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Abstract

Onie consequence of dynamic system thecry is that relatively
simple systems, which can be described by a £few ncn-linear
equations, can exhibit very compl:icated, stochagtic-1l1ke
behavior. Such models simulate processes 1nexpensively. They
reveal insights into the underlying mechanisms while devising
strategies to control these processes.

Chaotic systems are sensitive to initial conditions. Since
these conditions are not precisely known and are subject to
perturbations, long-term predictions of the behavior of these
systems are 1impossible. Thus, the availability of large
computational resources will not enable one to generate long-term
predictions for systems ranging from weather to eccnomic

forecasts.
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Introduction

The 1last few decades have seen an 1increased emphasis on
mathematical modeling. One class of models consists of evolution
equations: the description of the time-dependence or the dynamics

of wvarious bprocesses through mathematical statements written

either as differential equations for continuous processes oOr

difference equations for discrete processes. Such models have

been of great utility 1in the physical and natural sciences,
engineering, and economics. Just a few examples of such models
are the oscillations of a pendulum, the weather system, streams
in the ocean, the spread of diseases, physiological rhythms, and
population dynamics. Broadly speaking, mathematical models can be
classified as either deterministic or stochastic. Since our
intention is to avoid technical “argon and to make the

presentation simple, we define a deterministic process as a

process that when repeated exactly 1in the same way will yield

exactly the same outcome. In contrast, stochastic processes will

yield different outcomes when repeated. Here, we will focus

solely on deterministic processes.

One may be tempted to conclude that deterministic systems
exhibit only regular behavior and that once a deterministic model
is available, one should be able to predict the system's future
behavior. In cther words, if we know the system's current state,

we should be able to tell the system’s future states at all



times. Although many systems do exhibit regular and predictive
behavior, there are many others that do not. In fact, cthere are
many deterministic systems that exhibit irregular, rardom-like
behavior. Such systems are referred to as chaotic. We
reemphasize that, in the context of this paper, we def:ine chaoctic
systems as deterministic systems that exhibit complex behavior.

One of the characteristics of chaotic systems is high
sensitivity to initial conditions. When a system exhibits high
sensitivity to initial conditions, ever. when we have an accurate
model for that system, we cannot predict its future behavior.
Any smail 1lnaccuracy 1in the initial data, such as may result from
measurement errors, will amplify rapidly and will render any
long-term prediction useless. The possibility of init:ial errors
growing rapidly 1s common to all unbounded systems {linear
systems included) that exhibit exponential growth. Less widely
known 1is the fact that such sensitivity to initial conditions is
exhibited by many nonlinear, bounded systems.

The prominent French mathematician, dynamist, and
astronomer, Henri Poincaré ig credited to be the first to realize
that "“.. 1t may happen that small differences in the initial
conditions produce very great ones in the final phenomena. A
small error in the former will produce an enormous error in the
latter. Prediction becomes impossible, and we have the
fortuitous phenomenon” (Poincaré, 1913). A detailed depiction

of the complex behavior exhibited by chaoctic systems was delayed
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until the appearance of computers that allowed cne to investigate
numerically the behavior of continuous models over relatively
long time intervals and discrete models over many iterations. In
1963, while he was studying various simplified models for the
weather system, the meteorologist E. N. lLorenz observed that a
deceptively simple-looking system of three coupled, nonlinear
differential equations exhibits complex (chaotic) behavior.
Although the scientific community recognized that deterministic
systems may exhibit random-like, turbulernt pehavior, the
prevailing dogma had been that such behavior wculd be exnhibited
only by systems with very many degrees of freedom. Lorenz's work
demonstrated that a system with a relatively small number of
degrees of freedom (as few as three) may also exhibit chaotic
behavior. Although deterministic systems may exhibit random-like
behavicr that resembles the behavior of stochastic (random)
systems, such irregularity results from the system’s intrinsic
dynamics, and not random influences.

The fact that certain systems may exhibit chaotic,
unpredictable behavior has very important practical and
philosophical implications. The lack of predicrability of
chaotic systems cannot be cured by increases in computer and
computational power. No matter how large a computer one would
acquire, the chaotic system will still remain unpredictable over
the long-term. The realization that low-dimension systems may

exhibit chaotic, complex behavior suggests that some complex
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phenomena that appear to be random at first sight may be
describable by relatively low-dimensional mathematical models.
One of the targets of such investigations (apparently with little
Oor no success) has been the stock marke:. Cf course, <“here is no
assurance that the market fluctuations result from chaotic
dynamics. Although the chaotic dynamics defy long-term
predictions, short-term predictions with error estimates can
still made. Furthermore, with an observer that cbhbserves some of
the system’s states, it is possible to devise a state estimator
capable of updating and modifying predictions. Finally, many
chaotic systems are controllable. One can suppress their chaotic
behavior altogether or induce them to behave periodically with
various periods. This leads to the opportunity of extracting
many types of behavior from a single system witn minimal
intervention. Moreover, occasionally it may be beneficial to
induce chaos under conditions when it would normally not occur.
For example, chaotic behavior 1is often associated with high
levels of stirring and mixing which is desirable for
homogenization as well as chemical and bioclogical reactions.
Chaos 1is a ubiquitous phenomenon that crosses disciplinary
lines. The topic has attracted a great amount of attention in
the last two decades. There are a great number of excel.ent and
not so excellent books focused on this topic as well as a number
of professional journals. A month will hardly go by without a

new book or compendium devoted to chaos thecry appearing in



print. There are journals devoted to chaos theory, and hundreds
of research papers on this topic appear annually. The literature
ranges from highly readable non-technical bocks such as Gleick's
(1987) bestseller, and Peitgen and Richter’s (1986) coffee table
images, to the engineering/physics literature and highly
mathematical manuscripts. This paper targets a nrnon technical
audience seeking to obtain somewhat greater exposure than that
offered by the non technical literature, albeit without
inordinate immersion in technical details. To facilitate this
quest, we shall therefore introduce the topic through the
description of two chaotic toys. Although these toys were chosen

from the authors' areas of expertise, the phenomena described and

its implications are generic and cross disciplinary lines. The
first toy - the Lorenz loop - exhibits temporal chacs while the
second toy - the electro-magneto hydrodynamic stirrer - exhibits

spatial chaos.

The Lorenz Loop

The first "toy" is a thermal convection locop. We refer
it as the Lorenz loop because it can be approximately modeled by
the Lorenz equations. In other words, this set-up 1is an
experimental analog of the Lorenz model. Imagine a pipe bent
into a torus (doughnut-shape) and standing in the vertical plane.
See Figure 1 for the schematic depiction of the apparatus.

INSERT FIGURE 1



The tube is filled with liquid (i.e., water) The lower half
of the apparatus 1s heated while the upper half 1s coocled. The
heating and cooling conditions are symmetric with respec:t to the
loop's axis that is parallel to the gravity vecter. As a result
of the heating, the liquid in the lower half of the apparatus
expands, 1its density decreases, and it tends tc risc. When the
heating rate exceeds a certain critical wvalue, irregular flow is
observed in the loop. The flow rate oscillates irregularly 1in
time with occasional reversals of the direction of the flow. We
denote the flow rate as X, the temperature difference between
positions 3 and 9 o'clock across tnhe Loop &s Y, and the
temperature difference between positions 6 and 12 o'clock as Z.
These three variables, all of which are functions of time, are
sufficient to describe the major features of the flow dynamics 1in
the loop. The solid line in Figure 2 depicts the computed flow
rate (X) as a function of time when the heating rate is held
constant at some value.

INSERT FIGURE 2

The documentation of a signal as a function of time as we
did in Figure 2 1is referred to as a time-series. Witness the
irregular, random-looking oscillations, 1.e., periodic motion
about an equilibrium position. Positive and negative values of X

correspond, respectively, to motion in the counterclockwise and



clockwise directions. Let us denote, respectively, the positive
and negative peaks with P and N and document the succession of
peaks and valleys as N°PN®PN2PNPN®P®...... In other words, the abocve
sequence implies two negative peaks followed by a positive one,
etc. This sequence is reminiscent of the random sequence that
one would obtain when tossing a coin and counting the sequence of
heads (P) and tails (N}. Yet, the signal described in Figure 2
is fully deterministic, and there 1is nothing random about it.
Similar behavior to that depicted in Figure 2 has been observed
in experiments. Furthermore, behaviors like the cne depicted in
Figure 2 prevail in many systems. For example, one can think of
X, Y, and Z as representing the fluctuations around a mean value
of the populations of three interacting species.

In Figure 2, we depicted alsoc a second time-geries (dashed
line) . This second time series was generated by the same
mathematical model as the first one, albeit with slightly
different initial conditions. Although the two signals in:itially
stay close to each other, eventually the time series diverge and
exhibit significantly different behaviors. This 1s a result of
the high sensitivity to initial conditions. The divergence does
not continue indefinitely as the system is bounded, and X never
exceeds certain wvalues. Only non-linear systems can exhibit
bounded behavior with high sensitivity to initial conditions or
disturbances. Chaotic Dbehavior can be exnhibited only by

nonlinear systems.
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The time series depicted in Figure 2 seems to lack
structure. Indeed, traditional methods of analyzing time series
such as presenting the data in the freguency domain (Fourier
transform and power spectrum) reveal a brocadband signal lacking
any dominating frequencies. Nevertheless, the signa. deplcted in
this Figure has fair amount of order tc 1it. Tc unravel this
order, we will depict the signal in a space spanned by the
coordinates X, Y, and Z (the phase space). The state of the
system at any instant in time is specified by a point (X, Y, Z)
in phase space. The time evolution of the system is depicted by
a curve (trajectory) 1in phase space. It is useful to think of

the system's state as a particle roaming around 1in space.

INSERT FIGURE 3

Figure 3 depicts the phase portrait of the Lorenz loop.

Witness that the phase portrait of the system has a fair amount

of structure to it. Indeed, there 1s an amazing tendency for
self-organization. No matter what *the system's initial
conditions are, eventually, the trajectories will follow a

similar pattern. The trajectories in Figure 3 appear to lie on a

twisted surface. The feature to which the trajectories are
attracted is called an attractor. Since the structure cf the
attractor depicted in Figure 3 is complicated, it 1is referred to

as a strange attractor. Attractors are present only in




dissipative system, i.e., systems that do not preserve "potential
energy" but dissipate energy such as when friction is present.
In our example, the phase space is three-dimensional, and the
attractor occupies zero volume in the three-dimensional phase
space; so 1its dimension must be smaller than 3. The sheet
occupied by the attractor has a sort of "onion" feature to it, as
1t contains numerous layers. Hence the attractor must have a
dimension larger than 2 (2 is the dimensicn of a surface). This
suggests generalizing the concept o©¢f dimensicn to include
fractional dimensions -known as fractal dimensions. In cur case,
the attractor's fractal dimension is approximately 2.07.

The phase space portrait 1is very useful for obtaining
qualitative information on the nature of the solutions of
differential equations. For example, «closed trajectories
indicate periodic behavior. Barring pathological behavior (which
usually does not occur in physical systems!, evoluricn eguations
have a wunique solution. In other words, once the initial
conditions have been specified, the system will trace a unique
trajectory in phase space. This implies that trajectories cannot
Cross. In two-dimensional space, trajectories cannot intersect
and the most complicated behavior that an autonomous, continuous,
bounded system can exhibit is periodic oscillations. To exhibit
chaotic behavior, continuous autonomous systems must be at least
three-dimensional (three degrees of freedom). Such a restriction

does not apply to discrete systems. Discrete systems lack



continucus trajectories; and points 1in phase space can Jjump

around. In fact, even one-dimensional, nonliinear discrete
systems may exhibit chaotic behavior. One celebrated example of

a one-dimensional, discrete chaotic system 1s the 1loglistic
equation.

The phase sgpace portrait in Figure 3 was constructed using
the mathematical model to compute the trajectories. The
attractor can also be reconstructed based on a time series. One
can carry out measurements and obtain a time series for a single
variable, say X, as a function of time ({t). One then constructs
a "compb" with P teeth placed at distances 1 apart from each
other. Guidelires are available for the range of desirable 1
values. One then slides the comb alorng the <ime axls and

extracts the points at which the comb intersects the curve traced

by the time series (i.e., Figure 2) to cbtain the variables X,
X, e, Xp. These variables are considered tc be the coordinates
of a point in the P-dimensional phase space. The collection of

all these points 1in phase space provides a description of the
attractor. This technique 1s especially useful when the
mathematical model is not known, and one analyzes empirical data
and when the mathematical model has very many degrees of freedom
and one wishes to determine the feasibiliity of describing the
dynamics with a low dimension model. When the dimensicrality of
the dynamic system is not apriori known, the practice is to gtart

with a relatively small value of P, for example P=3, reconstruct



the attractor, and calculate its dimension (3a). Then increase P
gradually, and compute Dy as a function of P. Typically, Dy will
initially increase as P increases. When the time series 1is
generated by a chaotic system, eventually, once P is sufficiently
large, Dp will saturate, achieve a constant value, and will no
longer vary with further increases in P. The value of P beyond
which the fractal dimension no longer depends on P 1s the
estimate of the systems' number of sgignificant degrees of
freedom. The above procedure allows us to test whether a signal
is generated by a chaotic or a stochastic system. In stochastic
systems, there 1s no attractor and D, will keep 1increasing
indefinitely as P increases. Of course, such a procedure 1is
practical only for relatively low-dimension systems. Using this
technique, one can reconstruct different attractors. All of
these attractors, however, are related through smooth
transformations. As funky as this techrique may sound, 1t has
rigorous foundations. TIts practical applications may not always
be straightforward, if only, because measured signa.s may be
contaminated with noise that must be filtered out.

Another way of analyzing the phase space portrait 1s by
documenting the penetration points of trajectories through a
designated surface in phase space.

INSERT FIGURE 4
Figure 4 depicts the penetration points through the plane

Z=Zy=constant. Such portraits are known as Poincaré sections.



At first glance, the Poincaré section appears to consist of line
segments, which would imply that the attractor is confined to a
two-dimensiconal sheet. In fact, when we zoom on the line, we
discover that it consists of a very large number cf closely
packed sheets. The structure appears to pe self-similar 1n the
sense that each additional magnification reveals a structure
similar to the one we saw in the previous magnification. The n-
th penetration in the Poincaré section relates to the previous
one through a two-dimensional map of the form {Xa1, VYai}-> {Xa,
Yal - In effect, the Poincaré section converts the continuous
model to a discrete one, allowing us to make a connection between
continuous and discrete models. Often when a system 1s forced
periodically in time, the Poincaré section will consist of
stroboscopic images (images taken once every per:od] of the
system's state. This is explained in greater details in the next
section.

Although chaotic systems defy long-term predictions, short
terms predictions are possible. One can estimate the rate of
divergence of the trajectories. This rate of divergence 1s known
as the Lyapunov exponent and one can estimate the prediction's
error as a function of the error in estimating the initial state
and the estimation time interval. Moreover, with the aid of an
observer, the state of the chaotic system can be estimated 1n the
presence of disturbances and uncertainty in initial condit:ions.

The observer continuously monitors one or more of the state



variables or some other state-dependent measurant. The system's
behavior is estimated with the aid of its mathematical mcdel plus
an extra term (filter) that is a function of the difference
between the actually measured and the predicted wvalues.

Finally, chaotic systems are controilable. With the use of
a feedback controller, one can suppress the chaotic behavior
completely, and obtain time-independent behavior (i.e., when one
depicts X as a function of time, one wculd obtain a nearly
straight horizontal line). See Singer et al., (1991). In fact,
the chaotic attractor contains numerous ncn-s:table, periodic
orbits of wvarious periodicities. It is possible to use a
controller to stabilize any desired period. Thus, one can cbtailn
very many types of behaviors from a single chaoctic system. For
example, researchers have determined that the irregular beatings
of the atrial chambers of the heart are chaotic. Through the
application of electrical stimulli in a feedback mcde, they were
able to control the cardiac arrhythmia 1n a rabbit. Similarly,
apparently chaotic electrical patterns characteristic of
epileptic behavior in the rat brain tissue (cf. paper Dby Gur,
Contreras, Gur) have been controlled with the aid of a feedbacx
controller.

0f equal interest 1is the problem of using a controller to
induce chaos 1n systems that are naturally well Dbehaved
(laminar} . Chaotic systems usually exhibit efficient stirring.

Efficient stirring is desirable 1in chemical and biological



reactions. We shall explore the use of chaos to induce steering
in the next section and this will give us the opportunity also to

encounter spatial chaos.

The Magneto Hydrodynamic Stirrer

The magneto-hydrodynamic stirrer <consists ¢f a clrcular
cavity with an electrode C deposited around its periphery. Two
additional electrodes A and B are deposited eccentrically inside
the cavity on the cavity’s bottom. See Figure 5.

Insert Figure 5

The cavity 1s positioned in a uniform magnetic field that is
parallel to the cavity’s axis, and it 1is filled with a weak
electrolyte solution such as saline so.ution. When a potential
difference is applied across electrodes A-C, where A 1is positive
and C 1is negative, electric current will flcw in the solution
between the two electrodes. The interaction between the current
and the magnetic field results in Lorenz fcrces that, in turn,
induce, say, counter clockwise flow circulation in the cavity.
The motZon can be traced by seeding the liguid with small
particles. The trajectories of some of such particles are
depicted in Figure 6. We refer to this flow patterr as pattern
A. When we apply a potential difference across electrcdes B-C,
where B 1is negative and C 1s pogitive, now a clockwise

circulation will be induced around electrode B. We refer to this



flow pattern as pattern B. We operate the device by alternately
engaging electrodes A-C and C-B with a period T. Each electrode
pair is engaged for a time interval equal to half the period.

Insert Figure 6

Figure 7 depicts stroboscopic images (Poincaré sections) of
the tracer’s location at the end of each period. When the
alterations are at high frequency (Figure 7a), the tracer tracks
a trajectory that is nearly a superposition of patterns A and B.
At moderate values of T (Figure 7b), one observes the appearance
of irregular chaotic islands. When T is further increased, the
chaos spreads into the entire cavity (Figure 7c¢).

Insert Figure 7

The chaotic behavior 1s characterized by the irregular
spread of points. Witness that the chactic behavicr is induced
by alternating two regular flow patterns of the types depicted in
Figure 6. This phenomenon is known as Lagrangian chaos. In
contrast to our first example where the chaotic behavior was
temporal; here the chaotic behavior 1is gpatial. The other
features of chaos such as high sensitivity to initial conditions
are also present here. In other words, if we place twc tracer
particles nrext to each other, their trajectories will markedly

diverge as time goes by.



To see additional features of the chaotic advection, we wiil
trace the evolution of a trace of dye introduced into the fluid
when the period T is relatively large (same period as 1in Figure
7). In Figure 8a, we place a black blob inside the cavity.
Figures 8b, 8c, 8d, 8e, and 8f depict, respectively, the same
material blob after 10, 20, 30, 40, and 50 zime pericds. Witness

that the flow stretches material lines (Figure 8p]

INSERT FIGURE 8

Since the flow 1is bounded (confined to the cavity), the
stretching cannot continue indefinitely and the material lines
are forced to fold. The process increases the interface between
the two materials and this is why chaotic flows prcvide for
efficient stirring. The process depicted in Figure 8 1s governed
by kinematics alone, and it does not 1include any molecular
diffusion. This process of continuous stretching and folding 1is
characteristic of chaotic dissipative systems and it 1s also

present in the Lorenz attractor.

Beyond Physics and Engineering

So far, we have discussed concrete cxamples taken from the
world of engineering and physics. Eariier 1n the paper, we
hinted about possible extensions to biological and social

systems. Indeed, biology, £finance, economics, and soclal
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phenomena yield complex time and spatial evolutions that often
appear to be stochastic and unpredictable. It 18 natural to
wonder whether such phenomena can be attributed to endogenous
(intrinsic) mechanisms (described with deterministic models} or
exogenous influences (described by stochastic noise;j. Although
in these systems, the driving forces are quite different (and
often more difficult to discern) than in physical systems, the
patterns of behavior are often phenomeno_ogically similar to the
ones displayed by deterministic chactic systems. Indeed, Dynamic
System Theory crosses disciplinary lines.

For many years, biologists and population dynamists have
been aware of population fluctuations. As early as 1926,
Volterra proposed a simple predator-prey model to explain the
annual fluctuations of certain £fish cactches 1in the Adriatic.

Perhaps the simplest model of population dynamics is the one that

describes the evolution of a single species. Let X, denote the
number of members of a certain species at generation (n}. With
appropriate normalization (0<Xp< 1, l<h<4), tne number of
individuals in generation (n+1), X1, is modeled as
Xnaa= ANXp(1-X,). In the above, the first term represents the
growth rate. When X, 1is small, the growth rate 1is nearly a
linear function of X,. When X, 1is relatively large, limited
resources and crowding check the size of the population. The
above equation is known as the discrete logistic map. It 1s easy

to iterate this egquaticon on a hand-neld calculator and observe



the various patterns that evolve for wvaricus values of
Clearly, the size of the population is bounded (0<X.<1). As A

increases, the population's evolution patterns vary from time-

independent to time-periodic, with wvarious periodicities to

chaotic (irregular) behavior; that is <o say, with high
sensitivity to initial conditions. Tre logistic model can be
readily enriched (and made more complicated) by including

interactions between two or more competing species, as 1in the
predator-prey model. It is perhaps not surprising that mcdels of
population dynamics have been used with various degrees of
success to study, among other things, the cause and spread of

epidemic outbreaks and the effectiveness of vaccinations.

Analysis of Economic Data - An example of An Application

Models similar to the ones used in population dynamics have
been utilized also to simulate various economic phenomenrna such as
the relationships between prices and commodity guantities,
capital growth, and business cycles. Business cycles, for
example, are often likened in their unpredictability to turbulent
flow. Nonlinear mathematical models can duplicate complex
behaviors qualitatively, in ways similar to those observed in
economic systems. This, however, does nct necessarily Imply that
economic systems are chaotic, in the sense c¢f deterministic
chaos. For example, Forsyth (1994) claims that the behavior of

the international financial market in the 1990s 1is remarkably



similar to the behavior of local markets in the 18%0s, suggesting
a possible deterministic pattern.

Recognizing the existence of deterministic chacs in economic
data is important from both theoretical and practical points of
view. From the theoretical point of view, knowing that a system
is chaotic may assist in constructing mathematical models, which
would provide a deeper understanding of the underlying dynamics.
From the practical point of view, such a model may facilitate
process control and, 1n some cases, short-term predictions. The
high sensitivity of chaotic systems to small perturbaticns makes
long-term predictions impossible. Nevertheless, in some cases,
short-term predictions within estimable error margins are not
beyond the realm of possibility.

Weak-form market efficiency has long beer the subject of
empirical scrutiny. The weak-form market efficiency hnypothesis
states that future securities prices cannct be predicted from
current and past price and market information. This hypothesis
suggests that investors cannot reliably earn abnormal returns
merely by looking at universally availlable infermaricn. liowever,
the weak-form market efficiency should not be confused with the
wrandom walk” theory of market efficiency (Fama, 197C). Random
walk theories maintain that stock returns are identically and
independently distributed, and that the sole indicator of Ifuture
prices is the current price. Unlike random walk theories, weak-

form efficiency does not claim that stock returns are stochastic



o
8%

given all unobserved information. It does claim that stock
prices are stochastic, under only past price and market data
information.

The most basic test of the weak-form efficiency hypothesis
is autocorrelation. This test fits the time-series of excess
returns to a linear regression model. The excess return is equal
to the actual minus the expected return, which is determined from
models such as the Capital Asset Pricing Model (Fama and MacBeth,
1973).

Autocorrelation studies strongly support the weak-form
market efficiency theory. Cootner (1974) studies the

relationship between forty-five U.S. stock returns, over one and

fourteen weeks respectively, and finds no significant
correlation. Meanwhile, some studies do show some small
correlation between successive daily returns. For exarple, Fama

(1965) finds a correlation coefficient of 0.026 for a period of
one day. Lo and MacKinlay (1988) and Conrad and Xaul {1988) have
performed correlational studies on portfolig stocks. They find
that weekly returns of large-cap stock portfolios show almost no
correlation, whereas as much as nine percent of the weekly return
of a portfclio of smaller stocks can be explained by the return
of the previous week. The higher correlation amorg small-stock
portfolios may result from infrequent trading.

Another tool of technical analysis is the filter rule. This

class of rules states that, for a given security, the price



2
(o8]

fluctuates between two barriers arcund some “fair” price. When
new information comes to the market, however, the fair price and
range may shift to a new equilibrium. A shift o a new
equilibrium 1is signaled by a breakout through one ©0f the
barriers. Technical analysts claim that, when such a breakout
occurs, investors should buy the stock teo capitalize on the
impending gains or sell the stock to avoid further losses.

Besides the conventional approaches, a number of useful
tools were introduced to test the hypothesis, such as the run
test and the filter rule. Fama and Blume (19%66) have studied a
number of possible filter sizes. Althcugh a wvery srall filter
can outperform a buy-and-hold strategy over time, transaction
costs make such a strategy unprofitable since 1t requires
frequent buying and selling. This is consistent with the small
daily correlation. In summary, although technical analysts claim
that their techniques can earn abnormal profits, the evidence
does not support their presumption cof market efficiency.

It is clear that the preponderance cof traditionral measures
support the weak-form market efficiency hypcthesis. This 1is
particularly true since transaction costs wouid eliminate
whatever small excess profits can be earned by studying past
price movements. Thus, it appears that, given only universally
available price and market data, stock ©prices are 1indeed

unpredictable.



In the last few decades, scientists in the natural sclences
have recognized that many processes that were previcusly thought
to be stochastic are actually chaotic (see papers by Domotor &
Batitsky, and by Domotor). Even low-dimension nonlinear systems
can produce stochastic-like behavior. This suggests that some
time-series of economic processes may appear random but are
actually chaotic, possibly contaminated by random ncise.

The embedding theorem provides a procedure for recesigning
(embedding) the system’s trajectories in phase space from the
observation of a single signal. The redesigned phase space
portrait is the topological equivalent to the exact one. Since
deterministic chaos occurs 1in a finite-dimension space while
random noise does not, this algorithm vprovides the means to
distinguish between the deterministic, but apparently disordered,
behavior of a chaotic system and a truly random one. When the
data represents a chaotic system, the attractor's dimension will
initially increase as the embedding space dimensicn increaseg,
eventually attaining an asymptotic value. In contrast, when the
data represents a truly random system, the attractcr's dimension
will continue to increase as the embedding space dimension
increases.

We mentioned earlier that the Lyapunov exponent indicates
the rate cof divergence of the trajectories. The existence of a
positive Lyapunov exponent is often used as an indication of

chaos. A problem in estimating Lyapunov exponents 1s that



commonly used algorithms require a large number of observations.
Since few economic series of such large size are available,
Lyapunov exponent estimates of economic data may not be so
reliable.

Researchers have applied tools of dynamic system analysis to
economic data. A study by Frank, Gencay, and Stengos (1988),
demonstrates that the correlation dimension of quarterly GDP data
since 1960 for Italy, Japan, the UK, and West Germany 1increases

monotonically as a function of the embedding space dimension less

than 15. They have also found that the largest Lyapunov
exponents for their data were negative in most cases. Hence,
they conclude that there 1s no evidence of deterministic chaos in
their data. Frank and Stengos (1988), too, have computed

negative Lyapunov exponents for Canadian macroeconomics series,
and have found no evidence of deterministic chaos.

Bajo-Rubio, Fernandez-Rodriguez, and Scosvilla-Rivero (1992)
have since examined the Spanish Peseta-Dollar spot and forward
exchange rates at various periods. They corputed the correlation
dimensions as a function of the embedding space dimension (less
than 12) as well as the Lyapunov expcnent of the series. They
observed that the correlation dimension achieves an asymptotic
value between 2 and 3 and that the largest Lyapuncv exponent 1s
positive. This constitutes evidence of chaotic behavior. Using
their model, the authors sought to predict also cf the one- and

three-month forward rates, but these vyielded root mean sqguare



errors lower than those obtained from forecasts from a random-
Qalk model. One may conclude therefore that evidence of chacs in
economic data 1is inconclusive.

Motivated by the study of 1linear systems, a frequent
starting point when analyzing time-series 1s the construction of
the power spectrum, such as the one seen in Figure 2, which 1is
equivalent to the computation of the autocorrelation. The power
spectrum may assist in the discovery of pericdic or quasi-
periodic behavior. Saligari and Snycer (1997) find that,
although the model is generally not useful in fcrecasting the
underlying long-run trend, it may be advantageous for short-term
predictions of the data. In linear systems, modes 1in the power
spectrum correspond to generalized degrees of freedom of the
system, and broad-band power spectra are generated by an
infinite-dimensional system. This 1s not %true, however, 1in
nonlinear systems; some low-dimension chaotic systems may well
exhibit broad-band power spectra.

In order to determine whether the economy is chaotic or not,
once we utilized methods of dynamic systems to analyze the dailly
returns of nine major stock indices (Shachmurove, Yuen, and Bau,
1999) . Our group tried to test the weak-form market efficiency
hypothesis in a new way Dby attempting to find low-order
deterministic chaos in stock price data. The data analyzed by us
included the stock indices of Canada, Europe-14, Eurcpe excluding

the UK, World excluding USA, France, Germany, Japan, the UK, and
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the USA, during the period from January 1, 1982, to September 5,
1997. For the purposes of our report, we analyzed the relative
daily changes in the stock price indices expressed in
percentages. We calculated the ©percentages Irom returns
converted to U. S. Dollars (Shachmurove, Yuen, and Bau, 1992).
The power spectra of the daily returns of stock price indices
were depicted as a function of frequency (see Figure 9;.

INSERT FIGURE 9

Note that all of the daily returns nave a broad-band power
spectrum, which implies lack of periodicity 1in the data.
Although this type of power spectrum is consisten:t with random
behavior, it is also common to many chaotic systems; for example,
in the logistic map (Gershefeld, 1988).

Figure 10 depicts the probability distribution function as
obtained from histograms of the daily returns of the stock price
indices. The horizontal axis represents the daily return, and
the vertical axis represents the probability of obtaining this
return.

Insert Figure 10

The figure indicates that all the daily returns of stock
price indices are nearly Gaussian, having a Dbell-shaped

distribution. Although the Gaussian probability distribution 1is



common in many stochastic processes, it is also exhibited by some
chaotic, deterministic systems.

Figure 11 depicts the information dimension, D71, of the
daily returns of the stock price indices, expressed in US

dollars, of different exchanges as a function of the embedding

dimension, n. Briefly, the embedding space is divided into N(g)

n-dimensional cubes with edge size €. One counts the number of

points in each cell, to obtain an estimate of the probability
(pi) of finding a point in cell (i). The information dimensicn

is defined as:

N{e)
p; log(p,
}l )O(Z ]

= log(e)

For a more detailed exposition of the information entropy see
Shannon (1348 . The largest 11-k wvealue sets are used in the
construction of Figure 11. The information dimension obtained
using the largest k-sets 1is generally considered toc be less
susceptible to noise and therefore more reliable. The wvertical
bar represents the root mean square (rms) of the oscillations in
Di. Due to the smallness of the rms, the vertical bars are not
always visible.

INSERT FIGURE 11

Note that, as (n) increases so do (D7) and the rms of

oscillations 1in Dr. For example, as n incrcases from 1 to



the rms of the oscillations in D1 for the Canadian stock price

index increases from 0.01 to 0.49. In many cases (Figures lla,
b, e, and g), D1 approximately equals n, i.e., the curve nearly
follows a 45-degree line.

The dimensions of the German (Figure 11f; ancd USA (figure
11i) daily returns appear to approach an asymptote at a large
value of n. Once larger embedding dimensions are included in the
analysis, however, the information dimension of the German and
USA indices increases further. Figure 11 as a whole, indicates
that the daily returns of all the stocks' price indices are
either random or a result of a high-dimensior, deterministic
process.

Thus, the results indicate that the daily returns are not
governed by a low-dimension, deterministic system. Eowever, due
to the limited number of data points, the results shculd be
considered as indicative and tentative. In order to have a more
reliable estimate for large embedding dimensions a much larger
data set would be required. This finding is consistent with the
weak-form market efficiency hypothesis. The weak-form market
hypothesis states that prices of future securities cannot be
predicted from current and/or past price and marxet information,
and thus investors cannot reliably earn abnorma. returns merely
by examining such publicly available information. Panas and
Ninni (2000) have arrived at similar conclusions when anralyzing

oil futures.
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Like physical systems, economic systems represent the
aggregate of a vast number of individual, possiply random,
actions that allow for statistical generalizat:ions. E_ementary
particles, however, obey laws of physics that do not change over
time. In contrast to physical systems, peoples’ choices reflect
perceived needs and desires that do change over time. These
preferences are influenced by many factors such as new inventions
that lead to new options, changing value systems and political
structures, and government regulations. Whether one can construct
a model that accounts for this added complexity 1s an open
question (see papers by Krippendorff and also by Reiner, Teune

and Tomazinis).

Summary

Before the advent of chaos theory, 1t was believed that
complicated, stochastic-like behavior could be generated only by
complicated mathematical models with large nurbers of degrees cof
freedom (i.e., models consisting of partial diffecrential
equations such as the Navier-Stokes egquations or a large number
of ordinary differential equations) and/or by stochastlic gsystems.
Perhaps one of the most exciting consequences of dynamic system
theory is the realization that relatively simple dynamic systems,
which can be described by just a few non-linear, ordinary
differential or diftference equaticns, can exhibit very

complicated, stochastic-like behavior.



This observation gives hope that, in some cases, complicated
dynamic behavior can be formulated by low-dimensional
mathematicail models (i.e., a relatively smail numbexr of
equations) . The possibility of low-dimensional modeling cof
complicated behavior has tremendous practical applicaticns. Low
dimension models allow us to simulate processes inexpensively;
they enable us to gain insights into the underlying physical
mechanisms, and assist us in identifying important wvariables in
processes; not least, they guide us in devising strategies to
control these processes.

OCne cf the hallmarks of chaotic systems is their sensitivity
to initial conditions and small perturbations (noise). When one
is modeling real systems, the initial conditicons are not
precisely known and all real systems are subiect to perturbations
and noise. Hence long term prediction of the detailed behaviocr
of a chaotic system 1is impossible. The lack of long-term
predictability is a fundamental property of chaotic systems just
as the uncertainty principle 1s a cornerstone of gquantum
mechanics. One of the practical implications is that when one
deals with chaotic systems, the availability  of large
computational resources will not enable one to generate long-term
predictions. In the context of meteorclogy, for examp.e, 1f the
weather system is chactic (as many believe it to be), long-term
weather patterns may well remain unknowable and indeterminable,

after all.
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LIST OF CAPTIONS

1.

2.

10.

Schematic description of the Lorenz loop.
The flow rate (X) in the loop is depicted as a function of
time. The figure depicts two time-series with slightly

different initial conditions.

. The chaotic attractor constructed in three-dimensional phase

space.

. Poincaré section of the <chaotic attractor depicted 1in

Figure 3.

. A schematic description of the magneto-hydrodynamic stirrer.

The cavity C contains electrolyte solution. A, B, and C are

electrodes. The magnetic field is directed out of the page.

. The flow field (streamlines) in the cavity when a potential

difference is imposed across electrodes A-C.

. Poincaré sections (stroboscopic images) obtained by following

passive tracers when the period is small {left), intermediate

(middle), and large (right).

. The deformation of a material blob at wvarious =imes t=kT.

t=0, 10T, 20T, 30T, 40T, and 50T.

. The power spectra of the daily returns of gtock price indices

are depicted as functions of frequency. (a): Canada; (b):
Europe-14; (c): Europe Excluding the CTUK; (d): World Exciuding
USA: (e): France; (f): Germany; (g): Japan; (h): UK; (1): USA.

The probability distribution functions of the daily returns

of stock price indices are depicted as functions of the daily



11.

return. (a): Canada; (b): Europe 14; (c): Eurcpe Excluding
the UK; (d): World Excluding USA; (e}: France; (I}: Germany;
(g) : Japan; (h): UK; (1i): USA.

The information dimension, D;, of the daily returns of stock
price indices, expressed in US dollars for each stock exchange
(a to 1) respectively, 1is depicted as a function of the
embedding dimension, n. The largest 11-k value scts were used
in the construction of the figures. The wvertical Dbar
represents the root mean squared (rms) of the cscillations in
D;:. (a) : Canada; (b): Europe-14; (c): Europe Excluding the
UK; (d): World Excluding USA; (e): France; (f): Germany; (g):

Japan; (h): UK; (1): USA.
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Fig. 5: A schematic description of the magneto hydrodynamic
stirrer. The cavity C contains electrolyte sclution. A, 3B, and
C are electrodes. Tne magnetic field is directed out of the

page.

Fig. 6: The fliow field (streamlines) in the cavity when a

potential difference 1s impocsed acrcss electrcaes A-C.
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