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Abstract

We study the e¤ect of menu costs on the pricing behavior of sellers and on
the cross-sectional distribution of prices in the search-theoretic model of imperfect
competition of Burdett and Judd (1983). We �nd that, when menu costs are small,
the equilibrium is such that sellers follow a (Q;S; s) pricing rule. According to a
(Q;S; s) rule, a seller lets in�ation erode the real value of its nominal price until it
reaches some point s. Then, the seller pays the menu cost and changes its nominal
price so that the real value of the new price is randomly drawn from a distribution
with support [S;Q], where Q is the buyer�s reservation price and S is some price
between s and Q. Only when the menu cost is relatively large, the equilibrium is
such that sellers follow a standard (S; s) pricing rule. We argue that whether sellers
follow a (Q;S; s) or an (S; s) rule matters for the estimation of menu costs and
seller-speci�c shocks.
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1 Introduction

In menu cost models, the optimal pricing strategy of a seller is almost always given by an

(S; s) rule. That is, a seller lets in�ation erode the real value of its nominal price until it

reaches some point s. Then the seller pays the menu cost and changes its nominal price so

that the real value of the new price is some S greater than s. The optimality of an (S; s)

pricing rule has been established in a wide variety of environments (see, e.g., Sheshinski

and Weiss 1977, Caplin and Spulber 1987, Dotsey, King and Wolman 1999). Indeed, the

optimality of an (S; s) rule seems to be such a natural outcome that some authors simply

assume it (see, e.g, Caplin and Leahy 1991). After all, what else could sellers possibly

do?

In this study, we introduce menu costs in a simple search-theoretic model of imperfect

competition in the spirit of Butters (1977), Varian (1980) and Burdett and Judd (1983).

We show that, as long as the menu cost is su¢ ciently low, the optimal pricing strategy of

a seller is not an (S; s) rule. The optimal pricing strategy is what we call a (Q;S; s) rule.

According to a (Q;S; s) rule, a seller lets in�ation erode the real value of its nominal price

until it reaches some point s. Then, the seller pays the menu cost and changes its nominal

price so that the real value of the new price is a random draw from a distribution with

some support [S;Q], where Q is strictly greater than S and S is strictly greater than s.

In the model analyzed in this study, sellers post nominal prices whose real value is

eroded by in�ation and that can only be changed by paying a menu cost. Buyers search for

sellers. In some meetings buyers are captive, in the sense that they are in contact with only

one seller, while in other meetings they are not, in the sense that they are in contact with

multiple sellers. Without menu costs, it is well known that the equilibrium of this model

generates price dispersion (see, e.g, Burdett and Judd 1983). With a small menu cost, we

�nd that the equilibrium is unique and such that sellers follow a (Q;S; s) pricing rule. We

refer to this as a (Q;S; s) equilibrium. With a large menu cost, we �nd that all equilibria

are such that seller follow an (S; s) rule, where the seller�s highest price S is equal to the

buyer�s reservation price Q. We refer to this as an (S; s) equilibrium. With intermediate

values of the menu cost, we �nd that (Q;S; s) and (S; s) equilibria may coexist. Finally,

we argue that the economic forces that rule out an (S; s) equilibrium when menu costs

are small are exactly the same forces that rule out a unique price equilibrium when there

are no menu costs.

2



A (Q;S; s) equilibrium has several distinctive features. First, the seller�s present dis-

counted value of pro�ts remains constant as the real value of the nominal price falls from

Q to S, and declines monotonically as the real value of the nominal price falls from S to

s. Second, the seller�s �ow pro�t remains constant as the real value of its nominal price

falls from Q to S, then increases, peaks and declines. Third, the stationary distribution

of prices is a combination of the distribution that obtains in standard menu cost models

and the distribution that obtains in static search-theoretic models of price dispersion. In

particular, over the interval [s; S], the stationary distribution of prices is log-uniform, as

in the standard menu costs models (see, e.g., Caplin and Spulber 1987 or Benabou 1988).

Over the interval [S;Q], the stationary distribution of prices is such that the seller�s �ow

pro�t is constant, as in the static search models of price dispersion (see, e.g., Butters 1977,

Varian 1980 or Burdett and Judd 1983). Fourth, the mixing distribution from which sell-

ers draw their new prices is the only one that generates a stationary price distribution

that makes sellers indi¤erent between resetting their price anywhere between S and Q.

The notion of a (Q;S; s) pricing rule is not just an intellectual curiosity. In a (Q;S; s)

equilibrium, a seller maintains the same nominal price until its real value reaches some

point s. While the real value of the nominal price falls from Q to S, the seller would

not want to change the price even if it could do it for free. This follows as any real price

between Q and S yields the same discounted value of pro�ts. Only while the real value

of the nominal price falls from S to s, would the seller like to change its price but chooses

not because of the menu cost. In this sense, only part of the price stickiness generated

by the model is caused by the menu cost. Indeed, even as the menu cost goes to zero,

the model generates sticky prices. In contrast, in an (S; s) equilibrium, all of the price

stickiness generated by the model is due to menu costs. Therefore, if an econometrician

were to incorrectly assume an (S; s) rather than a (Q;S; s) equilibrium, he would estimate

incorrectly large menu costs from the observed duration of prices.

Moreover, in a (Q;S; s) equilibrium, a seller changes its nominal price by di¤erent

amounts at di¤erent times, even though it always faces the same demand and always

produces with the same technology. Sometimes, the seller may adjusts its nominal price by

as little as (S�s)=s percent. At other times, the seller may adjusts its nominal price by as
much as (Q�s)=s percent. In contrast, in an (S; s) equilibrium, the seller always changes
its nominal price by the same amount. Therefore, if an econometrician were to incorrectly

assume an (S; s) rather than a (Q;S; s) equilibrium, he would estimate incorrectly large

shocks to an individual seller�s demand or technology from the observed variation in the
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magnitude of nominal price adjustments. These observations are particularly relevant

because, as it turns out, the real e¤ect of monetary shocks tends to be larger precisely

when menu costs and seller-speci�c shocks are larger (see, e.g., Golosov and Lucas 2007,

Klenow and Kryvstov 2008 or Midrigan 2011).

Our paper contributes to three strands of literature. First, our paper contributes to

the literature on menu costs. Sheshinski and Weiss (1977) consider the problem of a

monopolist facing a well-behaved downward sloping demand curve. They show that the

seller follows an (S; s) rule and characterize the bounds S and s. Caplin and Spulber (1987)

and Caplin and Leahy (1997, 2010) consider models in which a continuum of monopolists

faces an exogenously given demand curve which depends on their own real price, on the

aggregate price and on the supply of money. They prove that each monopolist follows an

(S; s) rule and that the cross-sectional distribution of prices is log-uniform. Dotsey, King

and Wolman (1999) and Golosov and Lucas (2007) and Midrigan (2011) consider models

in which a continuum of monopolistic competitors faces an endogenous demand curve

derived from the buyers�Dixit-Stiglitz preferences. They show that each monopolistic

competitor follows an (S; s) rule. Finally, Benabou (1988, 1992) introduces menu costs

in the search model of Diamond (1971). He shows that the optimal pricing strategy of

the sellers is an (S; s) rule, where S is given by the buyers�reservation price Q and s is

determined by the magnitude of the menu cost. All of the papers listed above consider

environments where, absent menu costs, all identical sellers would set the same price. Our

paper is the �rst to consider an environment where, absent menu costs, identical sellers

would set di¤erent prices. This is the reason why we �nd that the optimal pricing strategy

of a seller may be a (Q;S; s) rule rather than an (S; s) rule.

Second, our paper contributes to the literature on search-theoretic models of price

dispersion. Butters (1977) considers an environment in which some buyers contact only

one seller and some contact two sellers. Since they cannot discriminate between the two

types of buyers, sellers �nd it optimal to randomize with respect to their price. Varian

(1980) considers an environment in which some buyers contact one seller and some buyers

contact all the sellers. Again, sellers �nd it optimal to randomize with respect to their

price. Burdett and Judd (1983) consider an environment in which buyers choose howmany

sellers to contact. They show that there exists an equilibrium in which some buyers choose

to contact one seller, some buyers choose to contact two sellers and sellers randomize over

their price. In all of the papers mentioned above, the seller�s problem is static because
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sellers are free to change their price in every period. In our paper, the seller�s problem is

dynamic because of menu costs.

Third, our paper contributes to the literature on the real e¤ect of monetary shocks

in menu cost models of price stickiness. Caplin and Spulber (1987) argue that money

supply shocks have no e¤ect on the real side of the economy when the cross-sectional

price distribution is log-uniform. Dotsey, King and Wolman (1999) and Golosov and

Lucas (2007) and Midrigan (2011) argue that positive shocks to the money supply have

favorable e¤ects on the real side of the economy when the cross-sectional price distribution

has a lower density around s than a log-uniform distribution. Moreover, they show that the

density of the cross-sectional price distribution around s is smaller when sellers face larger

idiosyncratic shocks and when menu costs are higher. Our paper shows that, if sellers

follow a (Q;S; s) rule rather than an (S; s) rule, the typical estimates of idiosyncratic

shocks and menu costs are likely to be biased upwards.

Head, Liu, Menzio and Wright (2012) consider a monetary version of Burdett and

Judd (1983) without menu costs. They show that the equilibrium uniquely pins down the

distribution of real prices, but not the pricing strategy of individual sellers. In particular,

as the aggregate money supply increases, not every seller needs to change its price even

though all sellers are free to do so. In fact, if the real value of its nominal price remains on

the support of the equilibrium distribution, the seller is indi¤erent between changing and

not changing price. Only if the real value of its nominal price is pushed out of the support

of the equilibrium distribution, the seller must change price. They show that, for some

speci�cations of the seller�s pricing behavior, the model is consistent with all the empirical

behavior of individual prices documented by Klenow and Kryvstov (2008) and Steinsson

and Nakamura (2008). They also show that, in the model, monetary shocks are perfectly

neutralized by changes in the equilibrium price distribution. Therefore, they argue that

it is not correct to conclude that there must be menu costs because individual prices are

sticky. Similarly, they argue that it is not correct to conclude that monetary shocks must

have real e¤ects because individual prices are sticky. Head et al. (2012) assume that

there are no menu costs and, for this reason, the equilibrium is largely indeterminate.

In our paper, we assume that menu costs exist, although they may be arbitrarily small

and, for this reason, the equilibrium pins down both the price distribution and the seller�s

individual behavior.

The remainder of the paper is organized as follows. Section 2 describes the environment
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and compares it with Burdett and Judd (1983) and Benabou (1988). Section 3 derives a

necessary and su¢ cient condition for the existence of a (Q,S,s) equilibrium, characterizes

the salient features of the equilibrium and carries out comparative statics with respect to

the menu cost and the in�ation rate. Section 4 derives a necessary and su¢ cient condition

for the existence of an (S,s) equilibrium and it shows that this type of equilibrium does

not exist when the menu cost is su¢ ciently small. Section 5 brie�y concludes.

2 Environment

We study a dynamic and monetary version of a model of imperfect competition in the

spirit of Butters (1977), Varian (1980) and Burdett and Judd (1983). The market for an

indivisible good is populated by a continuum of identical sellers with measure 1. Each

seller maximizes the present value of real pro�ts, discounted at the rate r > 0. Each

seller produces the good at a constant marginal cost, which, for the sake of simplicity, we

assume to be zero. Each seller posts a nominal price d for the good, which can only be

changed by paying the real cost c, with c > 0.

The market is also populated by a continuum of identical buyers. In particular, during

each interval of time of length dt, a measure bdt of buyers enters the market. A buyer

comes into contact with one seller with probability � and with two sellers with probability

1� �, where � 2 (0; 1). We refer to a buyer who contacts only one seller as captive, and
to a buyer who contacts two sellers as non-captive. Then, the buyer observes the nominal

prices posted by the contacted sellers and decides whether and where to purchase a unit

of the good. If the buyer purchases the good at the nominal price d, he obtains a utility

of Q� �(t)d, where �(t) is the utility value of a dollar at date t and Q > 0 is the buyer�s

valuation of the good. If the buyer does not purchase the good, he obtains a reservation

utility, which we normalize to zero. Whether the buyer purchases the good or not, he

exits the market.

The utility value of a dollar declines at the constant rate � > 0. Therefore, if a nominal

price remains unchanged during an interval of time of length dt, the real value of the price

falls by exp(��dt). In this paper, we do not describe the demand and supply of dollars.
It would, however, be straightforward to embed our model into either a standard cash-

in-advance framework (see, e.g., Lucas and Stokey 1987) or in a standard money-search
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framework (see, e.g., Lagos and Wright 2005) and show that, in a stationary equilibrium,

the depreciation rate pie would be equal to the growth rate of the money supply.

Even without in�ation and menu costs, the equilibrium of the model features a non-

degenerate distribution of prices. The logic behind this result is clear. If all sellers post

the same price, an individual seller can increase its pro�ts by charging a slightly lower

price and sell not only to the contacted buyers who are captive, but also to the contacted

buyers who are not captive. This Bertrand-like process of undercutting cannot push all

prices down to the marginal cost. In fact, if all sellers post a price equal to the marginal

cost, an individual seller can increase its pro�ts by charging the reservation price Q and

sell only to the contacted buyers who are captive. Thus, in equilibrium, there must be

price dispersion.

There are two di¤erences between our model and Burdett and Judd (1983) (henceforth,

BJ83). First, in our model sellers post nominal prices that can only be changed by paying

a menu cost, while in BJ83 sellers post real prices that can be freely changed in every

period. This di¤erence is important because it implies that in our model the problem

of the seller is dynamic, while in BJ83 it is static. Second, in our model the fraction

of buyers meeting one and two sellers is exogenous, while in BJ83 it is an endogenous

outcome of buyers�optimization. This should not be a substantive di¤erence, in that we

believe that our results would go through even if buyers�search intensity was endogenous.

There are also two di¤erences between our model and Benabou (1988) (henceforth, B88).

First, in our model there are some buyers who are in contact with one seller and some who

are in contact with multiple sellers, while in B88 all buyers are temporarily captive. This

di¤erence is important because it implies that, even without menu costs, the equilibrium of

our model features price dispersion, while in B88 every seller would charge the monopoly

price (as in Diamond 1971). Second, in our model buyers have to leave the market after

their �rst search, while in B88 they can choose to stay in the market and search again.

This should not be a substantive di¤erence because our results should go through even if

buyers were allowed to search repeatedly.

3 (Q;S; s) Equilibrium

A (Q;S; s) equilibrium is an equilibrium where every seller lets in�ation erode the real

value of its price until it reaches some point s 2 (0; Q), then it pays the menu cost and it
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resets the nominal price so that its real value is a random draw from some distribution with

support [S;Q], where S 2 (s;Q). In a (Q;S; s) equilibrium, the stationary distribution of
real prices is some continuous distribution F with support [s;Q] and the distribution of

new prices is some distributionG with support [S;Q]. In subsection 3.1, we formally de�ne

a (Q;S; s) equilibrium. In subsection 3.2, we derive a necessary and su¢ cient condition

for the existence of a (Q;S; s) equilibrium. In subsection 3.3, we describe several novel

features of a (Q;S; s) equilibrium, as well as their implications for the estimation of menu

costs, seller-speci�c shocks and search costs. In subsection 3.4, we analyze the e¤ect on

equilibrium outcomes of changes in the menu cost and in the in�ation rate. The main

result of this section is that, as long as menu costs are not too large, a (Q;S; s) equilibrium

exists and is unique.1

3.1 (Q;S; s) Equilibrium: De�nition

Consider a seller whose nominal price has a real value of Q exp(��t). Let V (t) denote
the present discounted value of the real pro�ts of this seller, which is given by

V (t) = max
T

�Z T

t

e�r(x�t)R
�
Qe��x

�
dx+ e�r(T�t) (V � � c)

�
, (1)

where

R(Qe��x) = b
�
�+ 2 (1� �)

�
1� F (Qe��x)

��
Qe��x. (2)

As time goes from 0 to T � t, the real value of the seller�s nominal price falls at the rate

�. After x� t units of time, the real price of the seller is Q exp(��x) and its real pro�t
is R(Q exp(��x)). The real pro�t of the seller is the sum of two terms. The �rst term is

given by the arrival rate of a buyer who is not in contact with any other seller, b�, times

the probability that the buyer is willing to purchase from the seller, 1, times the seller�s

pro�t in case of a sale, Q exp(��x). The second term is given by the arrival rate of a

seller who is in contact with another �rm, 2b(1��), times the probability that the buyer
is willing to purchase from the seller, 1� F (Q exp(��x)), times the seller�s pro�t in case
of a sale, Q exp(��x). After T � t units of time, the seller pays the menu cost c, resets

the nominal price and attains the maximized value V �.
1We do not need to look for equilibria in which a seller resets the real value of its nominal price to

an interval [S; P ], where P < Q. Indeed, it is easy to verify that this class of equilibria does not exist
because, if F (P ) were equal to 1, an individual seller would be strictly better o¤ resetting the real value of
its nominal price to Q rather than to P . Similarly, we can rule out equilibria in which a seller randomizes
over the real value p of the nominal price at which it pays the menu cost. All details are available upon
request.
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The seller �nds it optimal to change the nominal price after T ��t units of time, where
T � is such that

R
�
Qe��T

��
= r (V � � c) . (3)

The left-hand side of (3) is the marginal bene�t of deferring the price change, which is given

by the expected pro�t associated with the real price Q exp(��x). The right-hand side of
(3) is the marginal cost of deferring the price change, which is given by the annuitized

value of paying the menu cost c and attaining the maximum continuation value V �. Thus,

T � is such that the marginal bene�t and the marginal cost of deferring the price change

are equated. From (3), it follows that the seller �nds it optimal to change the nominal

price when its real value reaches s if and only if s = Q exp(��T �) or, equivalently,

R(s) = r(V � � c): (4)

The seller �nds it optimal to reset the nominal price to any real value between S and

Q if and only if V (t) = V � for all t 2 [0; T1], and V (t) � V � for all t 2 [T1; T1+T2], where
T1 = log(Q=S)=� denotes the time it takes for the real value of a nominal price to travel

from Q to S and T2 = log(S=s)=� denotes the time it takes for the real value of a nominal

price to travel from S to s. The condition V (t) = V � for all t 2 [0; T1] is equivalent to

T1+T2Z
T1

e�r(x�T1)R
�
Qe�x

�
dx+ e�rT2 (V � � c) = V �, (5)

R(Qe��t) = rV �; 8t 2 [0; T1]. (6)

Equation (5) states that the present discounted value of pro�ts for a seller with a real

price of S = Q exp(��T1) is equal to the maximum value V �. Equation (6) states that

the pro�t of the seller when its real price is Q exp(��t) is equal to the annuitized value of
V � for all t 2 [0; T1]. Since rV (t) = R(Q exp(��t)) + V 0(t) and V (T1) = V �, this implies

that V 0(t) = 0 for all t 2 [0; T1]. Taken together equations (5) and (6) are equivalent to
the condition V (t) = V � for all t 2 [0; T1]. Similarly, the condition V (t) � V � for all

t 2 [T1; T1 + T2] is equivalent to

T1+T2Z
t

e�r(x�t)R
�
Qe��x

�
dx+ e�r(T1+T2�t) (V � � c) � V �. (7)

The distribution of prices, F , is stationary if the measure of sellers whose real price
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enters the interval [s; p] is equal to the measure of sellers whose real price exits the interval

[s; p] during any arbitrarily small period of time dt. For any p 2 (s; S), the in�ow-out�ow
equation is given by

F (edtp)� F (p) = F (edts)� F (s): (8)

The �ow of sellers into the interval [s; p] is equal to the measure of sellers who, at the

beginning of the period, have a real price between p and p exp(�dt). Each one of these

sellers sees the real value of its price fall below p during a period of time of length dt.

The �ow of sellers out of the interval [s; p] is equal to the measure of sellers who, at the

beginning of the period, have a real price between s and s exp(�dt). Each one of these

sellers pays the menu cost and resets the nominal price so that its real value is somewhere

in the interval [S;Q], S > p. Dividing both sides of (8) by dt and taking the limit dt! 0,

we obtain

F 0(p)p = F 0(s)s, 8p 2 (s; S). (9)

For any p 2 (S;Q), the in�ow-out�ow equation is given by

F (edtp)� F (p) =
�
F (edts)� F (s)

�
[1�G(p)] : (10)

The �ow of sellers into the interval [s; p] is equal to the measure of sellers who, at the

beginning of the period, have a real price between p and p exp(�dt). Each one of these

sellers sees the real value of its price fall below p during a period of time of length dt.

The �ow of sellers out of the interval [s; p] is equal to a fraction 1�G(p) of the measure

of sellers who, at the beginning of the period, have a real price between s and s exp(�dt).

Every seller with a real price between s and s exp(�dt) pays the menu cost and resets its

nominal price. A fraction 1�G(p) of them resets the nominal price so that its real value

is greater than p. Dividing both sides of (10) by dt and taking the limit dt! 0, we obtain

F 0(p)p = F 0(s)s [1�G(p)] , 8p 2 (S;Q): (11)

The stationary price distribution F must satisfy the di¤erential equation (9) over the

interval (s; S) and the di¤erential equation (11) over the interval (S;Q). In addition, the

stationary price distribution F must satisfy the boundary conditions

F (s) = 0 and F (Q) = 1. (12)

The above observations motivate the following de�nition of equilibrium.
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De�nition 1. A stationary (Q;S; s) equilibrium is a CDF of prices F : [s;Q]! [0; 1], a

CDF of new prices G : [S;Q]! [0; 1], a lower bound on the price distribution s 2 (0; Q),
a lower bound on the new price distribution S 2 (s;Q), and a seller�s maximum value V �

that jointly satisfy the optimality conditions (4)-(7) and the stationarity conditions (9),

(11) and (12).

3.2 (Q;S; s) Equilibrium: Existence

The equilibrium condition (6) implies that R(Q), the seller�s pro�t when the real value

of its nominal price is Q, must be equal to rV �, the annuitized maximum value of the

seller. Since R(Q) is given by b [�+ 2(1� �) (1� F (Q))]Q and F (Q) is equal to 1, the

maximum value of the seller is equal to

V � =
b�Q

r
. (13)

The seller�s maximum value is equal to the present discounted value of pro�ts for a

hypothetical seller that always charges the buyer�s reservation price Q and never has to

incur the menu cost. The fact that the seller�s maximum value is independent of the

menu cost is a surprising property of the equilibrium. Intuitively, the property obtains

because any increase in the menu cost is entirely passed through to the buyers through

the response of the equilibrium distribution of prices.

The equilibrium condition (6) states that R(p) must be equal to rV � for all p 2 [S;Q].
As R(p) is given by b [�+ 2(1� �)(1� F (p))] p and rV � is equal to b�Q, it follows that

the stationary price distribution is equal to

F (p) = 1� �

2 (1� �)

Q� p

p
, 8p 2 [S;Q]. (14)

Over the interval [S;Q], the stationary price distribution is exactly the same as in BJ83.

This property of the equilibrium follows from the fact that, as in BJ 83, the stationary

price distribution is such that the seller�s pro�ts are constant over the interval [S;Q] .

The equilibrium condition (9) states that the derivative of the price distribution F 0(p)

must be equal to F 0(s)s=p for all p 2 (s; S). Integrating this equilibrium condition on F 0(p)
and using the fact that F (s) is equal to 0, we �nd that the stationary price distribution

is equal to

F (p) =

�
1� �

2 (1� �)

Q� S

S

�
log(p=s)

log(S=s)
, 8p 2 [s; S], (15)
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where the second line makes use of the continuity condition F (S�) = F (S+). Over the

interval [s; S], the stationary price distribution is log-uniform, exactly as in B88 and in

other models where sellers follow an (S; s) pricing rule. This property of the equilib-

rium follows from the fact that, as in B88, sellers enter the interval [s; S] from the top,

they travel through the interval [s; S] at the constant rate �, and they exit the interval

[s; S] from the bottom. As �rst argued by Caplin and Spulber (1987), the log-uniform

distribution is the only stationary distribution consistent with this type of behavior.

The equilibrium condition (11) states that the derivative of the price distribution F 0(p)

must be equal to F 0(s)s(1�G(p))=p for all p 2 (S;Q). As we know that F 0(p) is equal to
the derivative of the right-hand side of (14), we can solve the equilibrium condition (11)

with respect to the distribution of new prices G and obtain

G(p) = 1�
�
1� �

2(1� �)

Q� S

S

��1
� log(S=s)Q

2(1� �)p
; 8p 2 (S;Q). (16)

The role of the distribution of new prices G is to generate the cross-sectional distribution

of prices F that makes the seller�s pro�t and value constant over the interval [S;Q] and,

hence, makes sellers indi¤erent between resetting their price anywhere in the interval

[S;Q]. Interestingly, in order to ful�ll its role, the distribution of new prices must have

mass points at S and Q with measure

�(S) = 1�
�
1� �

2(1� �)

Q� S

S

��1
� log(S=s)Q

2(1� �)S
, (17)

�(Q) =

�
1� �

2(1� �)

Q� S

S

��1
� log(S=s)

2(1� �)
. (18)

Notice that, although the distribution of new prices has two mass points, the stationary

price distribution is everywhere continuous. Intuitively, F is continuous because the

fraction of sellers who reset their price to S and Q is strictly positive, but the measure of

sellers who reset their price in a particular instant is zero.

Finally, we need to solve for the equilibrium prices s and S. The equilibrium condition

(4) states that R(s), the pro�t associated with the lowest price s, must be equal to

r(V � � c), the annuitized value of paying the menu cost and resetting the nominal price.

Since R(s) is equal to b [�+ 2(1� �)] s and r(V � � c) is equal to b�Q � rc, the lowest

price s is equal to

s =
�Q� rc=b

2� �
. (19)
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The equilibrium condition (6) states that the present discounted value of pro�ts for a

seller with a real price S must equal the maximum value V �. After substituting out F ,

G and V � and after solving the integral, we can rewrite the equilibrium condition (6) as

'(S) �
�
1� e�(r+�)T2(S) (1 + (r + �)T2(S))

(r + �)2

�
(2� �)S � �Q

T2(S)

+

�
1� e�(r+�)T2(S)

r + �

�
�Q+ e�rT2(S)

�
�Q

r
� c

b

�
� �Q

r
= 0:

(20)

where

T2(S) �
log(S=s)

�
, s =

�Q� rc=b

2� �

A necessary condition for the existence of a (Q;S; s) equilibrium is that the equation

'(S) = 0 admits a solution for some S in the interval (s;Q). Since '(S) is strictly

negative for S 2 [s; �Q=(2 � �)] and strictly increasing for S 2 [�Q=(2 � �); Q], a

necessary condition for the existence of a (Q;S; s) equilibrium is that '(Q) is strictly

positive. As stated in Theorem 1, this condition is also su¢ cient.

Theorem 1: (Existence of a (Q;S; s) equilibrium). A (Q;S; s) equilibrium exists i¤

'(Q) > 0. Moreover, if a (Q;S; s) equilibrium exists, it is unique and: (a) V 0(t) = 0 for all

t 2 (0; T1) and V 0(t) < 0 for all t 2 (T1; T1+T2); (b) R̂0(t) = 0 for all t 2 (0; T1), R̂0(t) > 0
for all t 2 (T1; T̂ ) and R̂0(t) < 0 for all t 2 (T; T1 + T2), where R̂(t) � R(Q exp(��t))
and T̂ 2 (T1; T1 + T2).

Proof : In Appendix A.

First, it is useful to note that the condition '(Q) > 0� which is necessary and su¢ cient

for the existence of a (Q;S; s) equilibrium� does not de�ne an empty set of parameter

values. For instance, it is straightforward to verify that the condition is satis�ed when

the in�ation rate � is su¢ ciently low or when the menu cost c is su¢ ciently small.

Second, it is useful to sketch the proof of the su¢ ciency of condition '(Q) > 0. If

'(Q) > 0, the equation '(S) = 0 admits a solution S� 2 (�Q=(2��); Q). Let s� be given
as in equation (19) for S = S�. Notice that s� is strictly positive as c < b�Q=r and that

s� is strictly less than S� as s� < �Q=(2� �). Let F � be given as in equations (14) and

(15) for S = S� and s = s�. Notice that F � is a proper cumulative distribution function

with support [s�; Q] because F (s�) = 0, F �(Q) = 1 and F �0(p) > 0 for all p 2 [s�; Q].
Let G� be given as in equations (16)-(18) for S = S� and s = s�. It is easy to verify

13



Figure 1: Present value of pro�ts

that G� is a proper cumulative distribution function with support [s�; S�]. Finally, let V �

be given as in (13). Because of the way equations (13)-(20) have been constructed, the

tuple (F �; G�; S�; s�; V �) satis�es the optimality conditions (4)-(6) and the stationarity

conditions (9), (11) and (12).

It remains to be seen that the tuple (F �; G�; S�; s�; V �) satis�es the optimality condi-

tion (7), i.e. the present discounted value of pro�ts for a seller with a real price between

s and S is non-greater than V �. To this aim, we �rst notice that the equilibrium price

distribution F � guarantees that, as the real price falls from S� to s�, the seller�s �ow pro�t

R(p) increases, peaks and then decreases. Second, we prove that this property together

with the fact that V � = b�Q=r implies that, as the real price falls from S� to s�, the

seller�s present discounted value of pro�ts declines.

3.3 Properties and Implications of a (Q;S; s) Equilibrium

Figures 1 through 4 illustrate the main qualitative features of a (Q;S; s) equilibrium.

Figure 1 plots the seller�s value as a function of the real price. As the real value of the

nominal price falls from Q to S, the seller�s value remains constant and equal to the

maximum V �. As the real value of the nominal price falls from S to s, the seller�s value

monotonically declines from V � to V �� c. Hence, when the real price reaches s, the seller
�nds it optimal to pay the menu cost.

14



Figure 2: Flow pro�t

When the seller pays the menu cost, it is indi¤erent between resetting its nominal

price to any real value between S and Q. At �rst blush, this property of the equilibrium

may seem puzzling as the seller would have to pay the menu cost less frequently if it were

to reset the real price to Q rather than to, say, S. The solution to the puzzle is contained

in Figure 2, which plots the seller�s �ow pro�t as a function of the real price. As the

real price falls from Q to S, the seller�s �ow pro�t is constant and equal to rV �, which

guarantees that the derivative of the seller�s value function is zero. As the real price falls

below S, the seller�s �ow pro�t begins to increase, it reaches a maximum, it begins to fall

and, eventually, it attains the value r(V �� c). Thus, if the seller resets its real price to Q
rather than to some lower value, it will pay the menu cost less frequently but it will also

enjoy the highest �ow pro�t less frequently. The two e¤ects exactly balance each other

and, for this reason, the seller is indi¤erent between resetting its real price to any value

between S and Q.

Figure 3 plots the stationary distribution of prices. Over the interval [s; S], the distrib-

ution is log-uniform as in standard (S; s) models. Over the interval [S;Q], the distribution

is such that the seller�s �ow pro�t is constant as in standard search models of equilibrium

price dispersion. At the border between the two intervals (i.e. at the price S), there is a

kink in the distribution and, consequently, a discontinuity in the density. In particular,

the density of prices to the right of S is discontinuously lower than the density of prices to

the left of S. This discontinuity is the reason why the seller�s �ow pro�t increases when

the real price falls below S. In general, when the real price falls, the seller experiences an
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(a) CDF (b) PDF

Figure 3: Price distribution F

increase in volume that is proportional to the increase in the fraction of �rms charging

a price higher than the seller�s. That is, when its real price falls, the seller experiences

an increase in volume proportional to the density of the price distribution. As the real

price falls from Q to S, the density of the price distribution is such that the increase in

the seller�s volume exactly o¤sets the decline in the seller�s price. As the real price falls

below S, the density of the price distribution jumps up and, hence, the increase in the

seller�s volume more than o¤sets the decline in the seller�s price and the seller�s �ow pro�t

increases.

Figure 4 plots the distribution of new prices. The support of the distribution of new

prices is the interval [S;Q]. The distribution has a mass point at S, another mass point

at Q, and it is continuous everywhere else. The fact that the distribution of new prices

has a mass point at S is the reason why the stationary price distribution has a kink at S,

why the density of the stationary price distribution has a discontinuity at S and, in turn,

why the seller�s �ow pro�t increases when its real price falls below S. Similarly, the fact

that the distribution of new prices has a mass point at Q is the reason why the density of

the stationary price distribution is strictly positive at S, which is a necessary condition

for the seller�s �ow pro�t to be non-decraesing when the real price falls below Q.

A (Q;S; s) equilibrium has also have important consequences for the estimation of

menu cost models (see, e.g., Golosov and Lucas 2007, Klenow and Kryvtsov 2008 or

Midrigan 2011). Let us brie�y illustrate this point. In a (Q;S; s) equilibrium, every time

a seller chooses a new nominal price, it picks a real value p from the distribution G. The

seller�s new nominal price lasts for log(p=s)=� units of time. During the �rst log(p=S)=�
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Figure 4: New price distribution G

units of time, the seller would not want to change its nominal price even if it could do

it for free. During the last log(S=s)=� units of time, the seller would like to change its

nominal price, but it chooses not to because of the menu cost. In this sense, only part

of the �stickiness�of the seller�s nominal price is caused by menu costs. This property

of the equilibrium suggests that, if an econometrician were to incorrectly assume that

sellers follow an (S; s) pricing rule rather than a (Q;S; s) pricing rule, he would estimate

incorrectly large menu costs from the empirical duration of prices. Clearly, this estimation

bias could be very severe if log(Q=S) was very large relative to log(S=s).

In a (Q;S; s) equilibrium, when a seller chooses a new nominal price, the magnitude

of the price change is given by log(p=s), where p is drawn from the distribution G. That

is, in a (Q;S; s) equilibrium, a seller changes its nominal price by a di¤erent percentage

at di¤erent times even though it always faces the same demand and always produces

with the same technology. This property of equilibrium implies that, if an econometrician

were to incorrectly assume that sellers follow an (S; s) pricing rule rather than a (Q;S; s)

pricing rule, he would estimate incorrectly large seller-speci�c productivity shocks from

the empirical variance of price changes across sellers.

Overall, if an econometrician were to incorrectly assume that sellers follow an (S; s)

rule, he would likely overestimate both the magnitude of menu costs and the magnitude

of seller-speci�c productivity shocks. In turn, these two estimation biases may lead to

overestimate the importance of sticky prices in explaining the response of the real economy

to monetary shocks. In fact, as it transpires from the analysis in Dotsey, King andWolman

(1997), Golosov and Lucas (2007), Klenow and Kryvstov (2008) and Midrigan (2011), in
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models of state-dependent pricing, monetary shocks tend to generate larger real e¤ects

precisely when menu costs and idiosyncratic shocks are larger.2

The notion of a (Q;S; s) equilibrium may also have an impact on the estimation

of search costs (see, e.g., Hong and Shum 2006 and Moraga-Gonzales and Wildenbeest

2008). The distribution of search costs among buyers is typically estimated using the

empirical price distribution and the identifying assumption that sellers who post di¤erent

prices must expect an identical pro�t. This identifying assumption is consistent with

equilibrium if sellers can adjust their price for free, but it is not if sellers face menu costs.

Indeed, in a (Q;S; s) equilibrium, the seller�s pro�t is constant only over the interval

[S;Q]. Therefore, if an econometrician were to incorrectly abstract from menu costs, he

would obtained biased estimates of the distribution of search costs among buyers.

3.4 (Q;S; s) Equilibrium: Comparative Statics

In the previous subsections, we have established a necessary and su¢ cient condition for

the existence of a (Q;S; s) equilibrium and we have characterized its qualitative features.

In this section, we analyze the e¤ect of changes in some parameters on some of the key

equilibrium objects. In particular, we want to analyze the e¤ect of changes in the menu

cost c and in the in�ation rate � on the cuto¤ prices s and S, on the traveling times T1
and T2, and on the price distributions F and G.

A (Q;S; s) equilibrium exists if and only if the menu cost c belongs to the interval (0; c),

where c is a strictly positive number that depends on the value of the other parameters.

As we increase the menu cost c in the interval (0; c), the lowest price s decreases and the

lowest new price S increases. Intuitively, s decreases because the marginal cost of deferring

a nominal price adjustment increases with the menu cost c. Similarly, S increases because

the marginal bene�t of setting a higher nominal price increases with the menu cost c.

From these observations, it follows that an increase in the menu cost leads to an increase

in the extent of price dispersion, as measured by the range of equilibrium prices Q � s,

2Caplin and Spulber (1987) argue that monetary shocks are neutral when the price distribution is
log-uniform. Monetary shocks become less and less neutral when the price distribution has fewer �rms
close to the lowest price s and more �rms close to the highest price S. When sellers are subject to large
and frequent idiosyncratic shocks, they are more likely to reset their nominal price before reaching the
lowest price s. In steady-state, this behavior implies that the density of the price distribution is lower
at s than at S. When the menu costs are larger, the distance between S and s increases and sellers are
even more likely to reset their price before reaching the lowest price s and, hence, the density of the price
distribution at s is even lower.
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it leads to an increase in the extent of price stickiness, as measured by the maximum

duration T1+T2 of a nominal price, and it leads to a decline in the contribution of search

frictions to price stickiness, as measured by the ratio T1=(T1 + T2).

As the menu cost c approaches c, the (Q;S; s) equilibrium converges to the equilibrium

of a standard (S; s) model. In the limit for c! c, as in a standard (s; S) model, the lowest

new price S equals the highest price Q, the new price distribution G is degenerate at Q,

and the price distribution F is log-uniform. Similarly, as the menu cost c approaches

0, the (Q;S; s) equilibrium converges to the equilibrium of a standard search-theoretic

model of price dispersion. In the limit for c ! c, as in a standard search model of price

dispersion, the lowest price s equals the lowest new price S and the price distribution

F is such that seller�s pro�t is the same at any price on the support of the distribution.

Notice that, even in the limit for c ! 0, nominal prices are sticky because sellers keep

the nominal price constant until its real value reaches s. However, none of the nominal

price stickiness is caused by menu costs because sellers enjoy exactly the same pro�ts as

the real value of their nominal price falls down to s.3

A (Q;S; s) equilibrium exists if and only if the in�ation rate � belongs to the interval

(0; �), where � is a strictly positive number that depends on the value of the other

parameters. As we increase the in�ation rate � in the interval (0; �), the lowest price s

remains unchanged and the lowest new price S increases. Intuitively, s does not change

because neither the marginal cost nor the marginal bene�t of deferring a nominal price

adjustment depends on the in�ation rate �. In contrast, S increases because the marginal

bene�t of setting a higher nominal price increases with the in�ation rate �. Moreover, we

�nd that an increase in the in�ation rate has no e¤ect on the extent of price dispersion, as

measured by Q� s, it leads to a decline in the extent of price stickiness, as measured by

T1 + T2, and it leads to an increase in the contribution of menu costs to price stickiness,

as measured by T2=(T1 + T2). When the in�ation rate � approaches �, the (Q;S; s)

equilibrium converges to an (S; s) equilibrium. When the in�ation rate � approaches 0,

3Head et al. (2012) analyze a version of our model without menu costs. They show that the equilibrium
uniquely pins down the distribution of real prices F , but it does not uniquely pin down the distribution
of new real prices G or the pricing strategy of the individual sellers. They prove that the equilibrium is
consistent with nominal price stickiness even though sellers are free to change their price at any time.
Moreover, they prove that price stickiness does not cause any monetary non-neutrality. In the limit as
the menu cost converges to zero, the equilibrium of our model is the same as in theirs. However, the
limit of our model as the menu cost converges to zero uniquely pins down the distribution of new prices
G and the pricing strategy of the individual sellers. In this sense, the limit of our model for c going to
zero provides a natural re�nement of the indeterminate equilibrium objects in Head et al. (2012).
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the (Q;S; s) equilibrium does not have any special properties, except that the travelling

times T1 and T2 go to in�nity.

The comparative statics results are collected in the following theorem.

Theorem 2: (Comparative statics for (Q;S; s) equilibrium). (i) A (Q;S; s) equilibrium

exists i¤ c 2 (0; c), where c > 0 depends on other parameters. As c increases in (0; c), s
falls and S increases. Moreover, price dispersion Q�s increases, price stickiness T1+T2
increases, and the fraction of price stickiness T1=(T1+T2) caused by search frictions falls.

(ii) A (Q,S,s) equilibrium exists i¤ � 2 (0; �), where � > 0 depends on other parameters.
As � increases in (0; �), s does not change and S increases. Moreover, price dispersion

Q� s does not change, price stickiness T1 + T2 falls, and the fraction of price stickiness

T1=(T1 + T2) caused by search frictions falls.

Proof : In Appendix B.

4 (S; s) Equilibrium

An (S; s) equilibrium is an equilibrium where every seller lets in�ation erode the real value

of its nominal price until it reaches some point s 2 (0; Q), then the menu cost is paid
and the nominal price changed so that its real value is S, where S = Q. In subsection

4.1, we formally de�ne an (S; s) equilibrium. In subsection 4.2, we derive a necessary

and su¢ cient condition for the existence of an (S; s) equilibrium. Finally, in subsection

4.3, we characterize the set of parameter values for which an (S; s) equilibrium exists.

The main result of this section is that, as long as menu costs are su¢ ciently small, an

(S; s) equilibrium does not exist, but a (Q;S; s) equilibrium does. The result implies that

a (Q;S; s) equilibrium is not some odd outcome that exists alongside the more natural

(S; s) equilibrium, but that, in fact, a (Q;S; s) equilibrium it is the only possible outcome

for some parameter values. 4

4.1 (S; s) Equilibrium: De�nition

The problem of an individual seller is the same as in section 3. That is, the present

discounted value of pro�ts for a seller whose nominal price has a real value of Q exp(��t)
4We do not need to look for equilibria in which a seller resets the real value of its nominal price to S,

where S < Q. Indeed, it is easy to verify that this class of equilibria does not exist because, if F (S) were
equal to 1, an individual seller would be strictly better o¤ resetting the real value of its nominal price to
Q rather than to P . All details are available upon request.
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is given by

V (t) = max
T

�Z T

t

e�r(x�t)R
�
Qe��x

�
dx+ e�r(T�t) (V � � c)

�
, (21)

where

R(Qe��x) = b
�
�+ 2 (1� �)

�
1� F (Qe��x)

��
Qe��x. (22)

The seller �nds it optimal to change the nominal price after T ��x units of time, where
T � is such that the marginal bene�t of deferring a price change, R(Q exp(��T �)), equals
the marginal cost of deferring a price change, r(V �� c). Hence, the seller �nds it optimal
to change the nominal price when the price�s real value is s if and only if Q exp(��T �) = s

or, equivalently,

R(s) = r (V � � c) . (23)

The seller �nds it optimal to reset the real value of the nominal price to S = Q if and

only if V (0) = V � and V (t) � V � for all t 2 [0; T ], where T = log(S=s)=� denotes the

time it takes for the real value of a nominal price to fall from S to s. Using (21), we can

write the condition V (0) = V � as

TZ
0

e�rxR
�
Qe��x

�
dx+ e�rT (V � � c) = V �. (24)

Similarly, we can write the condition V (t) � V � for all t 2 [0; T ] as

TZ
t

e�r(x�t)R
�
Qe��x

�
dx+ e�r(T�t) (V � � c) � V �. (25)

In an (S; s) equilibrium, a seller only changes its nominal price when the real value

of the price falls down to s. Moreover, when a seller changes its nominal price, it always

resets it so that the real value of the new price is S = Q. As all sellers follow this (S; s)

pricing rule, the stationary distribution of real prices is given by

F (p) =
log(p)� log(s)
log(S)� log(s) , 8p 2 [s; S]: (26)

The above observations motivate the following de�nition of equilibrium.
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De�nition 2: A stationary (S; s) equilibrium is a CDF of prices F : [s;Q] ! [0; 1], a

lower bound on the price distribution s 2 (0; Q), an upper bound on the price distribution
S = Q, and a seller�s maximum value V � that jointly satisfy the optimality conditions

(23)-(25) and the stationarity condition (26).

4.2 (S; s) Equilibrium: Existence

The equilibrium condition (23) states that the pro�t of a seller with a real price of s must

be equal to the annuitized value of paying the menu cost and resetting the nominal price

optimally. Since R(s) is given by b [�+ 2(1� �)(1� F (s))] s and F (s) is equal to 0, the

equilibrium condition (23) implies that the lower bound on the price distribution must be

equal to

s =
r (V � � c)

b (2� �)
. (27)

The equilibrium condition (24) states that the present discounted value of pro�ts for

a seller with a real price of S = Q must be equal to the maximum value V �. After

substituting out F and s and after solving the integral, we can rewrite the equilibrium

condition (24) as one equation in the one unknown V �, i.e.,�
1� e�(r+�)T (V

�) (1 + (r + �)T (V �))

(r + �)2

�
2b(1� �)Q

T (V �)

+

�
1� e�(r+�)T (V

�)

r + �

�
b�Q+ e�rT (V

�) (V � � c)� V � = 0;

(28)

where

T (V �) � 1

�
log

�
b(2� �)Q

r(V � � c)

�
.

Clearly, if (F �; S�; s�; V �) is an (S; s) equilibrium, then V � must be a solution to (28).

Conversely, suppose that V � is a solution to (28), with V � 2 (c; b�Q=r]. Let the upper
bound on the price distribution S� be given by Q. Let the lower bound on the price

distribution s� be given by the solution to (27) for V = V �. Let the stationary price

distribution F � be given by (26) for s = s� and S = S�. Notice that s� is strictly positive

as V � > c and that s� is strictly less than S� as s� < Q. Notice that F � is a proper

cumulative distribution function with support [s�; S�] as F �(s�) = 0, F (S�) = 1 and

F �0(p) > 0 for all p 2 [s�; S�]. By construction, the tuple (F �; S�; s�; V �) satis�es the

optimality conditions (23)-(24) and the stationarity condition (26). Further, it can be
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proved that, if V � � b�Q=r, the tuple (F �; S�; s�; V �) satis�es the optimality condition

(25), i.e. the present discounted value of pro�ts for a seller with a real price lower than S� is

non-greater than the maximum value V �. Therefore, the tuple (F �; S�; s�; V �) constitutes

an (S; s) equilibrium.

If (28) does not admit a solution for V � 2 (c; b�Q=r], then an (S; s) equilibrium does

not exist. In fact, there is no (S; s) equilibrium associated with a solution V � to equation

(28) such that V � � c. This follows from the fact that V � � c implies s � 0, i.e. the seller
�nds it optimal to pay the menu cost when the real value of its nominal price becomes

negative, an event that never happens. Similarly, there is no (S; s) equilibrium associated

with a solution V � to equation (28) such that V � > b�Q=r. This follows from the fact

that V � > b�Q=r implies V 0(0) > 0, i.e. the seller �nds it optimal to reset the real value

of its nominal price to some p strictly smaller than S = Q.

The above observations are formalized in the following theorem.

Theorem 3: (Existence of an (S; s) equilibrium). An (S; s) equilibrium exists if and only

if equation (27) admits a solution V � 2 (c; b�Q=r].

Proof : In Appendix C.

4.3 (S; s) Equilibrium: Comparative Statics

Theorem 3 states that an (S; s) equilibrium exists if and only if there exists a V � such

that: (i) V � is a solution to (28); (ii) V � is greater than c and smaller than b�Q=r. It

is convenient to rewrite these two conditions in terms of x = V � � c rather than V �.

Condition (i) is equivalent to x being a solution to�
1� e�(r+�)T (x) (1 + (r + �)T (x))

(r + �)2

�
2b(1� �)Q

T (x)

+

�
1� e�(r+�)T (x)

r + �

�
b�Q+ e�rT (x)x� x = c;

(29)

where

T (x) � 1

�
log

�
b(2� �)Q

rx

�
.

Similarly, condition (ii) is equivalent to x being positive and such that

b�Q

r
� x � c. (30)
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Figure 5: Existence of an (S; s) equilibrium

Now, let !(x) denote the left-hand side of (29). It is straightforward to verify that

the function !(x) is such that !(0) = b�Q=(r + �), !0(x) > �1 and !(x) > 0 for all

x 2 [0; b�Q=r]. Similarly, let  (x) denote the left-hand side of (30). Clearly, the function
 (x) is such that  (0) = b�Q=r,  (b�Q=r) = 0 and  0(x) = �1. Figure 5 illustrates the
properties of !(x) and  (x) in the (x; c) space.

The properties of !(x) and  (x) imply that there exists an x� 2 (0; b�Q=r) such

that !(x) <  (x) for all x 2 [0; x�), !(x) =  (x) for x = x�, and !(x) >  (x) for all

x 2 (x�; b�Q=r]. Let ch denote the maximum of the function !(x) over the interval [0; x�].
Notice that, since !(0) <  (0), ch is strictly smaller than b�Q=r. Similarly, let c` denote

the minimum of the function !(x) over the interval [0; x�]. Notice that, since !(x) > 0

for all x 2 [0; b�Q=r], c` is strictly greater than zero. Figure 5 illustrates the de�nition of
x�, c` and ch.

The following observations follow immediately from the inspection of Figure 5. If the

menu cost c is smaller than c`, an (S; s) equilibrium cannot exist as there is no x such

that !(x) = c and  (x) � c. Similarly, if the menu cost c is greater than ch, an (S; s)

equilibrium cannot exist as there is no x such that !(x) = c and  (x) � c. In contrast,

if the menu cost c is greater than c` and smaller than ch, an (S; s) equilibrium exists as

there exists at least one x such that !(x) = c and  (x) � c.
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When the menu cost c is between c` and ch, the (S; s) equilibrium need not be unique

because the function !(x) may not be monotonic. This case is illustrated in panel (b)

of Figure 5. Intuitively, multiple (S; s) equilibria may exist because of a feed-back e¤ect

between the stationary distribution of prices, F , and the seller�s maximum value, V �. The

higher is the seller�s maximum value, the lower is the point s at which a seller �nds it

optimal to reset its nominal price and, hence, the lower is the stationary distribution of

prices F . Conversely, the lower is the stationary distribution of prices F , the stronger is

the competition faced by a seller o¤ering any particular price and, hence, the lower is the

seller�s maximum value V �. For some parameter values, this feed-back e¤ect is so strong

as to generate multiple (S; s) equilibria.

Finally, note that the interval of menu costs for which an (S; s) equilibrium exists, i.e.

[c`; ch], always contains the upper bound of the interval of menu costs for which a (Q;S; s)

equilibrium exists, i.e. c. For c = !(x�), there exists an (S; s) equilibrium in which the

maximum value of the seller is b�Q=r. For c ! c, the (Q;S; s) equilibrium converges to

an (S; s) equilibrium in which the maximum value of the seller is b�Q=r. Therefore, c is

equal to !(x�) 2 [c`; ch].

The above results are summarized in the following theorem.

Theorem 4: (Comparative statics for (S; s) equilibrium). For any menu cost c in the

interval [c`; ch], there exists at least one (S; s) equilibrium. The bounds c` and ch are such

that c` > 0, ch < b�Q=r and c 2 [c`; ch].

The key result in Theorem 4 is that an (S; s) equilibrium cannot exist if the menu

cost is su¢ ciently small. There is a simple intuition for this result. When the menu cost

is smaller, the lower bound s on the price distribution is higher as the seller�s marginal

cost of deferring a price adjustment, r(V �� c), increases relative to the marginal bene�t,
R(s) = b(2 � �)s. Consequently, when the menu cost is smaller, the stationary price

distribution F becomes more compressed towards the upper bound S. When the menu

cost is su¢ ciently small, the price distribution become so compressed at the top that an

individual seller is better o¤ deviating from the equilibrium by resetting the real value of

its nominal price to some p smaller than S = Q. The seller �nds the deviation pro�table

because, by resetting its price to p rather than to Q, it can sell not only to the buyers who

have not met any other seller, but also to the many buyers who have met a seller charging

a price between p and Q. Thus, when the menu is su¢ ciently low, an (S; s) equilibrium

with S = Q does not exists.
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Could there exist an (S; s) equilibriumwith S < Q? The answer is negative. To see this

suppose for a moment that there exists an (S; s) equilibrium in which every seller resets

its price to some S smaller than Q. In this equilibrium, a seller�s present discounted value

of pro�ts must be greater at S than at any lower price. This condition can be satis�ed

if the seller�s value at S is some V � smaller than b�S=r. However, if V � � b�S=r, an

individual seller is better o¤ deviating from the equilibrium by resetting the real value

of its nominal price to Q. Intuitively, the seller �nd this deviation pro�table because, by

resetting its price to Q rather than to S, it still only sells to the buyers who have not met

any other seller but it can enjoy a higher pro�t margin. More precisely, by resetting its

price to Q rather than to S, the seller can enjoy a period of length log(Q=S)=� during

which the �ow pro�t is strictly greater than b�S. As b�S � rV �, the seller can attain a

higher present discounted value of pro�ts. Thus, an (S; s) equilibrium with S < Q does

not exist.

Overall, when the menu cost is su¢ ciently low, there cannot be an (S; s) equilibrium

with S = Q as an individual seller would want to deviate from this equilibrium by resetting

its price below S. Moreover, there cannot be an (S; s) equilibrium with S < Q as an

individual seller would want to deviate from this equilibrium by resetting its price above S

(to Q). The natural resolution of this tension is an equilibrium in which sellers randomize

with respect to their reset price: a (Q;S; s) equilibrium. As it is clear from the discussion

in the previous paragraphs, the economic forces that rule out an (S; s) equilibrium and ask

for an equilibrium in which sellers randomize with respect to their reset price are exactly

the same economic forces that, absent menu costs, rule out a unique price equilibrium

and ask for an equilibrium in which sellers randomize with respect to their price.

Theorem 2 guarantees that there are no holes between the region of parameters for

which an (Q;S; s) equilibrium exists and the region of parameters for which an (S; s) equi-

librium exists. However, Theorem 2 does not tell us whether the (Q;S; s) and the (S; s)

existence regions overlap or not. Figure 6 shows that the answer depends on parameter

values. Figure 6(a) shows the combinations of menu costs, c, and in�ation rates, �, for

which there exists a (Q;S; s) equilibrium and for which there exists an (S; s) equilibrium,

given that the parameters (�; r; b; Q) take on the values (:5; :03; 1; 1). In particular, a

(Q;S; s) equilibrium exists for combinations of c and � in the dark gray area between the

thin black line and the x-axis. Similarly, an (S; s) equilibrium exists for combinations

of c and � in the dark gray area between the dashed red line and the blue line. In this

example, the (Q;S; s) and the (S; s) existence regions are non-overlapping: if c � c` = c,
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(a) Example 1 (b) Example 2

Figure 6: Existence regions

only a (Q;S; s) equilibrium exists; if c 2 [c`; ch], only an (S; s) equilibrium exists; and

if c > ch, neither type of equilibrium exists.5 Figure 6(b) shows the (Q;S; s) and (S; s)

existence regions when the parameters (�; r; b; Q) take on the values (:15; :03; 1; 1). In this

example, the two existence regions are overlapping: if c < c`, only a (Q;S; s) equilibrium

exists; if c 2 [c`; ch), both a (Q;S; s) and an (S; s) equilibrium exist; if c 2 [c; ch], only an
(S; s) equilibrium exists; and if c > ch, neither type of equilibrium exists.

5 Conclusions

In this paper, we studied the e¤ect of menu costs on the pricing behavior of sellers and

on the cross-sectional distribution of prices in a search-theoretic model of imperfect com-

petition in the spirit of Butters (1977), Varian (1980) or Burdett and Judd (1983). The

distinguishing aspect of our model of imperfect competition is that, even without menu

costs, the equilibrium features a non-degenerate distribution of prices. We proved that,

when the menu cost is su¢ ciently small, the only equilibrium is a (Q;S; s) equilibrium,

i.e. an equilibrium in which sellers let in�ation erode the real value of their price until it

reaches some point s, then they pay the menu cost and change their nominal price so that

the real value of the new price is randomly drawn from a distribution with support [S;Q],

where Q is the buyer�s reservation price and S is some price between s and Q. Then, we

5When c > ch, a stationary equilibrium does not exist because the menu cost c is greater than the
seller�s maximum value V � and, hence, sellers never have the incentive to adjust their nominal price.
However, if we were to let sellers decide whether to enter the market at some cost k > 0, we would �nd
an (S; s) equilibrium with a higher buyer-to-seller ratio b.
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established several features of a (Q;S; s) equilibrium. The seller�s present value of pro�ts

is constant as the real price falls from Q to S, and it is monotonically decreasing as the

real price falls from S to s. The seller�s �ow pro�t is constant as the real price falls from

Q to S, and it is �rst increasing and then decreasing as the real price falls from S to s.

Over the interval [S;Q], the cross-sectional distribution of prices is such that the seller�s

�ow pro�t is constant. Over the interval [s; S], the cross-sectional distribution of prices is

log-uniform. Overall, the model behaves like a standard search model of price dispersion

for prices between S and Q (see, e.g., BJ83) and like a standard menu cost model for

prices between s and S (see, e.g., B88). Finally, we explained that, when the menu cost is

su¢ ciently small, there is a (Q;S; s) equilibrium but not an (S; s) equilibrium for exactly

the same reasons why, in the absence of menu costs, the equilibrium features price dis-

persion. This last observation makes us conjecture that, for small menu costs, a (Q;S; s)

equilibrium will emerge also in other models that, in the absence of menu costs, feature

price dispersion (see, e.g., Prescott 1975 and Eden 1994).

There are several applications of our model that seem promising. Just two are men-

tioned below. First, it should be possible to estimate the model using data on the distrib-

ution of nominal prices across sellers and data on the evolution of nominal prices at each

individual sellers. The exercise would allow us to estimate both search frictions and menu

costs and to quantify their relative contribution to price stickiness. Second, it should be

possible to extend the model to allow for seller-speci�c shock and estimate it using data

on the distribution of nominal prices across sellers, on the distribution of nominal price

changes and on the duration of individual prices. The exercise would allow us to assess

the magnitude of menu costs and seller-speci�c shocks and, in turn, to measure the real

e¤ect of monetary shocks in a search-theoretic model of imperfect competition.
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Appendix

A Proof of Theorem 1

(i) Part (i) of Theorem 1 states that a (Q;S; s) equilibrium exists if and only if '(Q) > 0.

The function '(S) is de�ned as

'(S) �
�
1� e�(r+�)T2(S) (1 + (r + �)T2(S))

(r + �)2

�
(2� �)S � �Q

T2(S)

+

�
1� e�(r+�)T2(S)

r + �

�
�Q+ e�rT2(S)

�
�Q

r
� c

b

�
� �Q

r
= 0;

(A1)

where

T2(S) �
log(S=s)

�
, s =

�Q� rc=b

2� �
: (A2)

It is straightforward to verify that '(S) has the following properties: (i) '(S) < 0 for all

S 2 [s; �Q=(2� �)]; (ii) '0(S) > 0 for all S 2 [�Q=(2� �); Q].

Suppose that '(Q) � 0. Then a (Q;S; s) equilibrium does not exist. On the way

to a contradiction, let (F;G; S; s; V ) be a (Q;S; s) equilibrium. As proved in Section

3, if (F;G; S; s; V ) is a (Q;S; s) equilibrium, then S must be a solution to the equation

'(S) = 0 and it must belong to the interval (s; S). However, '(S) = 0 cannot admit any

solution in the interval (s;Q) because '(S) < 0 for all S 2 (s;Q).

Conversely, suppose that '(Q) > 0. Then, the equation '(S) = 0 admits at most

one solution in the interval (s;Q) because '(s) < 0 and '(Q) � 0 and '(S) is strictly

increasing in S. Let S� denote this solution. Let s� be de�ned as in equation (19) for

S = S�. Let F � be de�ned as in equations (14) and (15) for S = S� and s = s�. Let G� be

de�ned as in equations (16)-(18) for S = S� and s = s�. Let V � be de�ned as in equation

(13). Moreover, let T �1 and T
�
2 be de�ned, respectively, as log(Q=S

�)=� and log(S�=s�)=�

and let R(p) be de�ned as in (2) for F = F �. To prove that the tuple (F �; G�; S�; s�; V �)

constitutes a (Q;S; s) equilibrium, we need to verify that it jointly satis�es the optimality

conditions (4)-(7) and the stationarity conditions (9), (11) and (12). In addition, we need

to verify that S� 2 (s�; Q), s� 2 [0; Q), F � is a CDF with support [s�; Q] and G� is a CDF
with support [S�; Q].

The tuple (F �; G�; S�; s�; V �) satis�es the stationarity condition (9) because, for all
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p 2 (s�; S�), we have

F �0(p)p �
�
1� �

2(1� �)

Q� S�

S�

�
1

log(S�=s�)

= F �0(s�)s�.

(A3)

Similarly, the stationarity condition (11) is satis�ed because, for all p 2 (S�; Q), we have

F �0(p)p � �

2(1� �)

Q

p

=

�
1� �

2(1� �)

Q� S�

S�

��1 �
1� �

2(1� �)

Q� S�

S�

�
s�

log(S�=s�)

� log(S�=s�)Q

2(1� �)s�p

= F �0(s) (1�G�(p)) s�:
(A4)

Moreover, notice that F � is a CDF with support [s�; Q]. In fact, F �(s�) = 0, F �(Q) = 1

and F �0(p) > 0 for all p 2 [s�; Q].

The tuple (F �; G�; S�; s�; V �) satis�es the optimality condition (4) because

r (V � � c) = b�Q� cr

= b [�+ 2(1� �)(1� F �(s�))] s�

= R(s�):

(A5)

The optimality condition (5) is satis�ed because, for all t 2 [0; T �1 ], we have

R(Qe��t) = b [�+ 2(1� �)(1� F �(Qe��t))]Qe��t

= b�Q = rV �.
(A6)

The optimality condition (6) is satis�ed because '(S�) = 0 impliesZ T �1+T
�
2

T �1

e�r(x�T
�
1 )R(Qe��x)dx+ e�rT

�
2 (V � � c)� V � = 0: (A7)

Moreover, S� 2 (s�; Q) and the assumption c 2 (0; b�Q=r) implies

s� � �Q� rc=b

2� �
2 (0; Q) . (A8)

The optimality condition (5) together with the optimality condition (6) guarantees

that the seller�s value V (t) is equal to V � for all t 2 [0; T �1 ]. Now, we need to verify

that the optimality condition (7) That is, we need to verify that the seller�s value V (t) is
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non-greater than V � for all t 2 [T �1 ; T �1 + T �2 ] To this aim, notice that V (t) satis�es the

di¤erential equation
rV (t) = R̂(t) + V 0(t),
R̂(t) � R(Qe��t):

(A9)

Notice that, for t 2 [T �1 ; T �1 + T �2 ], R̂(t) is given by

R̂(t) = e��(t�T
�
1 )b

�
(2� �)S� � [(2� �)S� � �Q]

�
1� �(t� T �1 )

log(S�=s�)

��
: (A10)

The derivative of R̂(t) with respect to t is given by

R̂0(t) = �e��(t�T
�
1 )b

�
[(2� �)S� � �Q]

�
1 +

1� �(t� T �1 )

log(S�=s�)

�
� (2� �)S�

�
: (A11)

Notice that R̂0(t) has the same sign as

�(t) = [(2� �)S� � �Q]

�
1 +

1� �(t� T �1 )

log(S�=s�)

�
� (2� �)S�: (A12)

It is straightforward to verify that �(t) is strictly decreasing in t for all t 2 [T �1 ; T �1 + T �2 ]

and that �(T �1 ) is strictly positive (negative) if (2��)S� is strictly greater (smaller) than
�Q (1 + log(S�=s�)). Therefore, if (2 � �)S� > �Q (1 + log(S�=s�)), R̂(t) is �rst strictly

increasing and then strictly decreasing over the interval [T �1 ; T
�
1 + T �2 ]. If (2 � �)S� <

�Q (1 + log(S�=s�)), R̂(t) is strictly decreasing for all t 2 [T �1 ; T �1 + T �2 ]. Notice that R̂(t)
cannot be increasing for all t 2 [T �1 ; T �1 + T �2 ] because R̂(T

�
1 ) = b�Q and R̂(T �1 + T �2 ) =

b�Q� cr.

Consider the phase diagram in Figure 7, which describes the di¤erential equation (A9).

The black line passing through the origin denotes the locus of points (R̂; V ) such that

V = R̂=r and, hence, V 0 = 0. Any point below the black line is such that V < R̂=r

and, hence, V 0 < 0. Any point above the black line is such that V > R̂=r and, hence,

V 0 > 0. From (5) and (6), it follows that R̂(T �1 ) = b�Q and V (T �1 ) = b�Q=r. Hence,

the point (R̂(T �1 ); V (T
�
1 )) lies on the black line and V

0(T �1 ) = 0. From (4) and (13), it

follows that R̂(T �1 + T �2 ) = b�Q � cr and V (T �1 + T �2 ) = b�Q=r � c. Hence, the point

(R̂(T �1 + T �2 ); V (T
�
1 + T �2 )) lies on the black line and V

0(T �1 + T �2 ) = 0.

Now, we want to �nd out the trajectory that the pair (R̂(t); V (t)) follows as it goes

from the point (b�Q; b�Q=r) at t = T �1 to the point (b�Q� cr; b�Q=r� c) at t = T �1 +T
�
2 .

Notice that (2 � �)S� must be greater than �Q (1 + log(S�=s�)). In fact, if (2 � �)S �
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Figure 7: Joint Dynamics of V (t) and R̂(t)

�Q (1 + log(S�=s�)), R̂(t) is strictly decreasing for all t 2 [T �1 ; T �1 + T �2 ]. As illustrated

by the trajectory (a) in the phase diagram, this implies that (R̂(t); V (t)) exits the initial

point (b�Q; b�Q=r) from the left, enters the region where V 0(t) > 0, and remains in that

region for all t 2 (T �1 ; T �1 + T �2 ). Thus, V (T
�
1 + T �2 ) > V (T �1 ) = b�Q=r, which contradicts

the fact that V (T �1 + T �2 ) = b�Q=r � c:

Since (2��)S > �Q (1 + log(S�=s�)), R̂(t) is �rst increasing and then decreasing over

the interval [T �1 ; T
�
1 +T

�
2 ]. As illustrated by trajectories (b) and (c) in the phase diagram,

this implies that (R̂(t); V (t)) exits the initial point (b�Q; b�Q=r) from the right, enters

the region where V 0(t) < 0, and remains in that region until it crosses the black line

either at some t̂ < T �1 + T �2 , as in trajectory (b), or at T
�
1 + T �2 , as in trajectory (c). If

(R̂(t); V (t)) crosses the black line at some t̂ < T �1 + T
�
2 , then R̂

0(t̂) < 0. This implies that

V 0(t) > 0 and R̂0(t) < 0 for all t 2 (t̂; T �1 + T �2 ). Thus, (R̂(t); V (t)) cannot reach the end

point (b�Q � cr; b�Q=r � c). Therefore, the pair (R̂(t); V (t)) must follow the trajectory

(c). Along this trajectory, V (t) is strictly decreasing.

To complete the existence proof, we still need to verify that G� is a CDF with support
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[S�; Q]. To this aim, recall that G� is given by

G�(p) �

8>>>><>>>>:
0; if p < S�,

1�
�
1� �

2(1� �)

Q� S�

S�

��1
� log(S�=s�)Q

2(1� �)p
, if p 2 [S�; Q),

1, if p � Q.

(A13)

The distribution function G�(p) has the following properties: (i) G�(p) = 0 for all p < S�;

(ii) G�(S�) � 0 if and only if (2 � �)S� � �Q [1 + log(S�=s�)]; (iii) G�0(p) > 0 for all

p 2 (S�; Q) if and only if S� > �Q=(2��); (iv)G�(Q�) � 1 if and only if S� > �Q=(2��);
(iv) G�(p) = 1 for all p � Q. Therefore, G�(p) is a proper CDF with support [S�; Q] if

and only if S� > �Q=(2 � �) and (2 � �)S� � �Q [1 + log(S�=s�)]. We have already

established that both conditions hold.

(ii) Part (ii) of Theorem 1 states that: (a) V 0(t) = 0 for all t 2 (0; T �1 ) and V 0(t) < 0 for

all t 2 (T �1 ; T �1 + T �2 ); (b) R̂
0(t) = 0 for all t 2 (0; T �1 ), R̂0(t) > 0 for all t 2 (T �1 ; T̂ ) and

R̂0(t) < 0 for all t 2 (T̂ ; T �1 + T �2 ). Both properties have been established while proving

part (i). �

B Proof of Theorem 2

(i) In the proof of Theorem 1, we showed that a (Q;S; s) equilibrium exists if and only if

the equation �(S; c) = 0 admits a solution for S 2 (�Q=(2��); Q). The function �(S; c)
is given by

'(S; c) =

�
1� e�(r+�)T2(S;c)(1 + (r + �)T2(S; c))

(r + �)2T2(S; c)

�
[(2� �)S � �Q]

+
�
1� e�(r+�)T2(S;c)

r + �

�
�Q+ e�rT2(S;c)

�
�Q

r
� c

b

�
� aQ

r
,

(B1)

where T2(S; c) is given by

T2(S; c) =
log (S=s(c))

�
, s(c) =

�Q� rc/ b

2� �
: (B2)

Let 'S(S; c) and 'c(S; c) denote the derivatives of '(S; c) with respect to S and c.
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The derivative 'S(S; c) is given by

'S(S; c) =�
1� e�(r+�)T2(S;c) (1 + (r + �)T2(S; c))

(r + �)2

�
(2� �)S [log(S=s(c))� 1] + �Q

log(S=s(c))2
:

(B3)

The derivative 'c(S; c) is given by

'c(S; c) = �
e�rT2(S;c)

b

�
�
1� e�(r+�)T2(S;c) (1 + (r + �)T2(S; c))

(r + �)2

� �
(2� �)S � �Q

b log(S=s(c))2

�
�r

(2� �)s(c)
:

(B4)

It is straightforward to verify that 'S(S; c) is strictly positive and 'c(S; c) is strictly

negative for all S 2 [�Q=(2� �); Q].

Let S�(c) denote the solution to the equation '(S; c) = 0 with respect to S. For

c = 0, S�(c) is equal to �Q=(2 � �): Since 'S(S; c) is strictly positive and 'c(S; c) is

strictly negative for all S 2 [�Q=(2� �); Q], it follows that S�(c) is strictly greater than

�Q=(2� �) and strictly increasing for all c > 0. Moreover, there exists a c > 0 such that
S�(c) = Q. It then follows that, for all c 2 (0; c), S�(c) 2 (�Q=(2� �); Q) and a (Q;S; s)

equilibrium exists. In contrast, for c � c, S�(c) � Q and a (Q;S; s) equilibrium does not

exist.

Let (s�(c); S�(c); T �1 (c); T
�
2 (c)) denote the cuto¤ prices and travelling times in the

(Q;S; s) equilibrium associated with the menu cost c 2 (0; c). Above we proved that

S*(c) is strictly increasing in c. Since s�(c) � (�Q� rc/ b) = (2� �), s�(c) is strictly

decreasing and Q � s�(c) is strictly increasing in c. Since T �1 (c) � log(Q=S�(c))=� and

T �2 (c) � log(S�(c)=s�(c))=�; T �1 (c) is strictly decreasing and T �2 (c) is strictly increasing in
c. Moreover, since T �1 (c) + T �2 (c) is strictly increasing, T

�
1 (c)=(T

�
1 (c) + T �2 (c)) is strictly

decreasing in c.

(ii) Using the fact that S = s exp(�T2) and s = (�Q� rc/ b) =(2 � �), we can write the

equation '(S; �) = 0 as

'̂(T2; �) =

�
1� e�(r+�)T2(1 + (r + �)T2)

(r + �)2T2

� �
(�Q� rc=b)e�T2 � �Q

�
+

�
1� e�(r+�)T2

r + �

�
�Q+ e�rT2

�
�Q

r
� c

b

�
� aQ

r
= 0.

(B5)
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After some algebraic transformations, (B5) becomes

b�QM(T2; �) = rcN(T2; �); (B6)

where the function M(T2; �) is de�ned as

M(T2; �) = �r � �(r + �)T2 + re�(r+�)T2

+(�(r + �)T2 � r) e�rT2 + re�T2 ;
(B7)

and the function N(T2; �) is de�ned as

N(T2; �) = re�T2 + (�(r + �)T2 � r) e�T2 : (B8)

Let MT2(T2; �) and NT2(T2; �) denote the partial derivatives of M(T2; �) and N(T2; �)

with respect to T2. Similarly, let M�(T2; �) and N�(T2; �) denote the partial derivatives

of M(T2; �) and N(T2; �) with respect to �.

Now, let T �2 (�) denote the solution to (B5) with respect to T2. The derivative of T
�
2 (�)

with respect to the in�ation rate � is given by

T �02 (�) =
M(T �2 ; �)N�(T

�
2 ; �)�M�(T

�
2 ; �)N(T

�
2 ; �)

N(T �2 ; �)MT2(T
�
2 ; �)�NT2(T

�
2 ; �)M(T

�
2 ; �)

=
�T �2

�
2� (r + �)T �2 � 4e�(r+�)T

�
2 + [2 + (r + �)T �2 ] e

�2(r+�)T �2
	

�
�
1� (r + �)T �2 + [(r + �)2T �22 � 2] e�(r+�)T �2 + [1 + (r + �)T �2 ] e

�2(r+�)T �2
	 :
(B9)

It is easy to verify that the above expression is strictly negative.

Next, let S�(�) denote the solution to the equation '(S) = 0 with respect to S, which

is given by

S�(�) =
�Q� rc/ b

2� �
e�T

�
2 (�). (B10)

The derivative of S�(�) with respect to � has the same sign as the derivative of �T �2 (�)

with respect to �, which is given by

T �2 (�) + �T �02 (�)

=
T �2
�
e�(r+�)T

�
2 [2 + (r + �)2T �22 ]� e�2(r+�)T

�
2 � 1

	
1� (r + �)T �2 + [(r + �)2T �22 � 2] e�(r+�)T �2 + [1 + (r + �)T �2 ] e

�2(r+�)T �2

(B11)

It is easy to verify that the above expression is strictly positive and, hence, S�(�) is strictly

increasing in �. Moreover, S�(�) has the following properties: (i) S�(�) = �Q=(2 � �)
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for � ! 0; (ii) S�(�) > �Q=(2 � �) for all � > 0; (iii) S�(�) > Q for  ! 1. Since
S�(�) is a continuous and strictly increasing function of �, the above properties imply

that there exists a � > 0 such that, for all � 2 (0; �), S�(�) 2 (�Q=(2� �); Q) and,

hence, a (Q;S; s) equilibrium exists. In contrast, for � � �, S�(�) � Q and a (Q;S; s)

equilibrium does not exist.

Let (s�(�); S�(�); T �1 (�); T
�
2 (�)) denote the cuto¤ prices and travelling times in the

(Q;S; s) equilibrium associated with the in�ation rate � 2 (0; �). We have already es-
tablished that S*(�) is strictly increasing and T �2 (�) is strictly decreasing in �. Since

s�(�) � (�Q� rc/ b) = (2� �), s�(�) is independent of � and so is Q � s�(�). Since

T �1 (�) � log(Q=S�(c))=�, it follows that T �1 (�) is strictly decreasing in �. Moreover, the
ratio T �1 (�)=(T

�
1 (�) + T �2 (�)) is strictly decreasing in �. �

C Proof of Theorem 3

Suppose that V � 2 (c; b�Q=r] is a solution to the equation�
1� e�(r+�)T (V

�) (1 + (r + �)T (V �))

(r + �)2

�
2b(1� �)Q

T (V �)

+

�
1� e�(r+�)T (V

�)

r + �

�
b�Q+ e�rT (V

�) (V � � c)� V � = 0;

(C1)

where

T (V �) � 1

�
log

�
b(2� �)Q

r(V � � c)

�
.

Let S� be de�ned as Q. Let s� be de�ned as in equation (27). Let F � be de�ned as in

equation (26) for s = s� and S = S�. Moreover, let T � be de�ned as log(S�=s�)=� and let

R(p) be de�ned as in (22) for F = F �. In order to establish that the tuple (F �; s�; S�; V �)

constitutes an (S; s) equilibrium, we need to verify that it jointly satis�es the optimality

conditions (23)-(25) and the stationarity condition (26). In addition, we need to verify

that s� 2 (0; Q) and that F � is a CDF with support [s�; S�].

The tuple (F �; s�; S�; V �) satis�es the stationarity condition (26) by de�nition. More-

over, notice that F � is a CDF with support [s�; S�] because F �(s�) = 0, F �(S�) = 1 and

F �0(p) > 0 for all p 2 [s�; S�].
The optimality condition (23) is satis�ed because R(s�) = b(2��)s� and s� = r(V ��

c)=b(2 � �) imply R(s�) = r(V � � c). Moreover, notice that s� 2 (0; Q) because V � > c
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implies s� > 0 and V � � b�Q=r implies s� < Q. The optimality condition (24) is satis�ed

because equation (C1) impliesZ T �

0

e�rtR(Qe��t)dx+ e�rT
�
(V � � c)� V � = 0,

() V (0)� V � = 0.
(C2)

Now, we need to verify that the tuple (F �; s�; S�; V �) satis�es the stationarity condition

(25). That is, we need to verify that the seller�s value V (t) is non-greater than V � for all

t 2 [0; T �]. To this aim, notice that V (t) satis�es the di¤erential equation

rV (t) = R̂(t) + V 0(t),
R̂(t) � R(Qe��t):

(C3)

The function R̂(t) is given by

R̂(t) = e��tbQ

�
(2� �)� 2(1� �)

�
1� �t

log(Q=s�)

��
: (C4)

The derivative of R̂(t) with respect to t is given by

R̂0(t) = �e��tbQ

�
2 (1� �)

�
1 +

1� �t

log(Q=s�)

�
� (2� �)

�
: (C5)

The derivative R̂0(t) has the same sign as the term in curly brackets in (C5). It is

straightforward to verify that this term is strictly increasing in t. Hence, R̂(t) is either

strictly decreasing in t over the entire interval [0; T �], or it is �rst strictly increasing and

then strictly decreasing in t. Notice that R̂(t) cannot be increasing for all t 2 [0; T �]
because R̂(0) = b�Q � rV � and R̂(T �) = r (V � � c) < rV �.

Consider the phase diagram in Figure 8, which describes the di¤erential equation (C3).

The black line passing through the origin denotes the locus of points (R̂; V ) such that

V = R̂=r and, hence, V 0 = 0. Any point below the black line is such that V < R̂=r

and, hence, V 0 < 0. Any point above the black line is such that V > R̂=r and, hence,

V 0 > 0. From (24), it follows that R̂(0) = b�Q and V (0) = V � � b�Q=r. Hence, the

point (R̂(0); V (0)) lies either on or below the black line and V 0(0) � 0. From (23), it

follows that R̂(T �) = r(V �� c) and V (T �) = V �� c. Therefore, the point (R̂(T �); V (T �))
lies on the black line and V 0(T �) = 0.

Now, we want to �nd out the trajectory that the pair (R̂(t); V (t)) follows as it travels
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Figure 8: Joint Dynamics of V (t) and R̂(t)

from the initial point (b�Q; V �) to the endpoint (r(V � � c); V � � c). First, consider

the case V � < b�Q=r. In this case, the initial point (b�Q; V �) lies in the region where

V 0(t) < 0. For as long as R̂(t) increases, (R̂(t); V (t)) moves to the south-east of the

initial point (b�Q; V �). When R̂(t) begins to decrease, (R̂(t); V (t)) changes direction and

moves towards the south-west and, eventually, it crosses the black line. Suppose that

(R̂(t); V (t)) crosses the black line at a time T̂ < T �. Then, after time T̂ , (R̂(t); V (t))

moves to the north-west and, since R̂(t) is decreasing and V (t) is increasing, (R̂(t); V (t))

does not reach the black line again. This contradicts the fact that (R̂(t); V (t)) reaches

the black line at the point (r(V � � c); V � � c) at time T �. Therefore, (R̂(t); V (t)) must

�rst cross the black line at time T � and, hence, V 0(t) < 0 for all t 2 [0; T �].

Second, consider the case V � = b�Q=r. In this case, it is easy to verify that (R̂(t); V (t))

must move �rst to the south-east, then to the south-west and reach the black line at time

T �. Also in this case, V 0(t) � 0 for all t 2 [0; T �]. This completes the proof that the tuple
(F �; s�; S�; V �) is an (S; s) equilibrium. The proof that there is no (S; s) equilibrium if

equation (C1) does not admit a solution for V � 2 (c; b�Q=r] is straightforward and it is
omitted for the sake of brevity. �
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