � C 8F 2 F .

(iv) For k = 1 and 2, C�1 � �min(G0k(F )Gk(F )) � �max(G0k(F )Gk(F )) � C 8F 2 F .

(v) Wk;n !p 

�1
k under any fFng such that 
k(Fn)! 
k, for k = 1 and 2.

(vi) v(F ) is continuous in F 8F 2 F .

We assume the following uniform law of large numbers, uniform central limit theorem, and

stochastic equicontinuity of the empirical processes for the triangular array of observations.

Let �n � �(Fn) and let

�n(g2(�)) � n�1=2
nX
i=1

(g2(Wi; �)� EFn [g2(Wi; �)]): (4.2)

Assumption 4.3 For any "n ! 0 and under any sequence fFn 2 Fg;

(i) sup�2� jjn�1
Pn

i=1 g2(Wi; �)� EFng2(Wi; �)jj = op(1);

(ii) sup�2� jjn�1
Pn

i=1 g2;�(Wi; �)� EFng2;�(Wi; �)jj = op(1);

(iii) �n(g2(�n))!d N(0;
2) if 
2(Fn)! 
2;

(iv) supf�1;�22�: jj�1��2jj�"ng �n[g2(�1)� g2(�2)] = op(1):

Su¢ cient conditions of Assumption 4.3 for triangular arrays of i.i.d. and strong mixing

observations are available in Assumptions 11.3-11.5 of Andrews and Cheng (2013).

Let Z2 denote a normal random vector with mean zero and variance-covariance matrix


2. Recall that S1 is a selector matrix such that Z1 � S1Z2 is the �rst r1 rows of Z2. To

describe the asymptotic distributions of b�1 and b�2, we de�ne
�k � �

�
G0k


�1
k Gk

��1
G0k


�1
k , for k = 1 and 2. (4.3)

Lemma 4.1 Under Assumptions 4.1-4.3, the following results hold under fFng.

(a) If fFng 2 S(d; v0) [ S(1; v0), n1=2(b�1 � �n)!d �1Z1.

(b) If fFng 2 S(d; v0) for some d 2 Rr
�
, n1=2(b�2 � �n)!d �2(Z2 + d0) where d0 = (00r1 ; d0)0.

(c) If fFng 2 S(1; v0), M2(�)
0
�12 M2(�) has a unique minimizer �

�(v0), b�2 !p �
�(v0) and

jn1=2(b�2 � �n)j !p 1.
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Comment 4.1 Our results under drifting DGPs complement Hall and Inoue (2003) on the

asymptotic distribution of b�2 under global misspeci�cation with a �xed DGP.
4.2 Non-random optimal weight

In this subsection, we study the asymptotic risk of the averaging GMM estimator with

a non-random weight ! 2 [0; 1]. The sample analog of the non-random optimal weight is

used to construct the averaging estimator proposed in this paper. We consider the weighted

quadratic loss function

`(b�) = n(b� � �n)0H(b� � �n); (4.4)

where H is a d� � d� positive semi-de�nite matrix.

For k = 1 and 2, de�ne

�k(F ) �
�
G0k(F )


�1
k (F )Gk(F )

��1
: (4.5)

If v(Fn)! v0 for v0 de�ned in (3.11), �k is the limit of �k(Fn) given by

�k �
�
G0k


�1
k Gk

��1
: (4.6)

De�ne

Av0 � H (�1 � �2) and Bv0 � (�2 � ��1)
0H (�2 � ��1) ; (4.7)

where ��1 = [�1;0d��r� ] and the subscript v0 indicates that Av0 and Bv0 are matrix-valued

functions of v0.

Lemma 4.2 Under Assumptions 4.1-4.3, the following results hold under fFng.

(a) If fFng 2 S(d; v0), `(b�(!))!d �(d;v0)(!), where �(d;v0)(!) is a random variable with

E[�(d;v0)(!)] = tr(H�1)� 2!tr (Av0) + !2 [d00Bv0d0 + tr (Av0)] 8! 2 R.

(b) E[�(d;v0)(!)] is minimized at

!�(d; v0) =
tr (Av0)

d00Bv0d0 + tr (Av0)
for d 2 Rr�, where d0 = (01�r1 ; d0)0.
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(c) If fFng 2 S(1; v0), `(b�(!))!p 1 when ! > 0, and `(b�(0))!d Z 01�01H�1Z1.

Comment 4.2 The optimal weight in Lemma 4.2(b) is infeasible in practice because it

depends on unknown parameters. One may consider estimating these unknown parameters

and plugging their estimators into the optimal weight formula. The matrices �1, �2, �1,

and �2 can be consistently estimated based on b�1. However, the location parameter d0
is not consistently estimable. As a result, when d0 is replaced by its sample analog, one

has to account for this estimation error when evaluating the risk of the resulting averaging

estimator.

4.3 GMM averaging estimator with empirical weight

We propose to use a sample analog of !�(d; v0) to construct the averaging estimator:

e!eo = tr
h
H(b�1 � b�2)i

n(b�2 � b�1)0H(b�2 � b�1) + tr hH(b�1 � b�2)i (4.8)

where b�k is a consistent estimator of �k for k = 1; 2, and by Lemma 4.1, n1=2(b�2 � b�1) is an
asymptotically unbiased estimator of (�2 � ��1)d0.

The averaging GMM estimator proposed takes the form

b�eo = (1� e!eo)b�1 + e!eob�2: (4.9)

By the consistency of b�k and Lemma 2.1 in Cheng and Liao (2014), we know that tr[H(b�1�b�2)] � 0 with probability approaching 1 (w.p.a.1), which together with the form of e!eo in
(4.8) implies that e!eo 2 [0; 1] w.p.a.1.
Assumption 4.4 Under fFng 2 S(d; v0) [ S(1; v0); b�k !p �k for k = 1 and 2:

Next, we de�ne some notations for the asymptotic distribution of the empirical optimal
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averaging weight, the averaging GMM estimator, and the loss function:

Zd;2 � Z2 + d0; e!(d;v0) � tr (Av0)

Z 0d;2Bv0Zd;2 + tr (Av0)
;

�(d;v0) � �
�
1Zd;2 + e!(d;vo) (�2 � ��1)Zd;2; �(1;v0) � �1Z1;

�(d;v0) � �0(d;v0)H�(d;v0); �(1;v0) � �0(1;v0)H�(1;v0): (4.10)

Lemma 4.3 Under Assumptions 4.1-4.4, we have the following results:

(a) If fFng 2 S(d; v0), e!eo !d e!(d;v0), n1=2(b�eo � �n)!d �(d;v0); and `(
b�eo)!d �(d;v0).

(b) If fFng 2 S(1; v0), e!eo !p 0, n1=2(b�eo � �n)!d �(1;v0); and `(
b�eo)!d �(1;v0).

Lemma 4.3 shows that e!eo converges to a non-degenerate random variable under fFng 2
S(d; v0).3 The formula in Lemma 4.2(a) is derived for non-random weight. In consequence,

it cannot be used to justify the averaging estimator b�eo in (4.9) with a random weight. To

study the asymptotic risk of b�eo, it is important to take into account the data-dependent
nature of e!eo and its uniform property under di¤erent degrees of misspeci�cation.

4.4 Uniform dominance

In this subsection, we show that the averaging GMM estimator based on the empirical

optimal weight uniformly dominates the conservative GMM estimator. Without assuming

the estimators are uniformly integrable, we consider the truncated loss function and show

uniform dominance by applying the general results in Corollary 3.2.4

Lemmas 4.1 and 4.3 imply that Assumption 3.3 hold for b� = b�eo and e� = b�1 with
R�(d; v0) = E

�
minf�(d;v0); �g

�
, R�(1; v0) = E

�
minf�(1;v0); �g

�
and eR�(d; v0) = eR�(1; v0) =

E
�
minf�(1;v0); �g

�
. To study the maximal and minimal risk di¤erences, we de�ne

g�(d; v0) � E
�
minf�(d;v0); �g

�
� E

�
minf�(1;v0); �g

�
(4.11)

3Proof of Lemma 4.3 is straightforward. It is omitted in the paper, but included in the supplemental
Appendix.

4Under the assumption of uniform integrability, the uniform dominance results also hold and the argu-
ments are simpli�ed.
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under the truncation value �: As � ! 1; its limit is g(d; v0) � E[�(d;v0)] � E
�
�(1;v0)

�
. By

the de�nitions of �(d;v0) and �(1;v0) in (4.10), some simple algebra gives

g(d; v0) = E

"
2tr(Av0)Zd;20Dv0Zd;2
Z 0d;2Bv0Zd;2 + tr(Av0)

#
+ E

"
tr(Av0)

2Z 0d;2Bv0Zd;2
(Z 0d;2Bv0Zd;2 + tr(Av0))2

#
; (4.12)

where Av0 and Bv0 are de�ned in (4.7) and Dv0 = (�2 � ��1)0H��1.

Theorem 4.1 Suppose that Assumptions 3.2 and 4.1-4.4 hold.

(a) The averaging GMM estimator b�eo satis�es
AsyRD�(b�eo;b�1)= lim

�!1
min

�
inf

(d;v0)2HR
[g�(d; v0)] ; 0

�
;

AsyRD
�
(b�eo;b�1)= lim

�!1
max

(
sup

(d;v0)2HR
[g�(d; v0)] ; 0

)
:

(b) For large � 2 R+, we have

inf
(d;v0)2HR

g�(d; v0) � inf
(d;v0)2HR

g(d; v0); sup
(d;v0)2HR

g�(d; v0) � sup
(d;v0)2HR

g(d; v0), and

g(d; v0) � tr(Av0)E
"
4�max(Av0)� tr(Av0)
Z 0d;2Bv0Zd;2 + tr(Av0)

#
� tr(Av0)2E

"
tr(Av0) + 4�max(Av0)

(Z 0d;2Bv0Zd;2 + tr(Av0))2

#
:

(c) If tr(Av0) > 0 and tr(Av0) � 4�max(Av0) 8v0 2 VF , b�eo uniformly dominates b�1; i.e.,
AsyRD�(b�eo;b�1) < 0 and AsyRD�

(b�eo;b�1) = 0:
Comments 4.3 Part (a) follows from Corollary 3.2 and the pointwise limits in Lemma

4.3. Part (b) provides upper bounds for the in�mum and supremum of the truncated risk

di¤erence g�(d; v0) for a large truncated value �. This upper bound is represented by g(d; v0),

which has a closed form representation in (4.12). We derive an analytical upper bound for

g(d; v0) in part (b) using the Stein�s Lemma. This analytical upper bound leads to the

su¢ cient condition in part (c) for uniform dominance. It is worth noting that the condition

in part (c) is su¢ cient but not necessary.

Comments 4.4 To control the truncation e¤ect uniformly over the parameter space, we
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cannot automatically replace g�(d; v0) with g(d; v0) in part (a) by switching the order of

inf/sup with � ! 1. However, part (b) of the theorem proves that replacing g�(d; v0)

with g(d; v0) only provides higher upper bounds, which can be used to show the uniform

dominance results by analyzing the analytical upper bound for g(d; v0).

Figure 1. The Finite Sample Risk and the Simulated Asymptotic Risk

Comments 4.5 Instead of relying on the su¢ cient condition in part (c), we can investigate

the two upper bounds in part (b), inf(d;v0)2HR g(d; v0) and sup(d;v0)2HR g(d; v0); by simulating

g(d; v0) in (4.12). In practice, one can replace v0 by its consistent estimator and plot g(d; v0)

as a function of d. This provides a uniform comparison between the averaging estimator and

the conservative estimator. One can also simulate the asymptotic risk of other non-standard

estimators after deriving their asymptotic distributions like those in Lemma 4.3. As an

illustration, we use the simulation model in the next section to show that the simulated

asymptotic risk based on g(d; v0) is close to the �nite-sample risk for two non-standard

estimators. One is the averaging GMM estimator based on e!eo and the other is the pre-
test GMM estimator based on the over-identi�cation J-test with signi�cance level 0.01. The

asymptotic risk for this pre-test estimator is given in Section 2 of the supplemental material.
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The �nite sample risks are calculated using 100,000 simulated samples and the asymptotic

risks are simulated by drawing 10,000 normal random vectors with mean zero and variance-

covariance b
2 in each simulated sample. The simulation results are reported in Figure 1,
where the risk of the conservative estimator is normalized to be 1.5 It is clear that the

�nite sample risk and the simulated asymptotic risk are fairly close and the averaging GMM

estimator uniformly dominates the conservatives estimator while the pre-test estimator does

not.

5 Simulation Studies
In this section, we investigate the �nite sample performance of our averaging GMM

estimator in linear IV models. In addition to the empirical optimal weight e!eo, we consider
two other averaging estimators based on the JS type of weights. The �rst one is based on

the positive part of the JS weight6:

!P;JS = 1�
 
1� tr( bAv0)� 2�max( bAv0)

n(b�2 � b�1)0H(b�2 � b�1)
!
+

(5.1)

where (x)+ = max f0; xg and bAv0 is the estimator of Av0 using b�1. The second one uses the
restricted JS weight !R;JS = (!P;JS)+. We use H = Id� in the loss function. We compare

the �nite-sample risks of these three averaging estimators, the conservative GMM estimatorb�1, and the pre-test GMM estimator based on the J-test. The risk of the conservative GMM

estimator is normalized to be 1.

The simulated data are generated from the following linear model:

Yi =

6X
j=1

�jXj;i + �i; (5.2)

5The �nite-sample and simulated asymptotic risk of the averaging GMM estimator are represented by
�GMMA-FRisk�and �GMMA-SRisk�, respectively. The �nite-sample and simulated asymptotic risk of the
pre-test GMM estimator are represented by �GMMP-FRisk�and �GMMP-SRisk�, respectively.

6This formula is a GMM analog of the generalized JS type shrinkage estimator in Hansen (2014a) for
parametric models.
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where Xj;i are generated by

Xj;i = �j(Zj;i + Zj+6;i) + Zj+12;i + uj;i for j = 1; :::; 6: (5.3)

We draw i.i.d. random vectors (Z1;i; :::; Z18;i; u1;i; :::; u6;i; �i)0 from normal distributions with

mean zero and variance-covariance matrix diag(I18�18;�7�7), where

�7�7 =

0B@ I6�6 0:25� 16�1

0:25� 11�6 1

1CA : (5.4)

We set (�1; :::; �6) = 2:5 � 11�6 and (�1; :::; �6) = 0:5 � 11�6. The observed data are Wi =

(Yi; X1;i; :::; X6;i; Z1;i; :::; Z12;i; ~Z13;i; :::; ~Z18;i)
0, where ~Zj;i = Zj;i + n�1=2dj�i, for j = 13; :::; 18.

In the main regression equation (5.2), all regressors are endogenous because E(Xj;i�i) = 0:25

for j = 1; :::; 6. The instruments (Z1;i; :::; Z12;i)0 are valid and ( ~Z13;i; :::; ~Z18;i)0 are misspec-

i�ed because E( ~Zj;i�i) = n�1=2dj for j = 13; :::; 18. In the simulation studies, we consider

(d13; :::; d18) = d � 11�6 where d is a scalar that takes values on the grid points between 0

and 20 with the grid length 0:1. Figure 2 presents the simulation results.

In Figure 2, �Pre-test(0.10)�and �Pre-test(0.01)�refer to the pre-test GMM estimators

based on the J-test with nominal size 0.10 and 0.01, respectively; �Plug-opt�refers to the

averaging GMM estimator based on e!eo; �Posi-JS� and �ReSt-JS� refer to the averaging
estimators based on !P;JS and !R;JS, respectively.

Our �ndings are summarized as follows. First, the GMM averaging estimators have

smaller risk than b�1 uniformly over d, which is predicted by our theory because the key
su¢ cient condition in Theorem 4.1(c), i.e., tr(Av0) � 4�max(Av0) is satis�ed in this model.7

Second, the pre-test GMM estimators do not dominate the conservative GMM estimator.

When the location parameter d is close to zero, the pre-test GMM estimators have relative

risks as low as 0.4. However, their relative risks are above 1 when d is around 5. Third, the

pre-test GMM estimators associated with di¤erent nominal sizes display di¤erent behaviors.

7The simulation studies, when the key condition of Theroem 4.1(c) does not hold, are available in the
supplemental material.

22



The smaller the size of the over-identi�cation test is, the larger the supremum of the risk is.

Fourth, among the three averaging estimators, the one based on e!eo has the smallest risk.
The positive JS averaging estimator and the restricted JS averaging estimator have almost

identical �nite-sample risk even when the sample size is small, e.g., n = 250. Fifth, it is

interesting to see that as the sample size grows, the �nite sample risks of the positive and

restricted JS averaging estimators converge to that of the averaging estimator based on e!eo.
Figure 2. Finite Sample Risks of the Averaging Estimators in Model 1

6 An Empirical Application
One important issue in the empirical analysis of life cycle labor supply is to estimate

the individual human capital production function. The knowledge about the human capital

function allows researchers to estimate the household�s utility function, and hence to evaluate

how changes in policies, such as tax reduction, a¤ect consumption, labor market outcomes,

and welfare (see, e.g., Heckman, 1976; Shaw, 1989; and Imai and Keane, 2004). This section

applies the averaging GMM to estimate the human capital production function.

We follow the literature (see, e.g., Shaw, 1989) to specify the human capital production
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function as a quadratic function of ki;t, log of the human capital stock Ki;t, and hi;t, log of

the hours of work Hi;t:

f(ki;t; hi;t; �) = 1hi;t + 2h
2
i;t + 3hi;tki;t + 4ki;t + 5k

2
i;t = X

0
i;t�; (6.1)

where Xi;t =
�
hi;t; h

2
i;t; hi;tki;t; ki;t; k

2
i;t

�0
and � = (1; : : : ; 5) are unknown parameters.

The human capital stock is accumulated through the equation

ki;t+1 = f(ki;t; hi;t; �) + "i;t+1 (6.2)

where "i;t+1 = �i + ui;t+1 is the unobservable residual term that contains an individual

heterogeneity component �i and a random shock ui;t. To avoid unnecessary complications,

we follow Shaw (1989) to specify the real wage as wi;t = Ri;tKi;t, and follow Hokayem and

Ziliak (2014) to assume Ri;t = 1 for all i and all t.

To eliminate the individual e¤ect, we take �rst di¤erence on equation (6.2):

�ki;t+1 = �f(ki;t; hi;t; �) + �ui;t+1 (6.3)

where "�" denotes the �rst order di¤erence operator. The unknown parameter � can be

estimated by GMM estimator b�1 with the moment functions
g1(�ki;t+1;�Xi;t; Z1;t; �) = [�ki;t+1 ��f(ki;t; hi;t; �)]
 Z1;t (6.4)

where Z1;t = (X 0
i;t�1; Z

0
�;t) is a set of IVs including Xi;t�1 and

Z�;t =
�
ci;t�1, c2i;t�1, ci;t�1li;t�1, li;t�1, l

2
i;t�1

�0
; (6.5)

where ci;t�1 = logCi;t�1, li;t�1 = logLi;t�1, and Ci;t�1 and Li;t�1 are, respectively, the con-

sumption and leisure of individual i at period t�1. The lagged variables in Z�;t are included

to provide extra identi�cation restrictions for the human capital function.

In equation (6.3), the regressors �Xi;t may be endogenous because: (i) ki;t is correlated

with ui;t and hence �ui;t+1 in view of equation (6.2); and (ii) hi;t is partly determined by ki;t
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Table 1. Estimator of Human Capital Production Function
1 2 3 4 5 J-testb�1 0.0236 -0.0070 0.0310 0.0656 -0.0381 0.8427

(0.0571) (0.0444) (0.0626) (0.0621) (0.0447) � �b�2 0.0009 0.0265 -0.0113 -0.2232 -0.0925 0
(0.0328) (0.0240) (0.0496) (0.0529) (0.0247) � �

(i) Numbers in the brackets are the standard errors; (ii) Numbers in the last column are the p-values of the
J-tests; (iii) GMM estimators are based on the sample from PSID in year 2003, 2005, 2007 and 2009; (iv)
Four year dummy variables are included in the moment functions and they are used as their own IVs in the
GMM estimation.

through the individual�s labor decision. As a result, the LS estimator based on the following

moment function

g�(�ki;t+1;�Xi;t; �) = [�ki;t+1 ��f(ki;t; hi;t; �)]
�Xi;t (6.6)

may be inconsistent. The aggressive GMM estimator b�2 is constructed using the moment
conditions in both (6.4) and (6.6).

We use the same data set as in Hokayem and Ziliak (2014) from the Panel Study of

Income Dynamics (PSID). The sample includes biennial observations for 1654 men from

1999 to 2009. We further narrow the sample to individuals with at least three consecutive

periods of observations, which gives us a data set with 5774 individual-year observations.

Table 1 reports the estimation results on the conservative and the aggressive estima-

tors. The conservative and aggressive GMM estimators of � di¤er substantially. The J-test

strongly rejects the validities of the moment conditions in (6.6), while it supports the validi-

ties of the moment conditions in (6.4). On the other hand, the aggressive GMM estimatorb�2 has much smaller standard error than the conservative estimator b�1.
Next, we consider the averaging GMM estimator under the quadratic loss function with

H = Id� . The empirical weight e!eo on the aggressive GMM estimator is 0:0770. It is inter-

esting that the averaging estimator assigns nontrivial weight to b�2, even though the J-test
indicates severe misspeci�cation of the moment conditions in (6.6).

To evaluate the performance of the averaging GMM estimator, we simulate its asymptotic
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Figure 3. Simulated Asymptotic Risk of the Averaging Estimator
of the Human Capital Function

risk following the formula in (4.12). This exercise is the same as that for Figure 1, which

shows that this simulated asymptotic risk is a good approximation to the �nite-sample risk.

As there are 5 moment conditions in (6.6), the risk of the averaging GMM estimator is a

function of a 5-dimensional vector of location parameters d = (d1; d2; d3; d4; d5) 2 R5:We pa-

rameterize it as d1 =
p
r cos�1, d2 =

p
r sin�1 sin�2 sin�3, d3 =

p
r sin�1 sin�2 cos�3,

d4 =
p
r sin�1 cos�2 sin�4 and d5 =

p
r sin�1 cos�2 cos�4 for some r 2 [0;+1) and

�1; �2; �3; �4 2 [0; 2�] such that
P5

k=1 d
2
k = r: To simulate the risk, we consider 1001 equally

spaced grid points for r between 0 and 100, and for each grid point of r, we consider 30

equally spaced grid points for �1, �2, �3 and �4, respectively, between 0 and 2� (starting at

0). For each grid point of r, this gives 304 values for the simulated risk and we record the

minimum and maximum values. As in the Monte Carlo simulation studies, the risk of the

conservative GMM estimator is normalized to be 1.

The minimum and maximum risks for each grid point of r are depicted in Figure 3. Figure

3 shows that the averaging GMM estimator b�eo compares favorably to the conservative GMM
estimator b�1. The risk of b�eo is around 1.02 in the least favorable case and is around 0.66
in the most favorable case. As r goes to 100, the maximum and the minimum risks both

converge to 1.
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7 Conclusion
This paper studies the asymptotic risk of the averaging GMM estimator that combines

the conservative estimator and the aggressive estimator with a data-dependent weight. The

averaging weight is the sample analog of an optimal non-random weight. We provide a suf-

�cient class of drifting DGPs under which the pointwise asymptotic results combine to yield

uniform approximations to the �nite-sample risk and risk di¤erences. Using this asymptotic

approximation, we show that the proposed averaging GMM estimator uniformly dominates

the conservative GMM estimator.

Inference based on the averaging estimator is an interesting and challenging problem. In

addition to the uniform validity, a desirable con�dence set should have smaller volume than

that obtained from the conservative moments alone. We leave the inference issue to future

investigation.

A Appendix
Proof of Theorem 3.1. The proof uses the subsequence techniques used to show the

asymptotic size of a test in Andrews, Cheng, and Guggenberger (2011). We �rst show that

AsyR(b�) � max( sup
(d;v0)2HR

R(d; v0); sup
v02H1

R(1; v0)
)
: (A.1)

Let fFng be a sequence such that

lim sup
n!1

EFn [`(b�)] = lim sup
n!1

�
sup
F2F

EF [`(b�)]� = AsyR(b�): (A.2)

Such a sequence always exists by the de�nition of supremum. The sequence fEFn [`(b�)] :
n � 1g may not converge. Now let fwn : n � 1g be a subsequence of fng such that
fEFwn [`(b�)] : n � 1g converges and its limit equals AsyR(b�): Such a subsequence always
exists by the de�nition of limsup. Below we show that there exists a subsequence fpng of
fwng such that

EFpn [`(b�)]! R(d; v0) for some (d; v0) 2 HR (A.3)
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or

EFpn [`(b�)]! R(1; v0) for some v0 2 H1: (A.4)

Provided (A.3) or (A.4) holds, we obtain the desired result in (A.1).

To show that there exists a subsequence fpng of fwng such that either (A.3) or (A.4)
holds, it su¢ ces to show claims (1) and (2): (1) for any sequence fFng and any subsequence
fwng of fng, there exists a subsequence fpng of fwng for which

p1=2n �(Fpn)! d 2 Rr� and v(Fpn)! v0 for some (d; v0) 2 HR (A.5)

or p1=2n �(Fpn)
!1 and v(Fpn)! v0 for some v0 such that v0 2 H1; (A.6)

and (2) for any subsequence fpng of fng and any sequence fFpn : n � 1g, (A.5) together
with Assumption 3.1(i) implies (A.3), and (A.6) combined with Assumption 3.1(ii) implies

(A.4).

To show (1), let �wn;j denote the j-th component of �(Fwn) and p1;n = wn 8n � 1. For
j = 1, either (i) lim supn!1 jp

1=2
j;n �pj;n;jj <1 or (ii) lim supn!1 jp

1=2
j;n �pj;n;jj =1. If (i) holds,

then for some subsequence fpj+1;ng of fpj;ng, p1=2j+1;n�pj+1;n;j ! dj for some dj 2 R. If (ii)
holds, then for some subsequence fpj+1;ng of fpj;ng, p1=2j+1;n�pj+1;n;j ! 1 or �1. As r� is a
�xed positive integer, we can apply the same arguments successively for j = 1; :::; r� to obtain

a subsequence fp�ng of fwng such that (p�n)1=2�p�n ! d� 2 Rr� or (p�n)1=2jj�p�njj ! 1. Finally,
there exists a subsequence fpng of fp�ng such that v(Fpn)! v� because fv(F ) : F 2 Fg is a
compact set by Assumption 3.2.

We have constructed the subsequence fpng of fng such that either (i) (pn)1=2�pn ! d� 2
Rr� and v(Fpn) ! v�; or (ii) (pn)1=2jj�pnjj ! 1 and v(Fpn) ! v�. To conclude (A.5) holds

in case (i), it remains to show (d�; v�) 2 HR in case (i). Similarly, to show (A.6) holds in case
(ii), it remains to show v� 2 H1. This step is necessary because d� and v� are the limits
along a subsequence, whereas HR and H1 are de�ned using limits of the full sequence. To

close this gap, we show that for the subsequence fpng constructed above there exists a full
sequence with the same limit. For case (i), such a full sequence of DGP fF �k 2 F : k � 1g
can be constructed as follows. First, consider the case where d� 2 Rr�. (i) 8k = pn; de�ne
F �k = Fpn and (ii) 8k 2 (pn; pn+1), de�ne F �k to be a true distribution such that

�(F �k ) = (pn=k)
1=2�pn and v(F

�
k ) = v(Fpn): (A.7)
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There exists F �k 2 F for which (A.7) holds for large n by Assumption 3.2(iii). To see it,

we �rst note that (�(Fpn); v(Fpn)) 2 � because Fpn 2 F . Moreover, we have pn=k < 1, and
jj�pnjj < " for large n because �pn ! 0r�. Hence Assumption 3.2(iii) holds, which ensures the

existence of F �k for any k 2 (pn; pn+1). Along this constructed sequence fF �k 2 F : k � 1g,
we have k1=2�(F �k ) ! d� and v(F �k ) ! v� as desired. This shows that (d�; v�) 2 HR in

case (i). For case (ii), de�ne F �k = Fpn for k 2 [pn; pn+1). Then, k1=2jj�(F �k )jj � (pn)1=2jj�pnjj
8k 2 [pn; pn+1). In consequence, (pn)1=2jj�pnjj ! 1 as n!1 implies that k1=2jj�(F �k )jj ! 1
as k !1. In addition, v(F �k )! v� as k !1. Hence, in case (ii), v� 2 H1. Combined the
results for case (i) and (ii), we have completed the proof of (1).

To show (2), note that we have proved that for any subsequence fpng of fng and any
sequence fFpn : n � 1g such that (A.5) holds, there exists a full sequence fF �k 2 F : k � 1g
such that n1=2�(F �k ) ! d� 2 Rr�, v(F �n) ! v�, and F �pn = Fpn 8n � 1. Similarly, if (A.6)

holds, there exists a full sequence fF �k 2 F : k � 1g such that n1=2�(F �k )!1, v(F �n)! v�,

and F �pn = Fpn 8n � 1. This together with Assumption 3.1(i) and (ii) implies (2). This

proves either (A.3) or (A.4) holds, which in turn implies (A.1).

Next, we show that

AsyR(b�) � max( sup
(d;v0)2HR

R(d; v0); sup
v02H1

R(1; v0)
)
: (A.8)

For any (d; v0) 2 HR, there exists a sequence fFn 2 F : n � 1g such that n1=2�(Fn)! d and

v(Fn)! v0. Moreover,

AsyR(b�) = lim sup
n!1

sup
F2F

EF [`(b�)] � lim sup
n!1

EFn [`(b�)] = R(d; v0); (A.9)

where the last equality holds by Assumption 3.1(i). Similarly, for any v0 2 H1, there exists
a sequence fFn 2 F : n � 1g such that n1=2jj�(Fn)jj ! 1 and v(Fn) ! v0, which together

with Assumption 3.1(ii) implies that

AsyR(b�) = lim sup
n!1

sup
F2F

EF [`(b�)] � lim sup
n!1

EFn [`(b�)] = R(1; v0): (A.10)

(A.9) combined with (A.10) immediately yields (A.8). Finally, part (a) of the Theorem is

implied by (A.1) and (A.8).

The claim in part (b) follows from the same arguments as those in part (a) with EF [`(b�)]
replaced by EF [`(b�)� `(e�)].
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Proof of Corollary 3.2. For any � 2 R+, Theorem 3.1 together with Assumptions 3.2

and 3.3(i) implies that

AsyR��(
b�) � lim sup

n!1

�
sup
F2F

EF [`�(b�)]� = max( sup
(d;v0)2HR

R�(d; v0); sup
v02H1

R�(1; v0)
)
:

(A.11)

Part (a) follows from AsyR�(b�) = lim�!1AsyR
�
�(
b�) and (A.11). Part (b) follows from part

(b) of Theorem 3.1 and the de�nitions of AsyRD�(b�;e�) and AsyRD�
(b�;e�).

Lemma A.1 Under Assumption 4.1, we have the following results for any v0 2 H1.
(a) M2(�)

0
�12 M2(�) uniquely identi�es �
�(v0).

(b)M1(�) = 0r1 uniquely identi�es �(v0), where M1(�) denotes the �rst r1 rows of M2(�).

Proof of Lemma A.1. Note that M2(�) and 
2 are the limits of M2(�; Fn) and 
2(Fn):
By Assumption 3.2(i), there exists F0 2 F such that M2(�) = EF0 [g2(Wi; �)] and 
2 =


2(F0): Following Assumption 4.1, M2(�)
0
�12 M2(�) uniquely identi�es �

�(v0) and it only

depends on v0; not on F0: Similarly, EF0 [g1(Wi; �)] = M1(�); which uniquely identi�es �(v0)

by Assumption 4.1.

For notational simplicity, �(v0) and �
�(v0) de�ned in Lemma A.1 are abbreviated to �0

and ��0 in the proof below.

Proof of Lemma 4.1. We �rst prove part (b) of the lemma. We start with showing that

in this case ��0 = �0, where by de�nition �
�
0 uniquely minimizesM2(�)


�1
2 M2(�) and �0 is the

unique value such thatM1(�0) = 0r1. To this end, it is su¢ cient to showM2(�0) = 0r2 given

that 
2 is positive de�nite. The condition �(Fn) ! 0r� implies that EFn [g2(Wi; �n)] ! 0r2.

Because EFn [g(Wi; �)]!M2(�), �n ! �0, andM2(�) is continuous, we have EFn [g(Wi; �n)]!
M2(�0) = 0r2 as desired, which proves �

�
0 = �0 in this case. This together with Lemma 1.1

in the supplemental material implies that b�2 is consistent because
b�2 � �n = (b�2 � ��0) + (��0 � �0) + (�0 � �n) = op(1): (A.12)

By the consistency of b�2 in (A.12), the stochastic equicontinuity of �n(g2(�)) in Assump-
tion 4.3(iv), and Assumptions 4.2(i) and (ii), we have

n�1
nX
i=1

g2(Wi;b�2) = n�1 nX
i=1

g2(Wi; �n) + [G2 + op(1)] (b�2 � �n) + op(n�1=2): (A.13)
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Using the consistency of b�2 in (A.12), Assumption 4.2(ii) and Assumption 4.3(ii), we get
n�1

nX
i=1

g2;�(Wi;b�2) = G2 + op(1): (A.14)

From the �rst order condition for the GMM estimator b�2, we deduce that
0 =

"
n�1

nX
i=1

g2;�(Wi;b�2)#0W2;n

"
n�1

nX
i=1

g2(Wi;b�2)#

= [G2 + op(1)]
0 �
�12 + op(1)

�(
n�1

nX
i=1

g2(Wi; �n) + [G2 + op(1)] (b�2 � �n) + op(n�1=2))

=
�
G02


�1
2 + op(1)

�(
n�1

nX
i=1

g2(Wi; �n) + [G2 + op(1)] (b�2 � �n))+ op(n�1=2) (A.15)

where the second equality follows from (A.13), (A.14) andW2;n�
�12 !p 0r2�r2 by Assump-

tion 4.2(v). By (A.15) and the regularity conditions in Assumption 4.2,

n1=2(b�2 � �n) = � h�G02
�12 G2��1 + op(1)i0 �G02
�12 + op(1)
� Pn

i=1 g2(Wi; �n)p
n

+ op(1)

= �
h�
G02


�1
2 G2

��1
G02


�1
2 + op(1)

i �
�n(g2(�n)) + n

1=2EFn [g2(Wi; �n]
	
+ op(1): (A.16)

If n1=2�(Fn) ! d 2 Rr�, we have n1=2EFn [g2(Wi; �n)] ! d0 = [01�r1 ; d
0]0. Then, (A.16)

implies that

n1=2(b�2 � �n)!d �
�
G02


�1
2 G2

��1
G02


�1
2 (Z2 + d0) , where Z2 � N(0r2�1;
2); (A.17)

by the Slutzky�s theorem and the CLT in Assumption 4.3(iii). This proves Part (b).

Part (a) follows from the same arguments as those for part (b) with all components forb�2 replaced by those for b�1 and d0 replaced by 0 because all moments are correctly speci�ed.
Next, we prove part (c). Lemma 1.1 in the supplemental material implies b�2 !p �

�
0. If

��0 = �0, the arguments for part (b) applies here. In this case, jjn1=2EFn [g2(Wi; �n)] jj !p 1
and (A.16) implies that jn1=2(b�2��n)j !p 1. We next consider the case in which jj��0��0jj >
0 for part (c). By the �rst order condition of the GMM estimator b�2,
0 =

"
n�1

nX
i=1

g2;�(Wi;b�2)#0W2;n

"
n�1

nX
i=1

g2(Wi;b�2)# (A.18)

=
�
G2 (�

�
0)
0
�12 + op(1)

�(
n�1

nX
i=1

g2(Wi; �
�
0) + [G2(�

�
0) + op(1)] (

b�2 � ��0)
)
+ op(n

�1=2)
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where the second equality is similar to that in (A.15) but is around the pseudo-true value

��0. Then,

n1=2(b�2 � ��0) = � h�G2(��0)0
�12 G2(��0)��1G2(��0)0
�12 + op(1)
i Pn

i=1 g2(Wi; �
�
0)p

n
+ op(1)

= Op

 G2(��0)0
�12
 
n�1=2

nX
i=1

g2(Wi; �
�
0)

!
!
+ op(n

�1=2) = op(1); (A.19)

where the �rst and second equalities follow from (A.18) and the regularity conditions in

Assumption 4.2(iii) and(iv), and the third equality follows from

G2(�
�
0)
0
�12 n

�1=2
nX
i=1

g2(Wi; �
�
0) (A.20)

= n1=2G2(�
�
0)
0
�12

�
�n(g2(�

�
0))

n1=2
+ (EFn [g2(Wi; �

�
0)]�M2(�

�
0)) +M2(�

�
0)

�
= op(n

1=2):

In (A.20), the �rst equality is a simple decomposition, the second equality follows from the

regularity conditions in Assumption 4.2, the ULLN in Assumption 4.3, EFn [g2(Wi; �
�
0)] !

M2(�
�
0) following v(Fn) ! v0, and G2(�

�
0)
0
�12 M2(�

�
0) = 0d� , which in turn holds because

(i) ��0 minimizes M2(�)
0
�12 M2(�) and (ii) for some F0 2 F , M2(�) = EF0 [g2(Wi; �)] and

G2(�) = EF0 [g2;�(Wi; �)] = @(EF0 [g2(Wi; �)])=@�
0 by the dominated convergence theorem

(DCT) and Assumption 4.2.

In consequence,

n1=2(b�2 � �n) = n1=2(b�2 � ��0) + n1=2(��0 � �0) + n1=2(�0 � �n)
= n1=2 (��0 � �0) + op(n1=2); (A.21)

following n1=2(b�2 � ��0) = op(n1=2) and �n ! �0. Because �
�
0 6= �0, it follows that jjn1=2(b�2 �

�n)jj !p 1. This completes the proof of part (c).
Proof of Lemma 4.2. We �rst consider fFng 2 S(d; v0) for d 2 Rr

�
. By Lemma 4.1,

n1=2
hb�(!)� �ni = n1=2(b�1 � �n) + ! hn1=2(b�2 � �n)� n1=2(b�1 � �n)i

!d �
�
1Zd;2 + !(�2 � ��1)Zd;2, under fFng 2 S(d; v0): (A.22)
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This implies that under fFng 2 S(d; v0),

`(b�(!)) = n hb�n(!)� �ni0H hb�n(!)� �ni!d �(d;v0)(!), where

�(d;v0)(!) = Z 0d;2��01H��1Zd;2 + 2!Z 0d;2(�2 � ��1)0H��1Zd;2

+ !2Z 0d;2(�2 � ��1)0H(�2 � ��1)Zd;2. (A.23)

Now we consider the expectation of �(d;v0)(!) using the equalities in Lemma 1.2 in the

supplemental material. First,

E[Z 0d;2��01H��1Zd;2] = tr(H�1) (A.24)

because ��1Zd;2 = �1Z1 and �1E(Z1Z 01)�01 = �1 by de�nition. Second,

E
�
Z 0d;2(�2 � ��1)0H��1Zd;2

�
= tr(H��1E

�
Zd;2Z 0d;2

�
(�2 � ��1)0)

= tr(H��1 [d0d
0
0 + 
2] (�2 � ��1)0)

= tr(H(�2 � �1)); (A.25)

where the last equality holds by Lemma 1.2 in the supplemental material. Third,

E
�
Z 0d;2(�2 � ��1)0H(�2 � ��1)Zd;2

�
= tr(H(�2 � ��1) [d0d00 + 
2] (�2 � ��1)0)

= d00�
0
2H�2d0 + tr(H(�1 � �2)) (A.26)

by Lemma 1.2 in the supplemental material. Combining (A.24)-(A.26), we obtain

E[�(d;v0)(!)] = tr(H�1)� 2!tr (H (�1 � �2)) + !2 [d00�02H�2d0 + tr (H (�1 � �2))] . (A.27)

Note that d00�
0
2H�2d0 = d

0
0(�2���1)0H(�2���1)d0 = d00Bv0d0 because ��1d0 = 0d� . This shows

part (a).

Part (b) follows from part (a) by minimizing the quadratic function of !. Part (c) follows

from Lemma 4.1 directly.

In the proofs below, we use A, B and D to denote Av0 , Bv0 and Dv0 ; respectively.

Proof of Theorem 4.1. For any � 2 R+, E[`�(b�eo)] ! E
�
minf�(d;v0); �g

�
under fFng 2

S(d; v0) by the Portmanteau Lemma and Lemma 4.3(a) given that `�(b�eo) is bounded by
�. Similarly under fFng 2 S(1; v0), E[`�(b�eo) ! E

�
minf�(1;v0); �g

�
for any � 2 R. Under
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fFng 2 S2(v0), the conservative estimator b�1 satis�es
E[`�(b�1)]! E [minfZ 01�01H�1Z1; �g] = E

�
minf�(1;v0); �g

�
: (A.28)

Thus Assumption 3.3 holds R�(d; v0) = E[minf�(d;v0); �g], R�(1; v0) = E
�
minf�(1;v0); �g

�
,eR�(d; v0) = E �minf�(1;v0); �g� = eR(1; v0) for d 2 Rr�. Part (a) follows from Corollary 3.2

with

AsyRD�
�(
b�eo;b�1) = min� inf

(d;v0)2HR
g�(d; v0); 0

�
;

AsyRD
�
�(
b�eo;b�1) = max( sup

(d;v0)2HR
g�(d; v0); 0

)
: (A.29)

Next, we show part (b) of the Theorem. As minf�(d;v0); �g � �(d;v0) with probability 1,

E
�
minf�(d;v0); �g

�
� E

�
�(d;v0)

�
: (A.30)

The expectation E
�
�(d;v0)

�
exists because

E
�
�(d;v0)

�
� 2E

�
Z 0d;2��01H��1Zd;2 + e!2(d;v0)Z 0d;2 (�2 � ��1)0H (�2 � ��1)Zd;2�

= 2E

"
Z 01�01H�1Z1 + tr(A)

tr(A)

Z 0d;2BZd;2 + tr(A)
Z 0d;2BZd;2

Z 0d;2BZd;2 + tr(A)

#
� 2E [Z 01�01H�1Z1] + 2tr(A) � C (A.31)

where the �rst inequality is by the Cauchy-Schwarz inequality, the third inequality is by

tr(A)

Z 0d;2BZd;2 + tr(A)
� 1 and

Z 0d;2BZd;2
Z 0d;2BZd;2 + tr(A)

� 1 with probability 1. (A.32)

And the last inequality is by the regularity conditions in Assumption 4.2(iii) and (iv). Sim-

ilarly, we also have E
�
�(1;v0)

�
� C1E[ k�1Z1k]2 � C for some C1; C <1:

By the de�nitions of �(d;v0) and �(1;v0), we can write

g(d; v0) = E[�(d;v0)]� E
�
�(1;v0)

�
= 2tr(A)J1 + tr(A)

2J2; where

J1 = E

"
Z 0d;2DZd;2

Z 0d;2BZd;2 + tr(A)

#
and J2 = E

"
Z 0d;2BZd;2

(Z 0d;2BZd;2 + tr(A))2

#
: (A.33)
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From the de�nition of g�(d; v0) and g(d; v0), we use (A.30) to deduce that

g�(d; v0) = E
�
minf�(d;v0); �g

�
� E

�
minf�(1;v0); �g

�
� E

�
�(d;v0)

�
� E

�
minf�(1;v0); �g

�
= E[�(1;v0) �minf�(1;v0); �g] + g(d; v0) (A.34)

for any (d; v0) 2 HR.
Next we show

lim
�!1

sup
(d;v0)2HR

�
E[�(1;v0) �minf�(1;v0); �g]

	
= 0: (A.35)

Recall that �1 is a function of G1 and 
1: De�ne q(Z; G1;
1) � Z 0
1=21 �01H�1

1=2
1 Z, where

Z � N(0r1 ; Ir1�r1). Then we can write

f�(G1;
1) � E[�(1;v0) �minf�(1;v0); �g]

= E [q(Z; G1;
1)�minfq(Z; G1;
1); �g] (A.36)

following the de�nition of �(1;v0): Let

�1 = f(G1;
1) : G1(Fn)! G1 and 
1(Fn)! 
1 for some fFng 2 Fg: (A.37)

We now have

lim
�!1

sup
(d;v0)2HR

f�(G1;
1) � lim
�!1

sup
(G1;
1)2�1

f�(G1;
1) (A.38)

because (d; v0) 2 HR requires the convergence listed in (A.37) as well as the convergence of
some other functions.

It remains to show lim�!1 sup(G1;
1)2�1 f�(G1;
1) = 0. First, lim�!1 f�(G1;
1) = 0

8(G1;
1) 2 �1 by DCT, because

0 � q(Z; G1;
1)�minfq(Z; G1;
1); �g � q(Z; G1;
1) (A.39)

and E [q(Z; G1;
1)] = tr(H�1) � C. Second, this convergence is uniform in (G1;
1) 2 �1
by the Dini�s Theorem (see, Rudin (1976)) because (i) f�(G1;
1) is monotonically decreasing

in �, (ii) �1 is compact, and (iii) f�(G1;
1) is continuous in (G1;
1). The set �1 is compact

following Assumption 3.2(i). The continuity of f�(G1;
1) in (G1;
1) is by the DCT because

(a) q(Z; G1;
1) is continuous in (G1;
1) and (b) E[ sup(G1;
1)2�1 q(Z; G1;
1)] <1. To see
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(b), note that

sup
(G1;
1)2�1

q(Z; G1;
1) �
"

sup
(G1;
1)2�1

�max

�


1=2
1 �01H�1


1=2
1

�#
Z 0Z � CZ 0Z (A.40)

by Assumption 4.2(iii) and (iv).

This completes the veri�cation of (A.35). It follows from (A.35) that for large �;

sup
(d;v0)2HR

g�(d; v0) � sup
(d;v0)2HR

g(d; v0) and inf
(d;v0)2HR

g�(d; v0) � inf
(d;v0)2HR

g(d; v0). (A.41)

Next, we provide a upper bound for J1. Let

�(x) =
x

x0Bx+ tr(A)
; where x = Zd;2 and B = (�2 � ��1)0H(�2 � ��1): (A.42)

Its derivative is
@�(x)0

@x
=

1

x0Bx+ tr(A)
Ir2 �

2

(x0Bx+ tr(A))2
Bxx0: (A.43)

Recall that D = (�2 � ��1)0H��1, which satis�es DZd;2 = DZ2 by construction because the
last r� rows of ��1 are zeros. By Lemma 1 of Hansen (2014a), which is a matrix version of

the Stein�s Lemma (Stein, 1981),

J1 = E (�(Zd;2)0DZd;2) = E (�(Zd;2)0DZ2) = E
�
tr

�
@�(Zd;2)0
@x

D
2

��
: (A.44)

Applying Lemma 1.2 in the supplemental material yields

tr (D
2) = tr ((�2 � ��1)0H��1
2) = tr(H (��1
2�2 � ��1
2��1))

= tr(H (�2 � �1)) = �tr(A): (A.45)

Plugging (A.42)-(A.43) and D into (A.44), we have

J1 = E

"
Z 0d;2DZd;2

Z 0d;2BZd;2 + tr(A)

#
= E

"
tr (D
2)

Z 0d;2BZd;2 + tr(A)

#
� 2E

"
tr
��
BZd;2Z 0d;2

	
D
2

��
Z 0d;2BZd;2 + tr(A)

�2
#

� E
"

�tr(A)
Z 0d;2BZd;2 + tr(A)

#
+ 2E

" �
Z 0d;2BZd;2

�
�max(A)�

Z 0d;2BZd;2 + tr(A)
�2
#

= E

"
�tr(A)

Z 0d;2BZd;2 + tr(A)

#
+ 2E

"��
Z 0d;2BZd;2

�
+ tr(A)

�
�max(A)� tr(A)�max(A)�

Z 0d;2BZd;2 + tr(A)
�2

#

= E

"
2�max(A)� tr(A)
Z 0d;2BZd;2 + tr(A)

#
� E

"
2�max(A)tr(A)�

Z 0d;2BZd;2 + tr(A)
�2
#
; (A.46)
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where the inequality follows from (A.45) and tr(CD) � tr(C)�max(D): Next, note that

J2 = E

"
Z 0d;2BZd;2��Z 0d;2BZd;2 + tr(A)��2

#
= E

"
Z 0d;2BZd;2 + tr(A)� tr(A)��Z 0d;2BZd;2 + tr(A)��2

#

= E

"
1

Z 0d;2BZd;2 + tr(A)

#
� E

"
tr(A)�

Z 0d;2BZd;2 + tr(A)
�2
#
: (A.47)

Combining (A.46) and (A.47), we obtain that

g(d; v0) = 2tr(A)J1 + tr(A)
2J2

� 2tr(A)
 
E

"
2�max(A)� tr(A)
Z 0d;2BZd;2 + tr(A)

#
� E

"
2tr(A)�max(A)�

Z 0d;2BZd;2 + tr(A)
�2
#!

+ tr(A)2

 
E

"
1

Z 0d;2BZd;2 + tr(A)

#
� E

"
tr(A)�

Z 0d;2BZd;2 + tr(A)
�2
#!

= E

"
tr(A) (4�max(A)� tr(A))
Z 0d;2BZd;2 + tr(A)

#
� E

"
tr(A)2 (4�max(A) + tr(A))�
Z 0d;2BZd;2 + tr(A)

�2
#
: (A.48)

To show part (c), note that for any v0 such that (d; v0) 2 HR for some d 2 Rr� ; we

have G2 = G2(F ) and 
2 = 
2(F ) for some F 2 F . This implies that �1 = �1(F ) and

�2 = �2(F ) for some F 2 F for any (d; v0) 2 HR. Therefore,

sup
(d;v0)2HR

g(d; v0) � 0 and inf
(d;v0)2HR

g(d; v0) < 0 (A.49)

if A = H(�1(F ) � �2(F )) satis�es tr(A) > 0 and 4�max(A) � tr(A) � 0 for 8F 2 F . The
claim in part (c) follows from (A.49) and part (a).
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