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Abstract

This paper studies multilateral negotiations among n players in an environment where
there are externalities and where contracts forming coalitions can be written and renego-
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fers, and we focus on the stationary subgame perfect equilibria, which jointly determine
both the expected value of players and the Markov state transition probability that en-
codes the path of coalition formation. The existence of equilibria is established, and
Pareto efficiency is guaranteed if the grand coalition is efficient, despite the existence of
externalities. Also, for almost all games (except in a set of measure zero) the equilib-
rium is locally unique and stable, and the number of equilibria is finite and odd. Global
uniqueness does not hold in general (a public good provision example has seven equi-
libria), but a sufficient condition for global uniqueness is derived. Using this sufficient
condition, we show that there is a globally unique equilibrium in three-player super-
additive games. Comparative statics analysis can be easily carried out using standard
calculus tools, and some new insights emerge from the investigation of the classic apex
and quota games.
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1. INTRODUCTION

In this paper we study multilateral negotiations among n players where contracts
forming coalitions can be written and renegotiated, and where the formation of coali-
tions may impose externalities on other players. What is the path of coalition forma-
tion? What is the value of players? This paper develops a new non-cooperative model
of coalitional bargaining that provides answers to these two fundamental questions in
€conomics.

The externalities present in the environment are described by a set of exogenous
parameters, conveniently expressed using a partition function form. The partition
function form assigns a worth to each coalition depending on the coalition structure
(or collection of coalitions) formed by the remaining players. This general formulation
is valuable because it can address situations in which the formation of coalitions
impose positive or negative externalities (see also Ray and Vohra (1999), Bloch (1996),
and Jehiel and Moldovanu (1995)).

Our multilateral negotiation procedure follows the traditional approach of using
a dynamic game with complete information where at each stage a player becomes
the proposer (such as Selten (1981), Chatterjee et al. (1993), Hart and Mas-Colell
(1996), and Ray and Vohra (1999), among many others). Proposers make offers to
form coalitions with a certain sharing of the coalitional value, followed by players
who have received offers making their response whether or not to accept the offer.
However, in contrast with most of the bargaining literature, here contracts forming
coalitions can be renegotiated, so a coalition may continue actively seeking profitable
deals with other players or coalitions after forming (a few other models also consider
renegotiations: Gul (1989), Seidmann and Winter (1998), and Jehiel and Moldovanu
(1999)).

The equilibrium concept used is stationary subgame perfect Nash equilibrium or
Markov perfect equilibrium (MPE) where the set of states are all possible coalition
structures. The MPFE solutions characterize, jointly, both the expected equilibrium
value of coalitions, and the Markov state transition probability that describes the

path of coalition formation. Thus, the equilibria provide answers to both questions



we posed, and our goal is to develop a thorough analysis of the equilibrium properties.

We begin by establishing the existence of equilibria for all games. The equilib-
ria exhibit desirable efficiency properties: the equilibrium is Pareto efficient if the
grand coalition is efficient and frictions (delay between offers) are insignificant. The
Coasian conjecture that an efficient outcome should eventually emerge thus holds in
our model, despite the fact that there can be widespread externalities in the economy
(generalizing Seidmann and Winter’s (1998) result for economies with externalities).
In contrast, Jehiel and Moldovanu (1995, 1999) find that the Coasian conjecture fails
to hold in the case of sale of an indivisible good where buyers impose negative ex-
ternalities on other buyers (note that this problem can also be represented using
partition function forms); this paper points out that the reason such failure occurs
in Jehiel and Moldovanu is the lack of ability to write an efficient grand coalition
contract. Furthermore, it is important to note that the ability of coalitions to rene-
gotiate is critical for the Pareto efficiency result. For this reason, the equilibrium
in non-cooperative models of coalitional bargaining in which coalitions are forced to
leave the game is not Pareto efficient (even if grand coalition is efficient and frictions
are insignificant).

The practical interest and applicability of our multilateral negotiations model
hinges upon, to a great extent, whether or not one can compute the equilibria using
efficient numerical methods. We show that the problem of finding equilibria is equiv-
alent to finding solutions of a mixed nonlinear complementarity problem (MNCP).
Such problems have been extensively studied in the mathematical programing liter-
ature (see Harker and Pang (1990) and Cottle, Pang, and Stone (1992)), and several
numerical algorithms have been developed. Hence, the computation of equilibria is a
task that can be undertaken using several proven numerical algorithms.

We proceed by showing that for almost all games (except in a closed set, of measure
zero) the equilibria are locally unique and locally stable. These properties imply that
the predictions of the model about both the expected payoffs of players and the
path of coalition formation are sharp, in the sense that, at least locally, they are
unique and robust to small perturbations of the exogenous parameters of the game.

Moreover, the number of equilibrium solutions is finite and odd for almost all games.



Thus we extend to multilateral bargaining models similar results that hold for other
well-known economic models such as Walrasian equilibrium of competitive economies
(Debreu (1970)) and Nash equilibrium of n-person strategic form games (Wilson
(1971) and Harsanyi (1973)).

Interestingly, global uniqueness of equilibria does not hold, and we provide an
example of a game with multiple (seven) equilibrium solutions. Nonetheless, we derive
a sufficient condition for the global uniqueness, and argue that this sufficient condition
is weak and is likely to be satisfied by a large class of games. Along these lines, we
prove that the sufficient condition holds for three-player coalitional bargaining games
if the grand coalition is efficient (which includes the class of superadditive games),
and thus there is a globally unique equilibrium for a general class of three-player
games (see also Gomes (2000)).

We demonstrate the applicability of the model analyzing two classic games—apex
and quota games (see Shapley (1953), Davis and Maschler (1965), and Maschler
(1992))-games for which there are also results from experimental studies. Comparison
of the equilibrium payoffs predicted by our model with established solution concepts
from cooperative game theory, such as the nucleolus, bargaining set, kernel, core,
and Shapley value, shows that our predictions are different than all other cooperative
solution concepts. Our cursory look at the experimental results provides support for
the predictions of our model with respect to both payoffs and coalition formation.
A point worth noting is that our model allows for a more comprehensive empirical
analysis than cooperative models, because it predicts not only the payoffs but also
the dynamics of coalition formation.

How do the equilibrium value of players and the path of coalition formation change
as a result of changes in exogenous parameters such as the partition function form
and the probability of being the proposer? Knowing how to address these questions
is of considerable practical interest to negotiators, as they, for example, may be able
to invest in changing the likelihood of being proposers in negotiations. We show
how to answer these questions using standard calculus results (the implicit function
theorem), which provides a powerful tool for quickly answering comparative statics

questions by simply evaluating Jacobian matrices at the solution. We illustrate the



applications of the technique using the apex and quota games, and some interesting
insights emerge. Surprisingly, a player sometimes may not benefit by investing in
obtaining more initiative to propose in negotiations, because other players may adjust
their strategies in such a way that lead the proposer to be worse off. The analysis
also suggests several interesting regularities: when the exogenous value of a coalition
increases, both the equilibrium value of the coalitional members and the likelihood
that the coalition forms increase as well.

Finally, we also explore the role of agents’ ability to credibly commit to leave the
game. As Ray and Vohra (1999, 2000) point out, this commitment is economically
relevant in situations where there are externalities. Ray and Vohra show that in public
good provision problems inefficiencies may arise as a result of players’ commitment
ability: the first player who is given a chance to leave the game may want to do so
when it is in the best interest of the remaining players to provide the public good
after a player has irrevocably left the game. Such type of behavior is not possible in
our model, as agents lack the commitment ability to leave the game.

The remainder of the paper is organized as follows: section 2 presents the nego-
tiation model; section 3 addresses the existence and efficiency of equilibria; section
4 shows how to compute the equilibria; section 5 develops the local uniqueness, sta-
bility, and genericity properties of the equilibria; section 6 includes the examples;

section 7 addresses the number of equilibrium solutions; and section 8 concludes.

2. THE MODEL

Let N = {1,2,--- ,n} be a set with n players. Negotiations are modeled as an infinite
horizon complete information game. All players have the same expected intertemporal
utility function and are risk-neutral and have common discount factor é € (0, 1): thus
their utility over a stream of random payoffs (z;);, is D ooy 6'F ().

Contractual agreements can be written among any subset S of players, creating
a coalition S. A coalition structure (c.s.) m = {Si,...,Sm} is a partition of the
set of players N into disjoint coalitions Sy € =, and II is the set of all coalition

structures. The underlying economic opportunities are given by a partition function



form v = (v; (7))zen, where v; (r) € R.! The partition function represents the
exogenous parametzglzrs, concisely described in vector form, and details the aggregate
utility flow received by coalition ¢ belonging to coalition structure 7 during one period
of the game. Specifically, given that the prevailing c.s. is 7, then coalition ¢ € =
receives a utility flow equal to (1 — 8) v;(7) (we multiply by (1 — §) to normalize the
payoffs, so that, if the game stays at c.s. 7 forever, the worth of coalition i is v;(7)).

Observe that the partition function form allow us to capture the existence of
externalities associated with the formation of coalitions, as the value v;() of coalition
i depends on the c.s. formed by players N\i. The traditional characteristic function
form corresponds to the special case of the partition function where v; = v;(7) = v;(7’)
for all partitions 7w and 7’ with i € = N «'.

Once a coalition S forms all players : € S give up all their decision making to
coalition S, who acts as a player (or principal) whose objective is to maximize the
aggregate expected utility of the coalitional members. Moreover, after coalition S
forms we allow for this contract to be renegotiated, so that further coalitions among
S and other players (or coalitions) can also be written. Of course, an integral part
of the contractual agreement creating coalition S is a rule specifying how the value
created by the coalition is to be shared among the coalitional members for every
possible state of the world in the future. This sharing rule can be very complex,
especially given the fact that the coalitional value is contingent on the c.s. formed by
players in N\S. However, any sharing rule, regardless of how complicated it is, ends
up giving each player j € S a share «; of the expected value of coalition S, where
> jes@j = 1 (see Ray and Vohra (1999) for an alternative approach to deal with
games with externalities). Therefore, without any loss of generality, it is enough to
concentrate on the simple sharing rule that gives each player j € S a fraction «; of the
value created by coalition S in all future states of the world.? In our model, players
are farsighted and, when forming a coalition, take into account both the sharing rule

and the coalition’s expected value.

!For notational simplicity, we typically denote coalitions (or players) by the symbol i.
ZNaturally, the players j in coalition S receive a fraction «; of any payoffs received by coalition
S, including payoffs received by coalition S if it later expands.



The game starts at the node where the n players have not yet formed any coalitions
(cs. {{1},...,{n}}). The coalition bargaining game is the dynamic game with the
following extensive form: Say that at the beginning of a certain period of the game the
c.s. is m. One of the coalitions (or players) i € 7 is randomly chosen with probability
pi(m) to be the proposer (the only restriction is that p;(7) > 0 and >, pi(7) =1).3
Player i then proposes to form coalition S C 7 including himself (i.e., ¢ € S) and

jes» where 37
order of response is not important, and may be either simultaneous or sequential) by

offer a sharing rule o« = (o) a; = 1. Players in S respond (the

jes
either accepting or rejecting the offer. If the offer is accepted by all players in .S then

coalition S forms and the new c.s. is S where

78 = {Ujesj} U (7\S), (1)

which is a coarser partition of N than 7 (for example, if 7 = {{1,2},{3,4},{5}}
and coalition ¢ = {1,2} proposes to form coalition S = {{1,2},{3,4}} C 7, then
©S = {{1,2,3,4},{5}}). Otherwise, if any of the players in S rejects the offer then
no coalition is formed and the c.s. remains equal to 7. After a lapse of one period
of time, the game is repeated starting with the prevailing c.s. with a new proposer
being randomly chosen as just described.

Our notion of equilibrium is stationary subgame perfect Nash equilibrium or Markov
perfect equilibrium (MPE), where the set of states is all the coalition structures. A
strategy profile o is an MPF if it is a subgame perfect equilibrium and the strategies
are such that they depend only on the current coalition structure and the current
proposer, but neither on the history of the game nor on calendar time.

So far we have described the time discounting version of the negotiation model.
Generalizing the two-person bargaining of Binmore, Rubinstein, and Wolinsky (1986)
to multilateral negotiations, we derive a variation of the model in which players are
indifferent to the passage of time but face the probability of exogenous breakdown

of the negotiation process. Say that during every period of the game there is a

3Three specifications for the proposer probabilities that have been used in the literature are: (i)
;i (m) = ﬁ (proposers are chosen with equal probabilities), (ii) p; (7) = %l (proposers are chosen

with probabilities proportional to the coalitional size), and (iii) p; () = 1 for some i € 7.



probability (1 — ¢) that the negotiation process stops at the current period with the
prevailing c.s. (and a probability § that negotiations continue). In addition, say that
if negotiations stop with a c.s. 7 the value of coalition i € 7 is v;(7) (the utility v; ()
is interpreted as a fixed payoff rather than a flow of utility). The game with this
specification and the same extensive form as described above is the exogenous risk of
breakdown version of the coalitional bargaining game.

The coalitional bargaining game (v, p, §) is the dynamic game with either the time
discounting or exogenous risk of breakdown versions, where (v, p, §) are the exogenous
parameters, respectively, the partition function form, the proposer probability, and
the discount rate or the probability of exogenous breakdown of negotiations. Even
though having both the time discounting model and the exogenous risk of breakdown
model available is useful in applications, as one of the interpretations may be more
appropriate for a particular situation, it is easy to show that both versions have ex-
actly the same set of equilibria (see section 3.1). For this reason, we focus throughout

the paper on the time discounting version of the model.

3. EXISTENCE AND EFFICIENCY OF EQUILIBRIA

3.1. Existence

Before establishing the existence of equilibria, we derive some general properties that
must be satisfied by any Markov perfect equilibrium. Suppose that we are given
an MPE, and let the variables ¢,(7) represent the expected equilibrium outcome of
coalition (or player) i € m when the c.s. is 7. What is the expected equilibrium payoff
of player 7 in the subgame starting in the rejection node with c.s. equal to 77 Player
i’s utility in the current period is the flow (1 — 6)v; () ; his utility in the subgame
starting next period with the proposal stage is ¢,(m) (because this subgame is just
like the original game and the equilibrium is stationary), which has a present value

equal to 8¢, (). This implies that player i’s expected utility is equal to

x; (m) = 8¢, (m) + (1 — &) v; (7). (2)



By the same reasoning, the value of a coalition S that has just formed is zg(7S).*

In the interpretation with exogenous risk of breakdown, player ¢’s expected utility
in case of rejection is also z; (), and the value of coalition S is also zg(7.S). For this
reason, and due to the results of lemma 1, the MPFE solutions of the model with time
discounting and exogenous risk of breakdown are exactly the same.

Now let us consider what is the best response strategy of a player receiving an
offer. Say that player i € 7 receives an offer (S, (O‘i)ies) where S C m and ¢ € S.
Player i’s best response is simply to accept the offer if and only if the value of the
share a; of the coalition S, which is worth ¢; = a;z¢(7wS), is greater than or equal
to the value z; (m) that player i can obtain if he rejects the offer. Thus player i
accepts the offer if and only if t; = a;zg(7S) > z; (7), and the best response strategy
of a player proposing an acceptable offer to player i is to offer him a share worth
t; = x; ().

In addition, the best response strategy of a proposer j is to offer to form coalition

S, where j € S, that maximizes

zg(mS) — Z z; (m) = zg(nS) — sz )+ x;(m),

1€S\j €S

because we have just argued that the offer to players in S\ j are worth x; () . Therefore

the objective function of proposer j is to maximize the excess function, defined by

e (m) (S) (2) = 2s(mS) = Y @i (m), (3)

€S

over all possible S C 7 with j € S. For simplicity, we refer to the behavioral strategy
o; () of proposer i as a probability distribution over ¥; (7) = {S C 7 :i € S}. Also,
we define $(m) = x A¥i(™ as the set of behavioral strategy profiles when the c.s. is
mand let X = >€<H§7(r7r) be the set of behavioral strategy profiles.?

4In order to simplify the notation, we often refer to S C 7 also as S = Ujegj C N.

SWe use the following standard notation: x is the Cartesian product, |A| is the cardinality of set
A, and I 4) is the indicator function that is equal to one or zero, respectively, if statement A is true
or false.



The necessary part of the following lemma follows directly from the above discus-
sion and the definition of MPE.

LEMMA 1: A payoff structure ¢;(m) and a strategy profile o; (w) is an MPE of the
coalitional bargaining game (v, p,8) if and only if the following system of equations is
satisfied, where z; (1) = 6¢;(m) + (1 — 6) v; (7):

1) the support of o; (m) € A¥(™) s

supp (o3 (7)) C arg max {e () ($) (#)}, (4)
o1
2) the expected equilibrium outcome of player i conditional on player j being chosen

to be the proposer ¢ (m) is equal to

EY] (5)

e { max (e () () (@)} + () =i
Z > scn 05 (M) (5) (H[iGS]xi(ﬂ') + ]I[iggs]xi(WS)) j#£i ’

3) the following system of equations holds

¢; (7) = (Z p; (7) & (W)) : (6)

jem
forallmell, andi,j € 7.

PROOF: See appendix.

There is a one-to-one relation between ¢,;(m) and z; () given by equation (2).
For convenience we will be solving for the vectors z; (7) instead of ¢,(7) from now
on. The vector x, as well as the partition function form v, belongs to the Euclidean
space R? and the proposer probability parameter p belongs to the space A¢, where
A={pe R':pi(r) >0and >, pi(r)=1forall 7 € II}, and the dimension
d=>renlml.

Any payoff = candidate for equilibria must satisfy some obvious restrictions. For
example, the payoff x satisfies z; (7) > v,, where the lower bound is v, = r%? {vi(m)},

because player i can get at least v, by refusing to participate in any coalitions. It



i (m) <, where the
} . Therefore any MPE payoff x must belong to

must also be the case, due to a fea81b1hty constraint, that >, x

upper bound is v = max {Z

z€7r

the convex and (,ompact set X C Rd defined by X = x X (m), where
well

X () = {z (r) € R™ such that sz and z; (1) > v;}.

e

Now consider the correspondence F : X — R? where F () is the set of payoffs
y = (y: (7)) € RY,

where y, () = 6pi(r >max{e< ) (S) (@)} + (1 — 8)os ()
Fl@)={ ye R +8(Tocr Lyeapilm $) (Tiegai(m) + iggai(mS)) )
and supp (o, (7)) © g ggax {e (%) () ()}
(7)
It follows immediately from lemma 1 that the fixed points of F are the MPFE payoffs

of the game. Using this property, the next theorem shows the existence of equilibria

for all games.

THEOREM 1: There exist equilibria for all coalitional bargaining games (v, p, 6).

We show in the appendix that the theorem follows from the Kakutani fixed point
theorem because F (X) C X, F (z) is convex and non-empty for all z € X, and F is

an upper hemicontinuous correspondence.

3.2. Efficiency

We now analyze the efficiency of equilibria. We will see that it is possible for the
equilibria to be inefficient. There are two types of inefficiency in coalitional bargaining
models: (1) delays in reaching an efficient state (a state 7 is efficient if ) . v;(7) =
maxren {> ;. vi(7)}), and (2) asymptotic inefficiency, or inefficiency in the limit

when the time between offers vanishes (or 6 — 1).

10



As in other models in the literature, except for very special types of games (see
Chatterjee et al. (1993)), equilibria in our model typically involve delays in the
formation of an efficient c.s. Roughly, delay occurs in equilibrium, because pro-
posers often find more profitable to form smaller coalitions, sharing the gains among
few players, rather than forming a larger and perhaps more efficient coalition, in
which the gains have to be shared among a larger number of players (i.e., the excess
e (m) (S) (x) = xg(wS) — > ,.qx: (7) may be maximized at a coalition S where 7.5 is
an inefficient state). We will see several examples of games in which delay occurs in
our model (see Gomes (2000) for a model of coalitional bargaining where there are
no delays).

In contrast, we will show that our game is asymptotically efficient if the grand
coalition is efficient (a weak condition that, for example, is satisfied by superadditive
games). The equilibria converge to an efficient c.s. after a finite number of periods,
and thus the equilibria is Pareto efficient when the time between offers shrinks to zero.
Thus the Coasian conjecture that an efficient outcome eventually should arise holds
when the grand coalition is efficient, despite the fact that there can be widespread
externalities in the game (Seidmann and Winter (1998) show a similar result for games
without externalities).

This efficiency result is opposed to the results of Chatterjee et al. (1993), Ray and
Vohra (1999), and Okada (1996), where, even in strictly superadditive games (except
for games satisfying the restrictive condition v(N)/|N| > v(S)/|S]), the equilibrium
is asymptotically Pareto inefficient. The main reason for the difference is that we
allow for coalitions to renegotiate agreements, while in their models, once a coalition
reaches an agreement, the coalition leaves the game.

Additionally, we show that if the grand coalition is efficient, all offers that are
proposed when the current c.s. is inefficient are accepted with no delays and the
negotiations move to a new state with probability one-a generalization of Okada’s

(1996) main result to games with externalities and renegotiations.

THEOREM 2: Consider a partition function form v where the grand coalition is ef-

ficient. Then all equilibria of the coalitional bargaining game (v,0) converge to an

11



efficient c.s. after a finite number of periods (bounded by |11|). So the equilibria are
Pareto efficient when the time between offers shrinks to zero (or & — 1). Further-
more, for all 6, if m is an inefficient c.s. then negotiations move to a new state with

probability one, and thus delays in the formation of coalitions never happen.

PRrROOF: Let vy ({N}) =V, and let « be any MPE payoff. We first prove the last
part of the theorem. Consider any c.s. 7 that is inefficient (i.e., >, v; () < V). This
implies that Y .. x; (7) = > .. 0¢;(m) + (1 = 6)v; () < V, because ), . ¢;(m) <
V. Now assume, by contradiction, that there is a player, say j, who proposes, in
equilibrium, an offer that is rejected with positive probability. The maximum excess
of player 7 then must be zero, because that is the excess j gets if the offer is rejected,
and j’s equilibrium offer maximizes his excess. But if j proposes S = N, j can get
an excess of at least V — . __x; () > 0, which is a contradiction. This proves the
last part of the theorem.

We now prove the first part of the theorem. We have just seen that if negotiations
are in an inefficient c.s. 7 then the negotiations move to a new c.s. with probability
one in the next period of the game. But there are only a finite number of coalition
structures, and it is impossible to go back to a c.s. that has been already played before.
Therefore, inefficient c.s. are played only a finite number of times. Thus the minimum
level of efficiency of any MPE equilibrium is §™V + (1 —6) (1 + ..+ (5|H|_1)K where
V= min,cn {Zieﬂ vz-(w)} . But this minimum converges to V' when 6 — 1, proving
that Pareto efficiency is reached in the limit. Q.E.D.

Theorem 2, despite being more general than Okada’s (1996) and Seidmann and
Winter’s (1998) results, has a much simpler proof. We will provide in section 6 exam-
ples showing that if the grand coalition is not efficient then both (a) the equilibrium
may not be Pareto efficient in the limit, and (b) players may propose to remain in an

inefficient state (or pass up their opportunities to propose).

4. COMPUTING THE EQUILIBRIA

We now show that the problem of finding equilibria can be restated as the solution of

a certain mixed nonlinear complementarity problem (see Harker and Pang (1990) for

12



a survey about complementarity problems). Mixed nonlinear complementarity prob-
lems (MNCP) are the subject of numerous studies in the mathematical programming
literature (see Harker and Pang (1990)), and a large number of algorithms have been
proposed for solving MNCP problems.

We now introduce the MNCP problem associated with multilateral bargaining
games. First define the maps f(z,0,\), h (o), and g (A, z) by

film)(z,o0,N) = x;(m) — ops(m)Ai(m) — (1 = 6)v; ()

—6 (Z > pi(m)o; (7) (8) (Tpesi(m) + ]I[igéS]xi(WS))) :

SCrm jenw

hi(m) (o) = ) oi(m) ()~ 1, (8)

SCmieS

g9i(m) (S) (A z) = () — e () () (z),

for all ¢, 7, S satisfying m € I, i € m, and ¢ € S C 7.
The mixed nonlinear complementarity problem is the problem of finding triples

(x,0, ) that satisfy all conditions

flz,o,X) = 0,
h(o) =0, (9)
g(Az) =0,
o > 0andolg()\x)=0.

Note that oZg (A, z) = 0 is equivalent to o; (7) (S) .g;(7) (S) (\,z) = 0 for all 4,7, S
satisfying m € I, ¢ € m, and ¢ € S C 7.

THEOREM 3: If (x,0) is an equilibrium then (z, 0, \) is a solution of the mized non-
linear complementarity problem (9), where A\;(7) = max {e(m) (S) x}. Reciprocally, if
o1
(z,0,A) is a solution of MNCP (9) then (x,0) is an equilibrium.
Proor: Consider the necessary part of the theorem, and say that (z,0) is an

MPE. Then all the conditions in items 1, 2, and 3 of theorem 1 hold. Replacing

expression (5) of ¢} () into equation (6), and considering that, by definition, z; (1) =

13



8¢, (m) + (1 — &) v; (), we obtain the system of equations

zi(m) = opi(mmax{e(m) () (2)} + (1 = b)v; (m)

+6 (Z (Z pj(m)o; (m) (S)> (H[iGS]xz’(ﬂ') + H[igs]l'i(ﬂ'S))) ,

after noting that Y g . 0 () (S) (Ijegj@i(7) + Ijgs)z(7S)) = a;(r).
Let \;(m) = max {e(m) (S)x} and consider the triple (z,0,\). We then have that
(z,0, ) satisfies the equation f(z,0,\) = 0. Since o is a probability distribution
then h(c) = 0 and o > 0 are automatically satisfied. Also, by definition of A,
Ai(m) —e(m) (S) (z) > 0, so that g (A, z) > 0. Finally, o; () (S) g:(7) (S) (A,z) =0
follows from definition of A and the support restriction of ¢ in (4). The reciprocal
follows using the same arguments. Q.E.D.

Theorem 3 is useful because there are several numerical algorithms for solving
MNCP problems. These algorithms, as we now briefly describe, typically, are based
on both Newton’s method for solving a system of equations and on methods for
solving linear complementarity problems (LCP), such as Lemke-Howson’s algorithm
(see Cottle et al. (1992) for a comprehensive treatment of the LCP): When solving
a system of nonlinear equations, starting from a given initial condition, Newton’s
algorithm solves the linear approximation of the system of equations to obtain the
updating direction. In the case of MNCP problems, instead of just solving for a
linear system of equations, one solves a linear complementarity problem to obtain the
updating direction, so as to satisfy the inequalities in the system.

The results of this section thus imply that the computation of equilibrium points

can be accomplished using very efficient numerical methods.

5. COMPARATIVE STATICS ANALYSIS, LOCAL UNIQUENESS AND
STABILITY OF EQUILIBRIA

In this section we show that almost all games (except in a set of measure zero) have

equilibria that are locally unique and locally stable, and satisfy a natural regularity

14



condition. These properties are very useful. For example, they imply that almost
all games have only a finite number of equilibria, and provide powerful tools for
comparative statics analysis in multilateral bargaining games.

We now argue that instead of focusing on the strategy profile o € 3, it is more
convenient to focus on the associated Markov transition probability u = p (o), which

is defined as

p (o) () (S) =Y pyo; (m) (), (10)

jET

where p () (S) represents the probability of moving from state 7 to state 7.S.
The following result shows that uniqueness of strategy profiles do not hold in
general and thus the best we can hope is to have uniqueness with respect to expected

payoffs and the Markov transition probabilities.

LEMMA 2: If (z,0) is an MPE then (x,0") is an MPE for any o’ € ¥, with p (o) =

w ('), and supp (o)) C argsrsrz}ax {e(S) (z)}.

PROOF: By theorem 3, (z,0, ) solves the MNCP (9), and thus f(z,0,\) = 0.
Inverting the order of summation in the expression of f (z,0,\) (see definition 8) we

get
film)(z,0,A) = @ () = épy(m)Ni(m) — (1 = &)vs ()

—0 (ZM (o) () (S) (Tpesya(m) + H[i¢51$i(”5))>

where p (o) is as in equation (10). Therefore, for any o' as above, f(z,0',\) = 0,
and by the reciprocal of theorem 3 this implies that (x,0’) is an MPE. Q.E.D.

Several examples in which such lack of uniqueness in terms of strategy profile
occurs are given in section 6. Our efforts from now on are concentrated on proving
uniqueness in terms the of pair (z, ) . Observe that this captures the essential aspects
of the game: z is the expected payoffs of all players for all states (c.s.), and p is the

transition probability that contains all information needed to determine the dynamics
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of formation of coalitions. From now on, two equilibrium points (z, o) and (2, 0’) are
equivalent if and only if = 2" and p (o) = pu(0’).

The strategy profile o belongs to a space with much higher dimensionality than the
transition probabilities i, and when passing from o to p some important information
is lost. For example, suppose that p(S) > 0 for some S C 7. Who are the players
that choose coalition S with positive probability? It is certainly possible that the
best strategy for player j € S is to choose coalition S, but that another player i € S
is strictly better off choosing a different coalition.

We now introduce the useful concept of coalitional dynamic structure (CDS) that
allow us to recover all the essential information about the strategy profile o, that is

not recorded in pu.

5.1. Coalitional dynamic structures

We start by defining an equivalence relation on the set 7 induced by the strategy
profile o. Given any two players 7, j € m, say that ¢ — j if and only if there exists
a coalition S C 7 with i,7 € S such that o; (7) (S) > 0. Also, say that there is a
path from i to j if there exists a sequence of players iy, ...,7x belonging to 7 such
that i — i, — ... — 4, — j. Finally, we say that ¢ and j is connected, i «—— j, if
there is a path from i to j and a path from j to 4. It is straightforward to verify that
connection is an equivalence relation (transitivity, symmetry, and reflexivity hold).
Let the equivalence classes of this relation (the maximal connected components) be
denoted as P, (7) , where ¢ () is the number of equivalence classes and r = 1, ..., ¢ ().
Also, let C; (m) = Uiep, (x)supp (o; (7)) be the union of the offers in the support of the
strategy profile of players in P, (). The coalitional dynamic structure associated
with o is a partition of the set of players and supp (¢) into the equivalence classes

induced by the connection relation.

DEFINITION 1: The coalitional dynamic structure (CDS) associated with o is C (o) =
(C (), P (7)), e where, for each c.s. m:

®Note that C, () N Cy () = 0 if r # r’. Otherwise, there exist i € P, (7), j € P (1), and S €
C, (m)NC, () such that o; (1) (S) > 0 and o (7) (S) > 0. But this implies i «— j (contradiction).
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i) P(m) = (P (7),..., Py (7)) is a partition of m, and P, () are the equivalence
classes of the connection relation;

i) C (1) = (C1 () , ..., Cy(my (1)) is a partition of supp (o (7)) = Uiexsupp (05 (7)) and
Cy (m) = Uicp,mysupp (0: (1)) .

The set of coalitional dynamic structures is CDS = {C (0) : 0 € X} .

An example may help clarify the definition of CDS: Say that 7 = {1,2,3} and
that supp (o1) = {{1,2}}, supp(02) = {{1,2}}, and supp(03) = {{1,2,3}} then
the CDS C (o) = (C,P), where C = ({{1,2}},{{1,2,3}}) and P = ({1,2},{3}).
Now if supp (o1) = {{1,2},{1,3}}, supp(o2) = {{1,2},{2,3}}, and supp(o3) =
{{1,3},{2,3}} then the CDS C (o) = (C,P), where C = ({{1,2},{1,3},{2,3}})
and P = ({1,2,3}).

We are interested in analyzing the problem of finding an equilibrium point (x, o)
with a given CDS C with C' (m) = (Cy (71) , ..., Cy(x) (7)) and P (1) = (P (7) , ..., Py ()).
By definition of CDS, this implies that the excesses of all coalitions belonging to the

same equivalence class C,. (7) are equal, that is,
A () = ag(nS) = > i (), (11)
i€S

for all S € C,.(m) and r = 1,...,q(7) (see proof of lemma 3). In addition, the

associated Markov transition probability p = u (o) satisfies

Y u@S)= Y i),

SeC,(m) JEP- ()

because supp (0, (7)) C C, (m) for all j € P, ().
Therefore, if (z,0) is an equilibrium then (z, u, \) solves the following systems of

equations, or problem F'(C)

fe(z, 11, A)
Fe(z,pu,\) = Ec (z,)) =0 (12)

Me ()
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where the maps fe(z, u, \), Ec (x,\), and M (u) associated with CDS C are defined
by

(fe)i () (1, A) = @i () = bpi () Ar () — (1 = 6) v ()

-6 (Zu () (S) (Lpesi () + H[z’gésw(ﬂs))) :

Ee (1) (S) (z,\) = Z z; (1) + A (1) — 2g(nS), (13)
M (m)(r) ()= Y pi(m) = > u(@)(S),
JEP () SeCr(m)

for all 7,7, and S satisfying r =1,...,q(7), 1 € P.(w), S € C, (), and all = € II.
The reciprocal result also holds if we impose some additional restrictions on the
solutions of F(C). Any set of payoffs x that are candidates for equilibrium with an

associated C'DS C must satisfy

e(m)(S)(x) >e(m)(T)(x) forall S € C, (r) and T ¢ C, (7) with T'N P, () # 0,
(14)

because of equalities (11) and inequalities (4). Thus, the set of payoffs & consistent
with C is

&= {x € R : such that all inequalities (14) hold} )

Moreover, any transition probability p that is consistent with a CDS C satisfies
p = p (o) where o is a strategy profile with a CDS C (i.e., C () = C).” Thus, the set

of transition probabilities M consistent with C is

Mce={p=p(o): where o € ¥ and C (¢) =C}. (15)

"Observe that if the strategy profile o is such that for all » and i € P.(7), supp(o; (7)) =
C,(m)yn{S Cm:i€ S} then C(o)=C.
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The following lemma, proved in the appendix, provides yet another useful char-
acterization of MPE.

LEMMA 3: If (z,0) is an MPE of the bargaining game then (z, A, 1) is a solution of
problem F(C(0)), where pp = p (o) € M, x € &, and A\, (1) = e(m) (S) (z) for any
S € C, (7). Reciprocally, if (x, A\, p) is a solution of problem F(C) satisfying u € Me
and x € & then there exists an MPE (x,0) of the bargaining game with pu = p (o)
and C = C(o).

This result allows us to transform the problem of finding equilibria into a lower-

dimensional equivalent problem of finding solutions of the system of equations F' (C).

5.2. Strongly Regular Games and Generic Local Uniqueness

We now introduce the concepts of regularity and strong regularity. We show that
solutions of strongly regular games are locally unique and locally stable. It immedi-
ately follows, due to the compactness of the solution space, that all strongly regular
games have only a finite number of solutions. We also show that almost all games
(v,p) € R? x A? are strongly regular.® In other words, except in a set of measure
zero, all games are strongly regular.

Consider the following definition of regularity: a solution z = (x, u, A) of problem
F (C) is a regular solution if the Jacobian d, F¢ is nonsingular; a coalitional dynamic
structure C is regular if all the solutions of problem F(C) are regular. Finally, a
reqular game is a game where all CDSs are regular. Note that, by definition, if there
exists no triple (x, 1, A) solution of F(C) then C is regular.

In addition, we say that a solution (z, u, A) of problem F (C) is strong if all the
inequalities in (14) are strict. Similar concepts are extended to CDSs and games in

the natural way.
The Jacobian matrix associated with a CDS C with C (1) = (C1 (7), ..., Cy(r) (7))

8We remind that A% ={pe R%:p;(7) > 0and >, p;(m) =1 for all = € IT}.
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is a matrix of order d + m + ¢ that has the following special structure

dyfe dxfe dufec
d.Fy = Ee 0o |, (16)
0 M.

where

q(m)
m = ZZmT (r) and m,. (7) = |C, (1) |,

well r=1
q = Zq(ﬂ) and d = Z |7r].
well well

Observe that © € R™, A € R?, and z € R, and matrix Fg, the incidence matrix
associated with C, has m rows and d 4+ ¢ columns, and matrix My has ¢ rows and m
columns.

Also, whenever C is a regular CDS and there exists a solution of problem F(C),
the incidence matrix E¢ has rank m. This is so because d, F¢ is nonsingular only if
rank(Ec) = m.

Moreover, note that the solution at a given c.s. 7 only depends on what happen
at coalition structures that are coarser than 7. This implies that the Jacobian matrix
d, Fe can be partitioned into an upper block triangular structure with diagonal blocks
equal to d, () F¢ (7) where z (m) = (x (7) , pu (7) , A (7)) for all w € II, where all entries
to the left of the diagonal blocks are zero. Therefore, the Jacobian matrix d,F¢ is
nonsingular if and only if all the diagonal blocks d. () F¢ (7) are nonsingular.

We now show that the implicit function theorem implies that strongly regular

MPE solutions are locally unique and locally stable.

THEOREM 4: (Local uniqueness and stability) Strongly regqular coalitional bargaining

games have equilibria that are locally unique and locally stable.

PROOF: See appendix.
Specifically, we show that for any game (v*,p*) and strongly regular solution
(z*, u*) , associated with a CDS C, there exists an open neighborhood B C R? x A¢
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of (v*,p*), an open neighborhood W C R¢ x R™ of (x*,u*) and a local mapping
(z(v,p), p(v,p)) € R x R™ such that (z(v,p), u(v,p)) is the only MPE solution for
all (v,p) € B in the neighborhood W.

We have just argued that the set of strongly regular games is an open set. We now
show that except in a set of measure zero, all games are strongly regular. Therefore
the set of games that are not strongly regular is closed and has measure zero, and
strong regularity is a generic property.

This genericity result is established using the transversality theorem from differ-
ential topology (Guillemin and Pollack (1974) and Hirsch (1976)).

THEOREM 5: (Genericity) Almost all coalitional bargaining games (v,p) in R* x A?

are strongly reqular.

Proor: We first show that if the incidence matrix E. of the CDS C has rank
m then, except in a closed set of measure zero of R¢, all the solutions of F(C) are
strongly regular. The solutions of problem F(C) can be represented as the zeros of
Fe(z,v) = 0, where z = (z,\, 1) and we take into account the dependency with

respect to the game. The Jacobian of this mapping is

dyfe dafe dufe —(1—06)1
d(z,v)FC = Ec 0 0
0 Me 0

The Jacobian is a surjective matrix (with rank equal to the number of rows) because
all blocks E¢, Mc, and —(1 —§6)I have rank equal to the number of rows, and because
of the disposition of zeros in the Jacobian. Thus Fg is transversal to zero, Forho0.
By the transversality theorem, for almost every v, Fg(v) is also transversal to zero,
Fe(v)M0. Thus the square Jacobian matrix d, F¢(v) is surjective at all solutions of
F(C), and thus nonsingular. Therefore, C is a regular CDS for almost all games.
Now consider an hyperplane H in the space R¥*™*4 obtained by replacing any one
of the inequality signs in (14) by an equality sign. Consider the problem F¢(z,v) =0
restricted to the domain H x R?. Applying the transversality theorem to this new

problem implies that for almost all v there exists no solution, because the codimension
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of H in the space R4T™*2 is 1. Using the fact that a finite union of sets of measure
zero is a set of measure zero, we conclude that there exists a set EC of games, with
complement of measure zero, where F'(C) is strongly regular. Note that all games in
Re = EC x A? are strongly regular, because the argument holds for all p € A9, and
the Cartesian product of a set of measure zero and A¢ has measure zero.

The case where the incidence matrix F has rank smaller than m is more difficult to
address. We show that, except in a closed set of measure zero, F/(C) has no solutions.
The proof proceeds using induction on the number of players and is included in the
appendix. Q.E.D.

5.3. Comparative Statics Analysis

So far we have focused on obtaining the solution of the coalitional bargaining games
for fixed exogenous parameters v (value of coalitions) and p (proposers’ probabilities).
An important issue is to understand how the value of players and the path of coalition
formation changes in response to changes in these exogenous parameters. Strongly
regular games are very convenient because they allow us to perform comparative
statics analysis using standard calculus tools.

The following corollary is an immediate application of the implicit function theo-

rem and theorem 4.

COROLLARY 1: (Comparative Statics) Let (v,p) be a strongly regular game and z =
(x, i, A) be an equilibrium with CDS C. The first-order effects of a change in the
exogenous parameters (v,p) on the solution z is given by the sensitivity matriz S¢ =
—[d.Fe] dwp Fe (i.e., Az =S¢ (Av, Ap)). In particular, the effect of a local change
Av of coalitional values are given by Az = ([szc]fl)_z (1 —6) Av, where ([dZFc]fl)

denotes the submatriz with the first d columns of the inverse Jacobian.

X

The first-order effects with respect to changes in value Av are given by the sensi-
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tivity matrix — [d,Fp]”" d,Fe. But since

dfo (1 - 5) I
dy,Fe = d,E¢ = — 0 , (17)
d, M 0

the sensitivity matrix — [d,Fg]™" d,F, simplifies to ([szc]_l),x (1 —6). Therefore,
once we have obtained an equilibrium point, all that is needed to determine first-
order effects of changes in value is to evaluate the inverse of the Jacobian matrix at
the solution.

The ability to conduct comparative statics analysis in multilateral bargaining
games using calculus is a very powerful tool. Some of its applications are illustrated

in the next section.

6. EXAMPLES

We start by analyzing two classic games: apex and quota games. These examples
serve to illustrate several points. First, we demonstrate how to apply the ideas intro-
duced in the paper, such as coalitional dynamic structures and comparative statics
analysis. Second, we compare our solution concept with well-established solution con-
cepts such as the nucleolus, bargaining set, kernel, core, and Shapley value. Moreover,
since results from experimental studies are available for the examples we choose, we
can evaluate whether the solution, and in particular the structure of coalition forma-
tion predicted by the model, makes sensible economic predictions.

In a third example, we consider two different public good provision problems. The
purpose of this example is to illustrate that it is possible to have multiple (seven)
equilibria, and to exemplify the important economic role played by agents’ ability (or

lack of ability) to commit to leave the game.
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6.1. Quota Games

Quota games have been studied by Shapley (1953) and Maschler (1992) (who also
report some experimental results).” Consider a four-player quota game, where each
pairwise coalition gets vy; j3 = w; +w; for all distinct pairs 7, 7 € N, where the quotas
of the four players are (wq,ws,ws,ws) = (10,20,30,40), and all remaining coalitions
get vg =0 for all S C N, S # {i,j}. Players are very patient (i.e., we are interested
in the limit when ¢ converges to 1), and they all have an equal chance to be proposers
(pi(r) = ).

The solution is depicted in Figure 1, where we describe the expected value ¢;()
of each player for all c.s. in the equilibrium path, and the equilibrium transition
probabilities u (7) (S) (for simplicity, we omitted from the figure off-the-equilibrium
strategies). The CDS at the initial state is C = ({{2,3},{2,4},{3,4}},{{1}}), and
the excesses are e(S) = 4.938 for S = {2,3},{2,4}, and {3,4}, and it can also be

easily verified that this solution is a strong regular solution.'®

The solution (17.41,17.53,27.53, 37.53) is different from the nucleolus (Schmeidler
(1969)) and the core (both of which coincide with the quota (10,20,30,40)), the
kernel, the bargaining set (Maschler (1992)), and the Shapley value (which is equal
to (17.5,20,28.33,34.16)).!! In our solution, player 1 gets 7.41 more than his quota
and players 2, 3 and 4 get each 2.47 less than their quota values. This example
illustrates that the solution proposed in the paper is different from all the other
major existing solution concepts.

In addition to predicting the values, the solution also predicts the structure of

coalition formation. Interestingly, the equilibrium strategy of player 1 is to wait for

91 thank Prof. Maschler for suggesting this example.

10The equilibrium strategies at the initial state are not unique, though (see section 4). An example
of an equilibrium strategy profile is o1 ({1}) = 1, 02({2,3}) = 0.344, 02({2,4}) = 0.656, 03({3,4}) =
0.951, 03({2,3}) = 0.049, and 04({3,4}) = 1.

1Since the bargaining set contains the kernel, and the kernel contains the nucleolus, this implies
that our solution is different from the kernel and bargaining set (see Maschler 1992). Also, because
the game is not superadditive, we compared our solution with the Shapley value of the superadditive
cover of the game.
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Figure 1: MPE solution of the quota game (10, 20, 30, 40).

a pairwise coalition to form, an strategy that allows player 1 to get significantly
more than his quota. The solution thus makes predictions that are consistent with
experimental results reported in Maschler (1992), where player 1 realized that he was
weak and that his condition would improve if he waited until a pairwise coalition
formed, and captures an important strategic element of the game. Indeed, player
1 is better off if the coalition {2,3} forms, rather than {2,4} or {3,4}, because in
the ensuing pairwise bargaining with 4, player 1 can get a payoff equal to 25.1 The
solution also predicts that players 2, 3, and 4 get approximately their quotas, which
is also consistent with the results reported by Maschler. Interestingly, this example
also serves to illustrate that Okada’s (1996) result that—delays in coalition formation
never happen—does not hold for games that are not superadditive.
Note that the quota game has three different absorbing states or c.s.!3:
{{1,2},{3,4}}, {{1,3},{2,4}}, and {{1,4},{2,3}}. Given the stationary transition

2However, strategies considered in this paper rule out the possibility that player 1 makes side
payments to players 2 and/or 3 in order to encourage them to form coalition {2, 3}.
13An absorbing state is a c.s. 7 such that p(m,7) = 1.
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probability p, one can easily compute the probability of reaching each of the absorbing
states, from any given starting state. In particular, starting at the initial state, the
probabilities of reaching each of the three absorbing states above are 65.06%, 21.86%,
and 13.06%, respectively. This empirically testable prediction of the model is novel,
and has many potential economic applications: existing cooperative solution concepts
do not make such types of predictions about the formation of coalitions.

How do players’ value change with changes in quotas and proposers’ probabilities?
This comparative statics exercise can be readily answered by evaluating the sensitivity
matrices at the solution, and it produces some surprising results. Evaluating the
value-sensitivity matrix with respect to changes in quotas, as we have seen in section
5.3, yields

Ay 0.366 0.549 0.062  0.022 Awq

A, {0211 0816 —0.020 —0.007 Aws

Agy | | 0211 —0.183 0979 —0.007 | | Aws |’

Ag, 0.211 —0.183 —0.020 0.992 Awy
and the coalition formation sensitivity matrix satisfies %‘j’j}) > 0 and %ﬁ’ik}) <0
for all distinct 4, j, and k in {2,3,4} (for the sake of space we report only the signs of
entries).

The information contained in the value sensitivity matrix provides some interest-
ing insights: Increases in the quota of player 1 are shared by all players. However,
increases in the quotas of either player 2, 3 or 4 are almost completely appropriated
by them (in fact, the other two players distinct from player 1 suffer a loss). Other
predictions are expected: When a player’s quota goes up, all coalitions including this
player become more likely to form (and coalitions not including this player are less
likely to form).

The comparative statics with respect to changes in proposers’ probability is de-

4 Note that the main diagonal is positive, so the value of all players increases when their quotas
increase, and the sum of the entries in each column is equal to one, as the value of coalitions that
forms increases by the amount of the increase in the quota.
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scribed by the value-sensitivity matrix

[ Ao, | [0 =542 196 345 | [ Ap, ]
Ag, | |0 18 —065 —1.15 | | Ap,
Ads | | 0 180 —065 —1.15 Apy |
Ad, 0 180 —065 —1.15 | | Ap

where, in order to preserve the sum of probabilities equal to one, we consider p; =

v,/ (Z?:l p}), and the coalition formation sensitivity matrix satisfies 9uiidh) < and

op;
ulIkD () for all distinct 4, j, and k in {2,3,4}.
P;
This comparative statics analysis also reveals some surprising results: When player
2 has more initiative to propose, he benefits and player 1 loses from it. Interestingly,
though, the opposite happens when players 3 and 4 have more initiative. Their

equilibrium payoffs decrease when they have more initiative to propose!!

6.2. Apexr Games

Apex games, introduced by Davis and Maschler (1965), are another interesting class
of n-person games that have received considerable attention. In this game, only two
types of coalitions create non-zero value: any coalition with the Apex player (player
1), or the coalition with all the n — 1 remaining players (the Base players). For
concreteness, consider the 5-player game N = {1,2,3,4,5}, where vy ;3 = 100 for
J = 2,..,5, va345 = 100, and vg = 0 otherwise. Players are very patient (6 is
infinitesimally close to 1), and all players have equal chance to be proposers.

The solution is depicted in Figure 2. The CDS at the initial state is C =
({{1,2},{1,3},{1,4},{1,5},{2,3,4,5}}), and the excesses are e(S) = 3X for S €
C.16

15This result can be rationalized as follows: when ps increases, coalitions {2,3} and {2,4} are less
likely to form and coalition {3,4} more likely; since player 1’s gains are lowest when coalition {3,4}
forms he indirectly suffers when ps increases. By similar reasoning, when p, increases, coalitions
{2,4} and {3,4} are less likely to form and coalition {2,3} more likely, which benefits player 1 and
hurts the other players.

16The equilibrium strategies for the initial state, which are not unique (see section 4), are given
by o1({1,7}) = 0.25, 0;({2,3,4,5}) = 0.25, and 0;({1,5}) =0.75, for all j =2,3,4,5.
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Figure 2: MPE solution of the apex game.

The solution for the game is (42.9,14.3,14.3,14.3,14.3). This solution coincides
with the kernel of the game and the nucleolus. However, it is different from the
bargaining set, the core (which is empty), and the Shapley value (which is equal to
(60,10, 10, 10, 10)).

Moreover, the model also predicts that any of the four apex coalitions {1, j},
j=2,...,5, can form with 20% probability (thus there is an 80% chance that an apex
coalition forms), and the base coalition {2,3,4,5} can form with 20% probability.
Several experimental tests of the Apex game with 4 and 5 players have been conducted
(see Kahan and Rapoport (1984) for a survey of these studies). Particular attention
has been given in these studies to the frequencies of formation of apex coalitions
versus the base coalition. Two of these studies (Selten and Schuster (1968) and

Albers (1978)) considered 5-person apex games similar to the one considered above.!”

1"The games played were slightly different: vg = 100 for all S C N with 1 € S and |S]| > 2,
vg2,34,5) = 100, and vg = 0 otherwise. For this modified game the prediction of our equilibrium
concept is as described above; thus the difference is immaterial.
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Albers (1978), based on 25 plays of the game, reports that the apex coalition, the
base coalition, and other coalition structure forms with frequencies equal to 76%,
20%, and 4%, respectively. Similarly, Selten and Schuster (1968), based on 12 plays
of the game, report frequencies equal to 67%, 17%, and 17%, respectively. Overall
these results seem to provide support for the predictions of the model.

Comparative statics results for the apex game can also be easily obtained. The

sensitivity matrix describing the changes in value is

A 023 —048 0 0
. Au({1,2)
Ad, 0.74 017 0 0
Av({2,3,4,5})
Ady | = | —026 017 0 0 N ,
Ad, 026 017 0 0 Ap}
| Ag, | | 026 017 0 0 b

where p; = p/ (25:1 p}), and the sensitivity matrix describing the changes in coalition

formation is

[ Ap({1.2 ] [ 00309 —0.0009 —02 —-22 ] -
Ap({1,3} ~0.01 —0.0009 —0.2 0.8
Av({2,3,4,5})
Ap({1,4} =| —0.01 —0.0009 —02 08 A
Ap({1,5} 001 —0.0009 —02 0.8 Ap}
| Ap({2,3,4,5} | | —0.0009 0.0036 08 -02 L P2 §

Surprisingly, these results indicate that changes in proposer probabilities have
no effect on the value of players. Also, as was the case with the previous example,
whenever the value of a coalition increases then both the equilibrium value of all

coalitional members and the probability that this coalition forms increase as well.
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6.3. Public Good Provision: Multiple Equilibria Example

We analyze separately two related public good provision problems among three sym-
metric firms. In the first example, if firms stay independent they each make zero profit.
If any two firms merge they make a profit of 1, and the firm that remains independent
receives a positive externality and profits 3. Regulators prevent full consolidation (a
three-way merger) from happening. The partition function that describes this game
is thus vi({{1}, {2}, {3} = 0, vosy ({Fi g}, TR} = 1, and vgy ({{3,3} {k} 1) = 3.
The grand coalition is ruled out (or has a low value). Assume that proposers are
chosen with equal probabilities and ¢ € (0.5,1). Note that Pareto efficient equilibria
have a total value of 4.

There are seven MPFE solutions for this game of three different types. In many
respects this game loosely resembles a three-player war of attrition.

One equilibrium is the symmetric solution in which the expected equilibrium pay-
offs are z = (0.5,0.5,0.5) ; the transition probabilities are x1 ({1, j}) = =2, for all pairs

56
{i,j}, and p(0) = 22, where ) represents no proposal (or remaining at the initial
state); and the CDS is C = ({0,{1,2},{1,3},{2,3}}). In this equilibrium, each of
the three firms refrains from proposing with high probability, and only proposes with
a small probability to the other two firms. They all reject any proposals below 0.5,
and thus firms are indifferent between proposing or not. This symmetric equilibrium
is the most inefficient.

In the second type of equilibrium (there are three symmetric cases), the expected
equilibrium payoffs are z = (0,1,1); the transition probabilities are p ({1,2}) =
1 ({1,3}) = &2, and p(0) = 251 and the CDS is C = ({0, {1,2},{1,3}}). In this
equilibrium, firms 2 and 3 reject any proposals lower than 1, make no proposal with
high probability, and, when proposing, choose to form a coalition with firm 1. Firm 1
cannot afford to pay more than 1 to form a coalition and thus it makes no proposals
with probability one. This equilibrium is more efficient than the first one, but is still
inefficient.

In the third type of equilibrium (again there are three symmetric cases), the ex-
pected equilibrium payoffs are x = (3%, %, S—fé) , which converges to x = (3,0.5,0.5)
when 6 — 1; the transition probabilities are p (0) = 5, 1 ({2,3}) = %; and the CDS
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is C = ({0,{2,3}}). In this equilibrium, firm 1’s strategy is to refrain from proposing
and reject any proposal worth less than 3, and firm 2’s and firm 3’s strategies are to
always “give in” and propose to form the coalition {2,3}. This equilibrium is, in the
limit, Pareto efficient.

The second public good provision problem is similar to an example considered
by Ray and Vohra (1999, 2000), and has very different equilibria than the first one.
Maintain everything as fixed in the previous example with the exception of the fol-
lowing aspect: Now, regulators allow for full consolidation of the industry, and the
total value of the three-way merger is 6. In terms of partition functions the game is
then: v;({{1},{2},{3}} = 0, vy ({{é, 5}, (k) = 1, vy ({4, 5}, {F}}}) = 3, and
U{S}({{la 2,3}}) =6.

The unique equilibrium of this game in our model is ¢ = (2,2,2) and 1 ({1,2,3}) =
1 (a three-way merger with an equal split of gains). Note that this is a Pareto efficient
equilibrium. In our setting a player cannot credibly commit to leave the game, while
in Ray and Vohra this is possible. This assumption can lead to very different economic
implications. The equilibrium, in Ray and Vohra, is for a player to leave the game,
because it is in the best interest for the remaining players to provide the public good,
after the first player has left, and thus the first player to leave gets 3. Thus the
commitment ability may lead to inefficiencies.

Summarizing, these two examples serve to illustrate the distinctions between our
model and the model of Ray and Vohra. Without the commitment ability, in the
first public good example, many equilibria exist, including inefficient equilibria; while
in the second public good example the commitment ability leads to a unique and
efficient equilibrium. With the commitment ability, players commit to exit in the
first opportunity, leaving the other players to provide the public good; this is efficient
in the first example but inefficient in the second one.

In the next section we see that the odd number of equilibria in the examples of
this section is not just coincidental, but holds in general. The analysis of the global

number of equilibria is the subject of the next section.
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7. THE GLOBAL NUMBER OF EQUILIBRIA

We show in this section that almost all games have an odd number of MPE equilib-
ria. Similar results hold for other well-known economic models such as competitive
economies (Debreu (1970)) and n-person normal form games (Wilson (1971) and
Harsanyi (1973)).

Additionally, we derive a sufficient condition for the global uniqueness of equilib-
ria. The result states that if the index of each equilibrium solution is non-negative,
where the index is shown to be equal to the sign of the determinant of the Jacobian
matrix dFe, then there is a globally unique equilibrium. We argue that this sufficient
condition is very weak and likely to be satisfied by a large class of games. Along
these lines, we prove that the sufficient condition holds for three-player superadditive
games, and thus there is only one equilibrium in these games.

Our first result is an application of the Lefschetz fixed point theorem (LFPT)
for correspondences (see McLennan (1989)), which is restated in the appendix for

completeness.

THEOREM 6: Almost all games (all strongly regular games) have a finite and odd
number of MPE equilibria. Moreover, 3 cccps Y yenmpre) Sgndet (dFe(y)) = +1,
where the summation is over all CDSs C and all MPFEs y with CDS C.

PROOF: Let v be any strongly regular game. The set of fixed points of F (see
definition (7)), F* = {z € X :x € F(x)}, corresponds to the equilibria points of
the game by theorem 1. The set F* is finite: all the equilibrium points are, by
lemma 3, solutions of F¢(x, A, ) = 0 for some CDS C. But since the game is regular
the solutions are locally isolated (theorem 4), and since the solution belongs to the
compact X then there is only a finite number of solutions.

By theorem 1, 7 : X — X is an upper hemicontinuous convex-valued correspon-
dence (thus F(x) is contractible for all z € X). The set X C R?, Cartesian product
of simplexes, is a simplicial complex and thus F satisfies the conditions of the LFPT.

Let U, be an open neighborhood around each z* € F*, so that z* is the only
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fixed point in U,-. The Additivity Axiom of the Lefschetz index implies

MF,X)= ) MF,Usp). (18)

e F*

In addition, the Lefschetz index is
AF, X) =1. (19)

But F can be approximated by a continuous map f’': X — X such that A(F, X) =
A(f", X) (Continuity Axiom), and X is a contractible set, and thus there is an homo-
topy ¢ : X x [0,1] — X where ¢, = Ix and ¢, = 29 € X. Therefore, any continuous
map f': X — X is homotopic to the constant map so, by the Weak Normalization
and Homotopy Axioms, A(F, X) = A(f’, X) = 1. Therefore, equations (18) and (19)
imply,

AMFX)= ) MFUp)=1.

e F*

The next lemma, proved in the appendix, establishes the formula for A(F, U,«), which

completes the proof.

LEMMA 4: The Lefschetz index of a strongly reqular MPE solution (z*, \*, u*) is equal
to AN(F,Uy) = sgndet(dFe (z*, \*, u*)), and is equal to either +1 or —1.

Q.E.D.
Theorem 6 implies that a sufficient condition for global uniqueness of equilibria is
that det(dF¢) > 0, at all solutions of problem F'(C) and for all CDSs C.

COROLLARY 2: All coalitional bargaining games have a globally unique equilibrium if
det(dFe) > 0 where the Jacobian is evaluated at any solution of problem F(C) for all
CDSs C.

Because of the special structure of the Jacobian dF¢, we conjecture that a sufficient
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condition for det(dF¢) > 0 at all solutions of problem F(C) is that the inequalities
z; (m) — x;(wS) > 0, for all S € C,(m) and ¢ ¢ S, hold. Direct computation of
determinants reveals, for all games with three players and all CDSs C, that the
inequalities imply that det(dF) > 0 (see corollary 3).

The inequality x; (7) — z;(7S) > 0, where ¢ ¢ S, is a weak condition that has a
natural economic interpretation: player i is excluded from the offer S if and only if
moving from c.s. 7w to 7S imposes a negative externality on player i (i.e., z;(7S) <
z; (m)). We show in the next corollary that these inequalities hold for all three-player

games where the grand coalition is efficient.

COROLLARY 3: Almost all three-player games where the grand coalition is efficient,

i particular superadditive game, have a globally unique equilibrium.

PROOF: See appendix.

We remark that in the public good provision example of section 6.3 (a strongly
regular game with seven equilibria) the grand coalition was not efficient, and therefore
it is not in contradiction to corollary 3.

Interestingly, one can easily verify that in three-player games where the grand
coalition is efficient, proposers are chosen with equal probabilities, and the discount
rate ¢ converges to 1, the unique MPFE solution converges to the coalitional bargaining
value solution proposed by Gomes (2000). The coalitional bargaining value solution
is a piecewise linear in the partition function form v (like the nucleolus) and has
eight regions of linearity: the regions of linearity correspond to solutions with CDS's
equal to ({{1,2,3}}), ({{i.j}}, {11.2.310), ({{i 1 {fi k3D or ({{i.s} {0 k})).
and ({{1,2},{1,3},{2,3}}) (where i, j, and k are distinct elements of N = {1,2,3}).
Moreover, as shown by Gomes (2000), this limit MPE solution coincides either
with the Shapley value (for the case where the solution is associated with the CDS
({{1,2},{1,3},{2,3}})), or with the nucleolus for the other CDSs.
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8. CONCLUSION

This paper studied n-player coalitional bargaining games in an environment with
widespread externalities (where the exogenous parameters are expressed in a parti-
tion function form). The coalitional bargaining problem is modeled as a dynamic
non-cooperative game in which contracts forming coalitions may be renegotiated.
The equilibrium concept used is stationary subgame or Markov perfect equilibrium,
where the set of states is all possible coalition structures. The equilibrium character-
izes, simultaneously, both the expected value of coalitions, and the state transition
probability that describes the path of coalition formation. A comprehensive analysis
of the equilibrium properties is developed.

The existence of equilibria is established, and Pareto efficiency is guaranteed if
the grand coalition is efficient and if frictions (delay between offers) are insignificant.
Also, for almost all games (except in a closed set of measure zero) the equilibrium
is locally unique and stable to small perturbations of the exogenous parameters, and
the number of equilibria is finite and odd. Global uniqueness does not hold in general
(a public good provision example with multiple (seven) equilibria is provided), but
a sufficient condition for global uniqueness is derived, and this sufficient condition is
shown to prevail in three-player superadditive games.

Comparative statics analysis can be easily performed using standard calculus tools,
allowing us to understand how the value of players and the path of coalition formation
changes in response to changes in the exogenous parameters. Being able to answer
comparative statics questions is valuable to negotiators, because they may be able,
for example, to invest in changing the likelihood of being proposers. Applications of
the technique are illustrated using the apex and quota games, and some interesting
insights emerge: surprisingly, a player may not benefit from having more initiative
to propose (other players may adjust their strategies in such a way that lead the
proposer to be worse off). The analysis also suggests several interesting regularities:
when the exogenous value of a coalition increases, both the equilibrium value of the

coalitional members and the likelihood that the coalition forms increase.
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APPENDIX

PrROOF OF LEMMA 1: The necessary part follows directly from the discussion before
the statement of the result and the definition of MPFE solution. Let us prove the
sufficient part of the theorem. Suppose that we are given payoffs and strategy profiles
(ng, &, a) satisfying all the conditions of the lemma. We use the one-stage deviation
principle for infinite-horizon games. This result states that in any infinite-horizon
game with observed actions that is continuous at infinity, a strategy profile o is
subgame perfect if and only if there is no player ¢ and strategy o) that agrees with o;
except at a single stage t of the game and history h, such that o} is a better response
to o_; than o; conditional on history h' being reached (see Fudenberg and Tirole
(1991)).

Note first that the game is continuous at infinity: for each player ¢ his utility
function is such that, for any two histories h and A’ such that the restrictions of the
histories to the first ¢ periods coincides, then the payoff of player i, |u; (h) — u; (R')],
converges to zero as t converge to infinity. It is immediately clear that the negotiation
game is continuous at infinity because |u; () —u; ()] < M (8 + 62 +.-+) =
%6”1, for M large enough. The strategy profile o; is such that, by construction,
no single deviation o) at both the proposal and response stage can lead to a better
response than o;. Therefore, by the one-stage deviation principle, the stationary

strategy profile o is a subgame perfect Nash equilibrium. Q.E.D.

ProOOF OF THEOREM 1: We show that the correspondence F satisfies all the
conditions of the Kakutani fixed point theorem.

We find convenient to use the map v (7)(z, ;) and y;(7)(z, o) where

maX{Is(ﬂ'S) —Zjes\ixj(w)} j=1

{m)(w0) = 5

>gen 07 (1) (S) (Liesjzi(m) + Luggyzi(wS)) j#1i
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and

m)(z,0) =6 (ij (m) gl (m)(x, 0(]’))) + (1= 8)vi (7).

jeE™

Note that z € F (z) if and only if z = y (z,0) and o € X(z).

(1) F(X) C X, where X is non-empty subset that is compact and convex. Take
any r € X and z = y(z,0) with 0 € ¥(x). We first show that > .__z (7) < 7 and
then z; (m) > v; which implies that z € X. First,

Sam = Y uro) =

e em

= (5<ij Zyz acaj)—}-(l—é)Zvi(ﬂ)

jem sy e

z€7r

where the order of the first summation has been inverted. But

Zyg(ﬂ')(x,(r) - Zaj (77-) (S) (305(?5) + ZJM(TFS)) <7w

iem Scm ¢S

because } g0 (m) (S) =1, 05 (7) () = 0, and z5(7S) + 3,45 :(7S) < v, for z € X.

Therefore
Zzi (7) < 5ij (m) T (7) + (1 — 6)T (n) = 7.

Also, we have that z () > v,. First note that y/(7)(z,0) > v, for all j, because
y! (m)(x,0) > x; () > v, as player i can always choose not to make any offer (S = {i})
and € X. Also, y/(n)(z,0) = g, 05 (7)(S) (Tiesjzs(7) + Ipggyzi(wS)) > v
because = € X. Therefore,

yi(m)(x, 0 _5(229] maﬁ)%—(l—&)vi(ﬁ)zyi.

JjE™
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(2) F (z) is a convex (and non-empty) set for all z € X: Say that z,2’ € F (x)
with z = y(z,0) and 2/ = y(z,0’) where 0,0’ € X(z). Then, for any A € [0,1],
A+ (1 =N 2 =ylx, A0+ (1 —X)o') € F(z) because Ao + (1 — X) o’ € X(z) (X(x)
is convex).

(3) F is w.h.c., that is, for any sequence (z",y(z",0")) — (x, z) with 6" € 3 (z")
then z € F(z) (i.e., there exists an o € X(x) such that y(z,0) = z). The sequence
(c™) belongs to ¥ a compact subset of a finite-dimension Euclidean space. Therefore,
there exists a subsequence of (o) that converges to o € ¥. Rename this subsequence
as (0") for notational simplicity. We have that o} (7) (S) — o; (7) (S) for all S C 7
and ¢ € m € I, and that y(z",0") — y(x,0), due to the continuity of y, and thus
z =y(z,0).

It is sufficient to show that ¢ € X(x). By the definition of ¥(z), o € X(x) if
and only if 0 € ¥ and o;(7)(S) = 0 for all S C m and ¢ € © € II such that
z5(mS) =D s wi(m) < max (,CEs(ﬂ'S) — D jes mj(w)) . Consider any S C 7 for which
the inequality above holds. By continuity, we have that there exists a large enough
no such that for all n > no, zg(7S) — > g2} (m) < max (m@(wS) — Dies x’;(ﬁ)) .
But since ™ € ¥(z™), this implies that o7 (S) = 0, and o; (S) = 0. Q.E.D.

PROOF OF LEMMA 3: For all o satisfying C = C(o) then p = p (o) satisfy

Yoo u@S) = Y Y pima;(n)(S) =

SeCr(m) SeC,(mw) jem
= ij (m) Z o (m)(S) = Z p; (m) for all r,
jem SEC, () jeP(m)

because if j € P, (m) then supp (o, (7)) C C, (7), which corresponds to the last set
of equations in F(C).
Now, if ¢ — j then there exist a coalition S such that i,5 € S and o; (7) (S) > 0.

But because supp (0; (7)) C argmax {e (7) (S) z} then
{ScmieS}

e 1= {ngi)ecs} {Z‘S(TFS) - Zm](w)} <ej.

jes
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Repeating the same argument, if there is a path from 7 to j then e; < e;, and if
i is connected to j then both have the same excess e; = e;. Thus, A\, (1) = ¢; =
z5(mS) — D jcs @y, forall S € C, and all i € P, (). Substituting the expressions for
the excesses into equation (8) finishes the if part of the proof. The reciprocal follows
directly from the construction of the polyhedral sets M and &¢. Q.E.D.

Proor or THEOREM 4: The implicit function theorem immediately implies
that, for any game (v*,p*) and regular solution (z*,u*, \*) there exists an open
neighborhood B C R? x R of (v*,p*), an open neighborhood W C RYx R™ x RY
of («*,u*, \*), and a mapping (z(v,p), A (v,p),u(v,p)) € R” x R™ x R? such that
z(v,p) = (x(v,p), A (v,p), u(v,p)) is the only solution of problem F(C) in W for all
games (v,p) € B. Note that since A (v,p) is a function of z(v,p) (see second set of
equations in (13)) then z(v,p) is the only solution in a cylinder W x R? for W an
open neighborhood of (z*, p*) .

It remains to show that z(v,p) is an MPE solution. By lemma 3, z(v,p) is an
MPE solution if z(v,p) € & and p(v,p) € Mc. Choosing the open neighborhood W
small enough, we get that z(v,p) € & because z* is a strong solution (z* € int(&)).

It remains to show that p(v,p) € M. Consider the following lemma.

LEMMA 5: The dimension of the affine hull of Mc is dim(af f (Mc)) = m — q, and

aff(Me)=Le=SpeR™: > pu@(S)= > pin)

SeCyr(m) JEP- ()

Furthermore, Mc is an open set relative to its affine subspace, that is, ri(Mc) = Me.

PROOF OF LEMMA 5: First note that M is a convex set. We have seen that
M C Le, then aff (M) C Le. But dim(L¢) = m — ¢: the matrix M¢ of order
g X m has rank ¢. Thus it is enough to show that dimaf f (M) = m — ¢ to conclude
that af f (Mc) = Le.

The affine space aff(Mc) = aff (Me,) ® ... ® af f (Me,) (@ is the direct
sum) where Me, := {(1(5))gee, : 1 € Mc }. Therefore it is enough to prove that
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dim(af f (Me,)) = m, — 1 since then dim(aff (Mc)) = S0, dim(aff (Me,)) =
m — q. In the sequel, we drop the subscript r from C, and P,.

In order to complete the proof of the lemma it is sufficient to prove the following
claim: Given any vector ((S))gc. such that Y "¢ . 1 (S) = 0 then there exist vectors
(0:(5)) g5, for all i € P, such that > ¢ . 0:(S)lies) =0 and >, p 03 (S)es) = 1 (S) .

We prove the claim by induction. The induction hypothesis is: Let P; and P be
two disjoint subsets of P and let Cy, = {S € C: SN By # (0} for k = 1,2 and suppose
that each P is connected. That is, for any ¢ and j in P} there exists a path linking
i and j (¢ and j are directly linked if there exists a subset S C C} with 7,5 € 5).
Suppose that the claim hold for each pair (P, Cy). We now show that the claim also
holds for P' = P, U P, and C' = C; U (s if this pair is connected (thus C; N Cy # 0).
Take any (14(S))gce, such that > o, 1 (S) = 0. Construct p, (S) = p(S) if S €
C'\C_y and p, (S) = agp (S) if S € C1 N Cy where ay, is such that 3 g one , 1 (S)+
kY gecyne, M (S) = 0. Note that there always exist a solution, because Cy N Cy # ()
and the solution satisfies p1; (S) +py (S) = p (S5). Since Y g, pi (S) = 0 there exists
(Gf(s))SSi for all ¢ € Py, such that Y ¢, 0¥(S) s = 0 and >, p 0¥ (S)jcs) =
i (S). The sum o;(S) = 0}(S) + 07(S) is such that Y ¢ 0:(S)hes) = 0 and
Yiep 0i(S)ics) = p(S) as required by the claim. In order to complete the proof
start with P, = {i} and P, = {j} such that there exists a SN {i,j} # 0 and S € C.
After applying the claim we obtain a set P’. We can proceed iterative by letting
P, = P’ and choosing a new P, = {k} that is connected to P; (it always exist

because of the connection assumption) until we obtain P’ = P. Q.E.D.

Lemma 5 shows that the dimension of the affine hull of M is m — ¢ and that
M is open relative to the affine hull. Thus, there exists an open neighborhood W
of (a*, u*) € & x Mc such that (z(v,p), u(v,p)) € W C & x Me. Q.E.D.

PROOF OF THEOREM 5 (CONTINUATION): Consider the combined induction
hypothesis: Almost all games with less than n players are strongly regular and all
such games have local solution mappings z (v, p) that are surjective.

All games with 1 player are strongly regular and the solution mapping z(v) = v is

surjective. The only CDS is C = {{1}} and obviously the Jacobian matrix of problem
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F (C) is nonsingular.

Let m be a c.s. with n players, and let us represent by a subscript 0 the references to
the c.s. 7 and by the subscript —0 the references to all its proper subgames. Let Vj x
Ag represent the set of all (v;(7), p;(7)) and V_gx A_g the set of all (vi(w’),pi(w’))ﬂien.

Let R_g C V_g x A_g be the set of games that are strongly regular and the local
mappings z_o (v, p) are surjective. According to the induction hypothesis almost all
games of V_y x A_g belong to R_j. Consider the solutions of F¢,(zo, vo, Po, V-0, P—0) =

0 where zy = (29, Ao, f4y) and the Jacobian matrix at the solution,

dzofc d)\ofc dyofc _(1 - 6)10 0 0
d(zo,voypo,vfoyp—o)FCO - ECO 0 0 0 - (d(v_o,p_o)g (37—0))
0 Me, 0 -M 0

(20)

where g : V_o — R™ is the linear map g (z_o) (S) = zg(nS) for all the m sets
in the CDS C. Note that the linear map ¢ is surjective, and thus the composition
gox_g(v_gp_g) is surjective (the composition of surjective maps is surjective). But
then we have that Fg, (2o, V0, po, V—o, p—o)M0. Therefore, by the transversality theorem,
for almost every (v,p) € V x A, Fe,(20)MO0.

If the rank of E is smaller than m then the Jacobian matrix d,Fp, where z =
(x, A, 1) cannot have full rank (see expression (16)), and thus it must be the case that
for almost every game, say Rc C V x A, there exists no solution to problem F'(C). If
the rank of F¢ is equal to m we have already proven that for almost every game the
solution of F(C) are strongly regular.

It remains to show that the local solution mappings x (v, p) of problem F(C) are

surjective. But

= d(vo,po)xo d(v_o,p_o)xo
0 d(v_o,p_o)x—o

because x_o does not depend on (v po) , and it is thus enough to prove that xg (v, p) is

41



surjective (by the induction hypothesis d(,_, ,_o)Z_0 is surjective). The implicit func-
tion theorem gives us the expression of the derivative of the local mappings (refer to
(13)) as, dgyp) o (v,p) = [d.Fe].," diwp)be,, Where [d, Fe]." is the submatrix of [d, F¢] ™"
restricted to the first n rows, and be, (v,p) = ((1 —6)ve, g0 x_o(v_0p—0),ho(p))
where ho (p) () = > ;cp, () Pj () . But the product of matrix d(, 5)be,, which is sur-
jective, and matrix [szc]T_Ll , which is also surjective, is a surjective matrix. Thus we
conclude that zg (v, p) is surjective.

So all games in R = NeeepsRe are strongly regular (and satisfy the surjectivity
induction hypothesis), and the complement of R, (Rd X Ad) \ R, has measure zero

because there are only a finite number of CDSs. Q.E.D.

LeFSCHETZ FIXED POINT THEOREM (LFPT) (McLennan 1989): Let 7 be the
collection of admissible triples (X, F,U) where X C R™ is a finite simplicial complex,
F : X — X is aupper hemicontinuous contractible valued correspondence (u.h.c.c.v.),
U C X is open, and there are no fixed points of F in U — U. Then there is a unique
Lefschetz fixed point index A(X, F,U) that satisfying the following axioms (when X
is implicitly given we just say A(F,U)):

(Localization axiom): If F, F; : X — X are w.h.c.c.v. correspondences that agree on
U, and (X, F1,U), (X, Fy,U) € T, then A(X, F1,U) = A(X, Fy, U).

(Continuity axiom): If (X, F,U) € 7T, then there is a neighborhood W of Gr(F") such
that A(X, F',U) = A(X, F,U) for all wh.c.c.v. correspondences F' : X — X with
Gr(F') e W.

(Homotopy axiom): If h: [0,1] x X — X is a homotopy with (X, hy,U) € 7, for all
t, then A(X, ho,U) = A(X, hy,U).

(Additivity axiom): If (X, F,U) € T and Uy, ..., U, is a collection of pairwise disjoint
open subsets of U such that there are no fixed points of F' in U — (U},_,Uy) then
AX,FU) =5 AMX,F,Uy).

(Weak Normalization axiom): For y € X, let ¢, be the constant correspondence
cy(z) ={y}. If y € U then A(X,¢,,U) = 1.

(Commutativity axiom): If X € R™ and Y C R"™ are finite simplicial complexes,
f: X —=Yand g:Y — X are continuous functions, and A(X,go f,U) = A(X, fo

9,97 (U)).
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PROOF OF LEMMA 4: Define the correspondence F(x) = © — F(z), where F(z)
is the correspondence defined in (7). The Lefschetz index of F and the degree of F
are related by A(F,U) = deg(F,U,0) (see McLennan (1989)), and, for convenience,
we work in the remainder of the proof with the concept of degree.

For each point = consider the mixed linear complementarity problem, or MLCP(0)

h(o) = 0,
ghz) =0, (21)
A free variable, ¢ > 0and 07g (A, z) =0,

where the functions h and g were defined in (8). Let z(z) = (A(z),0(z)) be a
solution of the MLCP(0) (there can be multiple solutions). Note that F(z) =
{f(z,z(x)): z(z) is a solution of MLCP(0)}, where the function f has also been
defined in (8).

Let (z*, A", u*) be any strongly regular MPFE with an associated CDS C = (C, P),
with C' = (C4,...,Cy) and P = (P, ..., P;). By lemma 3, there exists 0* € ¢ such
that p* = p* (0*), and (z*,0*) is MPE. Furthermore, because all points in P, are
connected, we can choose a strategy profile o* satisfying supp (6}) =C, N{S C 7 :
i€ S} forallieP,.

Consider now the perturbed mixed linear complementarity problem, or MLCP(¢)

h(e)(A,0) =h(o)+e(A—A") =0,
ge)(x,o,N) =g(x,\) +e(0c—0c*) >0, (22)

A free variable, 0 > 0, o7g(e) = 0,

where € > 0. The Jacobian matrix M () of MLCP(e) is a P-matrix (i.e., a matrix
with all its principal minors positive). This is so because (see Cottle et al. (1992,
pg. 154)), M(e) = M + €I, where M is the Jacobian of MLCP(0), is a Py-matrix
(i.e., a matrix with all its principal minors nonnegative). Let us prove that M is a
Py-matrix: Consider the principal matrix Mpgg associated with a subset [ of lines (or

columns).'® We now show that either det(Mpgg) is equal to zero or one. Note first

18We refer to the lines corresponding to dh; and 9g; (S) as lines )\; and o; (), and the columns
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that det(Mgg) = [],.,det(Mps,s,) where 3 = U,;3; and f3; are the elements of 8 with
entry 4 (either \; or o; (9) for some S 3 7). But det(Mps,) = 1 if 8; = {N\i,0; (9)}
and is zero otherwise. Therefore, we conclude that all principal minors of M are
nonnegative, and thus M is a Fy-matrix.

Given that MLCP () has a P-matrix then there is a unique solution z. (z) (Cottle
et al. (1992, pg. 150)) for all x: MLCP(e) can be transformed into a standard
LCP eliminating the variable A and the equation h(e) = 0 (this is possible because
M(e) = el is nonsingular), and the transformed LCP also has a P-matrix (the
Schur complement of My, () in M (¢)). Note that, in addition, we have that z. (z*) =
(A*,0%), and that z. (z) converge to a solution of MLCP(0) when ¢ — 0 (Cottle et
al. (1992, pg. 442)), and that 2. (x) is piecewise linear in z.

We now show that, because z* is a strong solution, there exists an € > 0 such
that for every 0 < e < € there exists an open neighborhood U, of x* such that z. ()

is smooth in U.. Moreover, if we let o represent the index set
a={0;(S):forall SeC, andiec S}, (23)

then all o; (S)-coordinates of the solution z. (z) that do not belong to « are zero, and

z (z) are explicitly given by (Muu (€)™ ga(z), where Mo (e) is

elpe (drg), ]

Maa =
(E) [ dah €I,\)\

and the vector ¢, (z) has A;-coordinate equal to (A} — 1), and o; (S)-coordinate in
a equal to e0; (S)" +e(S) (z), for all 0 < e < € and z € U..

In order to prove the above claim consider the function
o(z) =minU!_, {e(S) (z) —e(T) (x): S€ C.,TNP, #0, and T ¢ C,} .

Naturally, the function ¢ is continuous in z and, because z* is a strong solution,

corresponding to % and %‘S) as columns \; and o; (S) . Also, we use the standard notation that
Aqa, Ao, and A,. represent the submatrix of A with, respectively, rows and columns, columns, and

rows extracted from the index set «. Also, @ denotes the complementary set of a.
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@(x*) > 0. Therefore, there exists an € > 0 and an open neighborhood U C U« of z*,
such that all z € U satisfy p(x) > 2. Now suppose that the solution z. (z) for x € U
is such that a o; (T')-coordinate is non-zero for 7' ¢ C, and i € P,.. Then ¢;(¢) (T) =0
which is equivalent to \; + ¢ (0, (T') — o} (T')) — e(T') (x) = 0, and implies e(T") (z) >
Ai — €. Also, g;(¢) (S) > 0 for all S, and thus \; + ¢ (0, (S) — o7 (5)) — e(S) (z) > 0,
which implies that e(S) () < \; + €. Therefore, e(S) (z) — e(T) (z) < 2e < 22 for
z € U, in contradiction with ¢(x) > 2¢ for all x € U. Now, since z. (z*) = (A", 0%),
and supp (of) = C, N{S C m : 4 € S}, and z. (x) is continuous, then there exists
an open neighborhood U, C U,« of z* where all o, (S)-coordinates of the solution
belonging to a are non-zero. This implies that g;(¢) (S) = 0 holds for all o; (S) in «a,
and thus z. (z) = (Maa(£)) ™ ga(z).

Define the mapping F. (z) = f(z, z- (x)) (this mapping is well-defined due to the
uniqueness of z. (z)), where F, (z*) = 0. Since f is smooth and z. () — z (z) then
F. () — F (x) . Therefore, for every 6 > 0 there exists  such that dzst (F. (z),F(2)) <

6, for all 0 < ¢ <Z. But since F (z) has no zeros in the boundary of OU then F, (x)
also does not have any zeros in 0U. By the homotopy and continuity property of the
degree, deg (F,U,0) = deg (F., U, 0), for & close to zero.

Therefore, it only remains to show that deg (F.,U,0) = sgn (det(dF¢ (2*))) for €
close to zero, where z* = (z*, A*, *). This result follows from sgn (det(d,F. (z*))) =
sgn (det(dFe (2*))) # 0, as we will show. Indeed, this implies that F. is nonsingular at
x*, and thus there exists an open neighborhood V' C U of 2* where z* is the only zero
of F.. But since the point z* is the only zero of F(z) in U C U,+, and F. (z) — F (z)
then there are no zeros of F. in the compact region U\V, for ¢ small enough, and
thus z* is the only zero of F. in U. A well-known property of the degree then implies
that A(F,U) = deg (F.,U,0) = sgn (det (d,F. (z*))) = sgn (det(dF¢ (2%))).

We now show that sgn (det(d,F. (z*))) = sgn (det(dF¢ (2*))) , for £ small enough.
Consider F(z,0,\) (),

f(z,o,N)

F(z,o,))(e) = h(o)+e(A—X\")
g\ z)+e(o—0%)
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Simple linear algebra shows that the Jacobian d,F. (z*) is the Schur complement of

Moo () in dF,, () (dyF. (2%) = dF oy (€) [Mayy), where

(dxf) daf d)\f
dFaa (6) = (dxg)a €Iaa (d)\g)a ) (24)
0 dah EI)\,\

is evaluated at point (z*, \*, 0*) . Therefore, det (d,F. (z*)) = det (dF,q (€)) / det (Maq)
(see Cottle et al. (1992, pg. 75)). But since det (Myo) > 0 (M is a P-matrix) then
sgn (det(d,F. (z*))) = sgn (det (dF,q (€))) -

We claim that sgn (det (dFuq (€))) = sgn (det(dFe (2*))) . In order to prove the
claim we use the following formula for the determinant (Cottle et al. (1992), pg.
60): for an arbitrary diagonal matrix D, det(A+ D) =} det Dy det A, where the
summation ranges over all subsets «y of lines. Observe that matrix dF,, (¢) = A+ D,
where A = dF,, (0) and D is the diagonal matrix,

0 O 0
D=0 el,, O
0 0 EI)\/\

Developing the expression for det (dF,, (¢)) using the formula above we get a polyno-
mial in € (det D5 is a power of € ). We are only interested in the non-zero coefficient
with lowest order because, when e converges to zero, this is the coefficient that de-
termines the sign of det (dFy,q (¢)) .
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The rows and columns of matrix A = dF,, (0) corresponding to o; (S) and \; are
R(0:(S)) = ) Tyesie(z;) +e(X),
J
R(N) = =) e(0:i(9)),

SeC,

Cloi(9) = Zﬂ[ﬁsﬂj(s)e(%)—e(&),

CON) = —piele) + Y e(oi(5)).
SeC,
where vectors e(z;), e (\;), and e (o0; (S5)) are the unit vectors at, respectively, coor-
dinates z;, \;, and o, (5).

Consider A,. the submatrix of A corresponding to the rows a of A. Let 3 be a
maximal subset of a such that rank (Ag.) is different from zero (|3| = rank (A..)
and rank (Ag.) = rank (A,.)). Note that A,, where ~ is the set of lines v = g U
{NiientU{z;:ien} is equal to A, = dFjpg(0), according to the definition
(24). Also, det A,.,, = 0 for set of lines 4" that strictly contains v because [ is a
maximal subset of a such that rank (Az.) # 0. We now show that det (dFjpg(0)) =
det(dF¢ (2*)) # 0, which proves that the lowest-order non-zero coefficient is equal to a
positive integer (the number of maximal subsets § C «) multiplied by det(dF¢ (2*)),
and thus sgn (det (dFuq (€))) = sgn (det(dF¢ (2*))) , for £ small enough.

We now propose an algorithm replaces all rows and columns o; (S)’s with the
same S by only one row and column o; (S) for all S € C,., and also replaces all rows
and columns \; for all ¢ € P, by only one row and column )\, for each r =1, ..., q.

Algorithm: Start with matrix A = dFjpg (0).

Step 1: Choose an element r, that have not yet been chosen, from the set
{1,2,...,q} and proceed to the next step, or else, stop if the choice is not possible.

Step 2: Choose two distinct rows o, (S) and o (S) of A with j # i and S € C,
and proceed to the next step, or else return to step 1 if the choice is not possible.

Step 3: Subtract row o; (S) from row o;(S) (i.e., R(c;(S)) = R(0;(S5)) —
R(0;(5))), and add column A; to column A; (i.e., C (\;) = C(N) + C();)). The
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matrix that is obtained after the two operations have the same determinant as ma-
trix A. Let this matrix be the new matrix A. After these two operations, row o; (.5)
of A has only one non-zero entry at column \;, with a value equal to 1. The de-
terminant of A can be computed by a co-factor expansion along row o, (S), and
|A| = (—1)#eS)+#X)| A'| where A’ is the submatrix obtained after deleting row
0; (S) and column A; of matrix A.

Now, perform the following symmetric transformations on the submatrix A": Sub-
tract column o; (S) from column o; (S) (i.e., C (0; (5)) = C (0, (S))—C (0, (5))) and
add row \; to row \; (i.e,, R(\;) = R(\) + R(};)). The matrix that is obtained
after the two operations have the same determinant as A’. Let this matrix be the new
matrix A’. After these two operations, column o, (S) of A’ has only one non-zero en-
try at row \;, with a value equal to —1. The determinant of A’ can be computed by
a co-factor expansion along column o (S) , and |A’| = (—1) x (—1)#oa()F#X=1)| A7
where A” is the submatrix of A’ obtained after deleting column o; (S) and row A;:
observe that the column o, (S) of A’ is in the same location as row o; (S) of A’,
but row \; appears one entry before column A; of A (because the row o; (S) that
has been removed appears before row ;). Putting together the expressions for the
determinant yields |A| = |A”|. Let matrix A” be the new matrix A, and return to
step 2.

Because [ is a maximal subset of a with rank (Ag.) # 0 and rank (E¢) # 0, the
algorithm starts with matrix A = dFjs(0) and ends with matrix A = det(dF¢ (2*))
(maintaining the same determinant in all steps).

Therefore, det (dFps (0)) = det(dF¢ (2*)), as we claimed. Q.E.D.

PROOF OF COROLLARY 3: Let (z,0) be any MPE, and say that u = u (o). We
only need to analyze the c.s. m = {{1},{2},{3}} because we already know that
two-player games have a unique equilibrium (Rubinstein (1982)).

We first show that X (i, S) = z; (1) —z;(7S) > 0, where ¢ ¢ S, if there is a positive
probability that S is chosen in equilibrium. Say that S = {j, k} (if S = () (no proposal
case) then z;(mS) = x; and if S = N = {1,2, 3} then there are no elements i ¢ S). In
order to simplify the notation, let x; = z; (1), z;(7S) = z; (jk), zs(wS) = z;i, (jk),
and V = vy ({N}). Suppose that S is chosen in equilibrium with positive probability.
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Then e (S) (z) > e(N) (z) , which is equivalent to,
z (jk) —xj —xp >V —x; — x; — xp,, (25)
and
ik (JF) + @i (k) + 2 — 2 (k) 2 V. (26)

But since there is no delay in the formation of the grand coalition when the game is
at the c.s. {{jk},{i}}, we have that

ik (JF) + 2 (k) = 6V + (1 = 8) (v (7K) + i (jF)) -
Replacing this expression into (26) yields
X (i, k) = w2 — 2 (k) = (1 = ) (V = (vjr (&) + v (7K))) = 0.

We now compute det(dF¢) for all admissible CDS C = (C, P), and show that
det(dFg) > 0. From the definition of CDSs it follows that P = (Fy,...,F,) is a
partition of N and C' = (C4, ..., C,) is an ordered disjoint collection of subsets S C N
satisfying: for all S € C, then SN P, # () and S C U,_, Ps, and also Ugec, S D P,
Moreover, theorem 2 implies that there is no S = {i} that is chosen in equilibrium,
and thus C,. C {{1,2},{1,3},{2,3},{1,2,3}}. A list of all admissible CDSs (except
for permutations of the players) follows with the corresponding value for det(dF¢) (i,
J, and k are distinct elements of N, and d; = 1 -0 )¢ pu(S)es), 2(4, jk) = 6 X (i, jk),
and w; = Op;):
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CDS C det(dFp)
({120 {L3} {230 {L2.31)) | 2(2,13)2(1,23)2(3, 12)
({{1,2}, {1, 3}, {1,2,3}}) 2(3,12)2(2, 13) (w1 + d1)
(11,25, {1,2,3}}) 2(3,12)(dyws + duda + wady)
{{1,2.3}]) dywyds + dvdyd + drdyws + dadgun
({{1,2},{2,3},{1,3}}) > ik (di + 2wi) 2(k, ij)2(j, ik)
({{1,2},{1,3}}) > i (diwn + didy +widy)z(j, 1)
({{1,2}} {{1,2,3},{1, 3}, {2,3}}) | #(2,13)2(1, 23)(w; + d3)
({{1,2}}, {{1,2,3}, {1, 3}}) 2(2,13) (w1 + di) (w3 + ds)
({{1.2}},{{1,2,3}}) (dawy + dady + wady)(ws + ds)
({41, 21} {{1,3},{2,3}}) Digzs(2wi + di)2 (], i3)) (w3 + ds)
({{1,2}}, {{1,3}}) (dawy + dady 4 wady) (w3 + ds)

Note that the first 6 entries of the table corresponds to CDSs with P = ({1,2,3})
and the last entries to CDSs with P = ({1,2}, {3}).
The determinant for all CDS's are nonnegative because it is a sum of nonnegative

terms. Corollary 2 implies that there is a unique global MPFE solution. Q.E.D.
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