ARROW’S EQUIVALENCY THEOREM
IN A MODEL WITH NEOCLASSICAL FIRMS

BY SVETLANA BOYARCHENKO!

In this paper we consider a two-period general equilibrium model with uncer-
tainty and real assets as financial instruments. The novelty of the analysis is
that real assets are the stocks of neoclassical firms, so that both returns and
yields depend on anticipated spot goods prices (and, of course, the yield matrix
may change rank with prices). Assuming that financial markets are potentially
complete, we establish generic existence of financial equilibrium and prove that
there exists a dense set of economies such that financial equilibria are efficient.
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1. INTRODUCTION

The fundamental feature of a general equilibrium model with real assets is that their
yields depend on endogenous variables, such as anticipated spot goods prices, and the
rank of the asset returns matrix may be less than full, and in general this rank may
vary across financial equilibria. It is well known that existence and efficiency of financial
equilibria crucially depend on whether asset markets are complete or not. In particular,
Hart (1975) constructed an example of an economy and an incomplete asset structure
for which no equilibrium existed, as well as an example of an economy for which one of
the financial equilibrium allocations was inefficient. Thus, when the rank of the asset
returns matrix is not fixed, one can at most prove generic existence and efficiency (when
applicable) of financial equilibria.

Generic existence of financial equilibria with intrinsically incomplete real asset markets
was shown in Duffie and Shafer (1985), Husseini et al. (1990), Geanakoplos and Shafer
(1990), Hirsch et al. (1990). Generic existence of financial equilibria with potentially
complete real asset markets was established in Duffie and Shafer (1986), Magill and
Shafer (1990) and Cass and Rouzaud (2000). The main idea behind these proofs is to
consider the Walrasian counterpart of the benchmark financial model and to show that
generically, spot goods prices and firms’ production decisions generate the asset returns
matrix of full rank. Since in the case of complete asset markets Walrasian equilibria are
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Polemarchakis and A. Villanacci. I am thankful to participants of the Conference on Economic Design
SED 2000, Istanbul, Turkey (June 2000) and Inter—University Student Conference, New York University,
New York (May 2000).
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allocation equivalent to financial equilibria, the result above implies generic existence of
financial equilibria with potentially complete real asset markets.

To prove their results, Magill and Shafer (1990) consider point input-output technol-
ogy, which is given exogenously, so the authors are free to impose a regularity condition
on the asset structure. In Duffie and Shafer (1986) and Cass and Rouzaud (2000), firms
make optimizing decisions but the economy is specified by households’ and firms’ en-
dowments and all the generic results are obtained by varying these endowments which
is equivalent to parallel shifts of transformation functions. In addition, both Duffie and
Shafer (1986) and Cass and Rouzaud (2000) specify technology in terms of the trans-
formation functions following the tradition of Balasko (1988). Though this tradition
allows one to deal with the simplest specification of a smooth technology, it is not very
meaningful economically: it does not exclude the case when output tomorrow is used as
input today and allows firms to re-allocate their production across the states of nature
after a state has been revealed.

In our view, it is more meaningful to use an alternative specification of technology:
that is to assume that the firm chooses inputs today to produce state contingent outputs
tomorrow. Such specification was used, for example, by Geanakoplos et al. (1990)
in their proof of generic inefficiency of financial equilibria with intrinsically incomplete
asset markets. However, these authors used translations of transformation functions to
establish their results.

In this paper, the economy is characterized by households’ endowments and firms’
transformation functions, which specify technology described above. To establish generic
results, we use perturbation of transformation functions. Even though the idea of char-
acterizing an economy by a set of functions rather than by a set of endowments is not
new in itself and goes back to Smale (1974), only perturbations of utility functions were
considered so far (see, for example, Geanakoplos and Polemarchakis (1986), Cass and Ci-
tanna (1998), Citanna et al. (1998). Perturbation of transformation functions turns out
to be more complicated because it requires that such important properties as bound-
edness of production sets hold uniformly for families of transformation functions. In
addition, the perturbation technique of the aforementioned authors heavily depends on
regularity of equilibria which is true for Walrasian equilibria or financial equilibria with
nominal or numeraire assets, but it does not have to be true for financial equilibria with
real assets. We use a different perturbation technique, which does not require regularity
of equilibria, so we can apply it to show that there exists a dense set of parameters for
which financial equilibria have complete asset markets.

It is necessary to notice that, in addition to all technical issues, a financial equilib-
rium model with neoclassical firms gives rise to a crucial conceptual problem, which is
addressed, in Cass and Rouzaud (2000). This is a so-called “catch-22 of present value
maximization”. If in equilibrium, financial markets turn out to be incomplete, then nei-
ther the firm manager has a reliable way to infer how the market values future streams
of profit, nor the firm’s objective can be unambiguously defined. There are several ways
of specification of the firm’s objective, which make the firm’s problem well defined (for
details, see relevant discussion in the paper). We use present value maximization as the
firm’s objective with the same justification as in Duffie and Shafer (1986).
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The rest of the paper is organized as follows. We provide problem specification in
Section 2. In Section 3, we introduce Walrasian equilibria and show their existence.
In Section 4, we prove that there exists an open dense set of parameters such that for
all economies specified by parameters in this set, financial equilibria exist. In Section
5, the existence of a dense subset of parameters such that for all economies specified
by this subset, financial equilibria are efficient, is established. Section 6 contains main
conclusions. Technical results and proofs are delegated to Appendices.

2. PROBLEM SPECIFICATION

2.1. Economic environment

We consider a competitive, two-period production and exchange economy with real
assets and uncertainty. We assume that there are {2, {2 > 1, possible states of the world
in the second period, and there are G, G > 1, commodities in each spot, labeled by g =
1,2,...,G. We label each spot by w =0,1,...,8, where w = 0 corresponds to the first
period. There are H, H > 1, households labeled by h = 1,2,... , H, and F firms, F > 1,
labeled by f = 1,2,...,F. Households own shares of firms, the initial shareholdings
being s,s. In the first period, firms choose inputs for production, commodities and assets
are exchanged and first period consumption takes place. Then uncertainty is resolved,
firms produce, and households fulfil their financial commitments and, finally, exchange
and consume second-period commodities. Let ¢ be the consumption of commodity g in
state w by household h; similar notation is used for the endowments, €}*Y. Consumption
is an element of RY for each household, where L = G(Q +1).

2.2 Preferences

Household h’s preferences are represented by the utility function uy, : RfL + — R Let

(C‘;’g)?:l; Ch = (c‘,‘{)gzo; c= (Ch)hH:1§

CUJ
h
e (6279)5:13 €n = (EZ)S:M e= (eh)thl'

We assume that
Al ue C*RE))
A2 Vh and Ve € Ry, Duy(c) > 0
A3 VAc € RF such that Ac # 0 and Duy(c)Ac = 0, Ac' D?up(c)Ac < 0
A4 for each indifference surface of w, its closure is contained in RY |
A5 e, € E, ERE__H
A6 >, spy=1V f.
The first five assumptions are standard assumptions of the smooth model of households’
behavior, and the last one is a normalization of stock holdings.
2.3 Production

A typical firm is described by its production set Yy C R”. The input vector is 3§ € RY,
and the output in each state is y7 € Rf. For simplicity, we assume that the firm may
use all commodities in state 0 as inputs and produce all the variety of commodities in
state w. It is possible to show that these unrealistic assumptions can be relaxed and
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the firm can be described by the production set which includes only a certain subset of
commodities chosen as inputs in state 0 and a certain subset of commodities produced
in each state w > 0.

Equivalently, firms can be characterized by transformation functions 4 : R xR¢ — R.
Let

e ) G . —_— Q . —_— F
Y8 = (5 )g=s Yr = (W)o—0s ¥ = (Yr)j=1-
The relationship between the production set and transformation functions is given by

Yy ={y; e R"| t4(y%,4%) > 0, Vw > 0}.

To specify transformation functions, we introduce a class of functions 7; such that any
t € 7Ty satisfies the following conditions:

T1 te C(RE xRY)NC*(RY_ xRS, ), D,t € C(RE x RY) and D,t € C(RE_ x RY)
T2 Dt(u,v) <0V (u,v) € R xRY, and D,t(u,0) < 0V u € RE_

T3 V(u,v) € RY xR, |V (0 #)Aw € RS x RY, Aw? D*(u,v)Aw < 0

T4 t(u,0) =0V u € ORY, and ¢(u,v) <0V (u,v) € ORY x (RS \ {0})

T5 Dy, t(u,v) =0V (u,v) € RE x R such that v; =0

T6 ||Dyt(u,v)|| = oo as u — 0 uniformly in v such that t(u,v) =0

T7 For any € > 0, there exists C > 0 such that

t(u,v) =0 & (u,v) €RY xRS = ||v]| < C +¢€|ul|.

The first two assumptions above are fairly standard assumptions concerning smoothness,
monotonicity and concavity of transformation functions. Assumption T4 is a positive
input condition that we will use to rule out corner solutions to the firm’s problem, and
the last group of assumptions are generalized Inada conditions which will help us to
establish boundedness and non-emptiness of a constraint set in the firm’s problem.

We use as the leading example of a transformation function satisfying all the afore-
mentioned assumptions the following function:

G G
t(u: U) = - Z ag(,ug)ag + H bg(_ug)ﬁg’
g=1 g=1
where

a
(u,v) ERE xRY; ay>1Vyg; 0,>0Vg; Zeg<1; a?,b? >0V g.
g=1
This is a generalized Cobb-Douglas technology that makes it possible to produce a linear
combination of outputs.

We endow 7, with the following topology: a sequence {t}2°, C Ty converges to t € T
if and only if

(i) for any compact K C R® x RY, ¢*| — t|K in C'(K) topology;

P
(ii) for any compact K C R x RS t’] . = t| . in C*(K) topology.
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We identify ¢, a function of (y°,y“), with a function of (3°,y',... , %), which does not
depend on y*', w' > 0, w' # w. Let t; = (t)9—, be a vector of transformation functions
of firm f. We assume that

T8 For all f, t; e (76)9, where (76)Q is endowed with the product topology.

Introduce a set T = (75)"" and endow it with the product topology. Let a generic
element of 7 be denoted by T = (t;){_,. Let E = x,E, = Rl be endowed with the
usual topology. A generic element of F is denoted by e. So, an economy is characterized
by e € E and T € T. The set of all economies is therefore £ x 7T, which is endowed
with the product topology.

Remarks on the properties of Ty.

(1) The topology on Ty can be given by a countable system of seminorms. Thus there
exists a metric on 7, such that the topology induced by this metric agrees with
the one defined above. Hence, the spaces 7 and E x T are also metrizable. The
significance of this fact is that it allows us to formulate our topological arguments
concerning continuity, closedness and density in terms of converging sequences
rather than open sets.

(2) If t € Ty, from T3 it follows by continuity of ¢ that ¢ is concave on R% x Rﬁ.
Indeed, if y,y’ € R x RY and A € (0,1), then for small enough € > 0, we have
by T3

A—¢€ N l—e—A
o (L —ey+ey)+ ——

which, passing to the limit as € — 0, gives
At(y) + (1= Ni(y') <ty + (1= N)y),

i.e. t is concave.

tley + (1 —e)y) <ty + (1 - Ny,

2.4 Financial instruments

For simplicity assume that the only financial instruments are stock shares, and for
specificity, that financial markets are potentially complete, i.e. F' = €. Let z,J: be the
demand of asset f by household h, with 2z, = (z,{)?zl, z = (z,)f_,. Introduce ¢/, the
market value of firm f, ¢ = (¢ )ff:l, and p"9(w), the price of commodity ¢ in spot w,
P (w) = (p"9(w))S, is the price vector in spot w *. We will also use the following notation:
P' = diag[p'(w)]}=o- Let Y(p',y) = [p'(w)y4]F,-, be the matrix of all firms’ anticipated
future revenues. We will call Y (p', y) the return matrix. Notice that both returns and
yields depend on anticipated spot goods prices (and, of course, the return matrix may
change rank with prices). It is also convenient to consider an (2+1) x Q matrix R'(p',y)
given by

R = | vyl |

2Al1 price vectors are row vectors.



6 S. BOYARCHENKO

A portfolio z, € R? has market value ¢ - z, and payoff Y (p',y)z, in R?. We rule out
arbitrage opportunities for z,, all h. No arbitrage is equivalent to (see, for example,
Duffie (1996)) existence of a state-price vector A € ]RSZ + such that

(NAC) ¢ = Z/\ w)yt;

w>0

this condition implies that market values equal the expected future values.
2.5 Financial equilibrium

Now we are in a position to define a financial equilibrium (FE) for an economy (e, T')
as a vector (p, ¢, v, q, z) such that

(F"): Firms maximize the present value, i.e., for all f, given p’ and the vector of
state prices
A= (Aw)); >0, y; is an optimal solution to

max P'( yf + Z Aw
w>0
subj. to t‘;(y?,y‘}’) >0, Vw>0.
(H"): Households maximize utility, i.e., for all h, given p', A, ¢ and vy, (cp, z) is an
optimal solution to

max uy(cp)
(chﬂzh)

SUbj. to Ccp € Bh(pla RI);

where

Bu(p/,R) ={ch €RY, | Pllch —en— Y snpyp) = R (), y)zn}-
7

(M¥): Spot goods and stock share markets clear, i.e.,

Z Ch — €p) ny—O and
h

Zzh:O.

h

(NAC): State prices satisfy no-arbitrage condition.

Notice that the above specification of FE contains a serious conceptual problem named
in Cass and Rouzaud (2000) “catch-22 of present value maximization”: to calculate its
present value and hence its optimal production plan, a firm has to infer the state prices,
but to be able to do the latter, the firm already has to know its optimal production
plan together with other firms’ optimal production plans, market values and spot goods
prices. When financial markets are complete, it is possible to show that present value
maximization is equivalent (up to re-scaling of prices) to the well-defined profit maxi-
mization. When markets are incomplete, the vector of state prices cannot be determined
uniquely (any two shareholders will typically face different state prices) which implies
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that firms’ objectives cannot be unambiguously defined. There are several ways of assign-
ing a well-defined objective to each firm. One of them is to impose spanning conditions
similar to those in Diamond (1967), Ekern and Wilson (1974), Radner (1974) and Leland
(1974).However, these conditions prove to be rather restrictive. Also one may propose
alternative firms’ objectives like in Cass and Rouzaud (2000), or Grossman and Hart
(1979), so that firms maximize present values weighted by firm specific coefficients, and
the latter reflect beliefs of shareholders. However, as it is argued in Duffie and Shafer
(1986), these objectives require even more information on the part of the firm’s manager
than inferring how the market values future payoffs. At the same time, present value
maximization is consistent with existence of equilibrium. It can also be justified by a
strong notion of competition, proposed by Makowski (1980), which means that share-
holders take both prices and spans of markets as given. This argument seems the most
appealing to us therefore we adopt present value maximization as the objective of the
firm.

The (NAC) allows us to eliminate the asset prices from the budget constraints in (H').
We set p(0) = p'(0), p(w) = Mw)p'(w), w > 0, then by no-arbitrage,

g =Y _pw)yy.

w>0

Introduce
P = diag[p(w)li-;; P = (p(w))os;
a=E)y =)y 9= )y

then it is easy to show that

By(p',R) = Bu(p,Y) = {Ch ERY | p-(ch—en— ) snpys) =0 and
i)

Pen—én— Y snsily) = Y(p, Q)Zh} -
!
As a result, we can redefine FE as a vector (p, ¢, y, z) such that

(F¥): Given p, for all f, y; is an optimal solution to

maxp - Yy
Ys

subj. to t‘;(y?,yf) >0, Vw>0.
(H™): For all h, given p and ¥, (cp, 21) is an optimal solution to

max up(cp)
(Chﬂzh)

subj. to ¢, € Br(p,Y).
(MF): The market clearing conditions hold.
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It was shown by Hart (1975), that in the case of potentially complete markets, FE
does not necessarily exist. Therefore, we can at most show that FE exists generically,
i.e., on an open dense set in E x T. Notice that the conventional definition of (“strong”)
genericity means that some property holds on an open, full measure set. Here, we are
able to talk only about a weaker notion of genericity because we treat transformation
functions as exogenous variables. To prove generic existence of FE, we will first consider
the Walrasian counterpart of the financial model described above and show that there is
an open dense set in the space E x 7T such that on this set, Walrasian model is allocation
equivalent to financial model.

3. WALRASIAN EQUILIBRIUM
3.1 Definition

We define Walrasian equilibrium (WE) for an economy (e, T') as a vector (p, ¢, y) such
that

(FW): Firms maximize profits, i.e., for all f, given p, y; is an optimal solution to

maxp - yy
yf

subj. to t‘}’(y?,y}") =0,Vw>0

(HY): Households maximize utility, i.e., for all h, given p and ¥, ¢, is an optimal
solution to

max uy(cp)
Ch
subj. to ¢, € By(p),
where

Bh(p) = {Ch € Rﬁ+| p- (Ch —ep — Zshfyf) = 0}
f

(MW): Contingent commodity markets clear, i.e
D (en—en) = ur=0.
h f

The following lemma establishes the relationship between Walrasian and financial equi-
libria provided both exist.

Lemma 3.1: (a) If (p,c,y) is WE and Y (p,9) has full rank, then there exists z such
that (p,c,y,z) is FE.
(b) If (p,c,y,2) is FE and Y (p,9) has full rank, then (p,c,y) is WE.
Proof. In Appendix A.

On the strength of Lemma 3.1(a), to prove generic existence of FE, it suffices to show
that there is an open dense set in £ x T such that Y (p, ) has full rank.

3.2 Existence of WE
The existence of WE can be established by the following claims.
Claim 3.2: Given p > 0, there exists a unique solution y;(p), all f, to (FW).
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Claim 3.3: Given p > 0 and y, there ezists a unique solution cp(p,y), all h, to (HY).

We normalize > p?(w) =1 and set excess demand
d(p) =D (enl®) = en) = 3 us ().
h f

Thus, p belongs to the simplex

St={peRy| Y > rw) =1}

and d is a function on S~1.
Claim 3.4: For any sequence {p*} C int S*=! converging to p € 0S¥,

lim ||d(p”)|| = oo.
V—oQ

Finally, we use the Brouwer’s Fixed Point Theorem to prove the statement below.
Claim 3.5: There exist market clearing prices p € int S¥~1.

The last 3 claims can be proven by standard arguments. The uniqueness result in
Claim 3.2 follows from strict concavity of transformation functions, but existence is less
trivial than for the case of smooth transformation functions. The idea of the proof is
standard: we introduce a constraint set ®(¢,p) = {y € RE x R¥| p-y >0, t(y) > 0}
and show that this set is non-empty and compact. After that, using the Maximum Value
Theorem, we conclude that the profit function attains the maximum on ®(¢,p). Finally,
it is possible to show that the first of the constraints defining ®(¢,p) is non-binding. It
not difficult to argue compactness of the constraint set, but non-emptiness requires some
elaboration due to the properties of transformation functions. We provide the complete
proof of Claim 3.2 in Appendix A.

We need to establish one more auxiliary result before we characterize WE. The follow-
ing lemma allows us to rule out corner solutions for the firms’ optimization problems.

Lemma 3.6: The optimal solution to (FW) satisfies

Proof. In Appendix A.

3.8 Characterization

Existence of WE having been established, we proceed as follows. It is trivial to check
that solutions to households’ and firms’ problems can be characterized by the Kuhn-
Tucker conditions. Further, we can rule out corner solutions in the firms’ problems on
the strength of Lemma 3.6.
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Let A, > 0 be a Lagrange multiplier for household A’s problem, and py = (u$)0_; € R,
be a vector of Lagrange multipliers for firm f’s problem. Define A = (\;)iL, € Rf . and
uw=(p f)ff:l € Ri? The equilibrium system of equations can be written as follows:

(3.1) Duy(cp) — Mp=0 V h;
(3.2) _p'(ch_eh_zshfyf)zo V k;
f

for all w > 0, f,
p(0) + Xuso HDot} (y7, 4F) =0,
(3.3)
p(w) + us Dt (y},y5) =0
we use the notation Dy for the derivative of t‘}’(y?, y;‘c’) with respect to the first argument,
and D,, for the derivative with respect to the second argument;

(3.4) tjﬁ(y?,y?) =0V f Yw>0;
(3.5) Z(Ch —en) — Z?Jf = 0.
h f

A price vector, p, is defined up to a positive scalar factor. We choose it so that p lies on
the unit sphere St~ C RL:

(3.6) p-pf=1,p>0.

Denote by ©" a set of (e,7) € E x T such that a system (3.1)-(3.6) has a solution
satisfying rankY (p,9) < Q. Set © = E' x 7 \ ©'. Our main goal is to show that © is
open and dense in E x T, i.e. generically, matrix Y (p, y) has full rank.

4. GENERIC EXISTENCE OF FINANCIAL EQUILIBRIUA

4.1 Openness
In this subsection, we will prove the following statement.
Theorem 4.1: © is open in E X T.

To establish openness of ©, we may prove that ©' is closed; since it is a subset of a
metric space (see remarks at the end of subsection 2.3) it suffices to show that, given
a sequence {(e”,T")}2, C ©' converging to (e,T) € E x T, we have (e,T) € ©'. We
begin with several auxiliary results. First, we know that, given (¢,p) € (75)? x RZ | the
firm’s optimization problem

(4.1) maxp-y subj.to t“(y%y“) >0 Vw>0
y

has a unique solution y = y(¢,p). Moreover, we can prove the following result.
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Lemma 4.2: The function (t,py+ y(t,p) is continuous.
Proof. In Appendix A.
We also know that, given (p,e,y) € B=RY, x RE, x (RE x R9), the household’s
optimization problem

4.2 max u(c
(42) max u(c)

where
B(p)={ceR |p-(c—e=> spy;) =0}
f

has a unique solution ¢ = ¢(p, e,y). As above, we are able to show continuity of c.

Lemma 4.3: The function (p, e, y»+ c(p,e,y) is continuous.
Proof. In Appendix A.

Thus, we have established that given the price vector is strictly positive, consump-
tion and production are continuous in prices, endowments and transformation functions.
Therefore, when we show that for any sequence {(e”,T")}2; converging to (e,T), the
sequence of price vectors converges to a strictly positive vector, then we will be able to
prove that © is closed. We will argue that prices converge to a positive vector by using
the “boundary condition” for excess demand, but to be able to do this, we first need the
following result.

Lemma 4.4: Let {t"} C Ty converge to t € Ty and let (u”,v”) € R x RS be such that
t’(u”,v”) = 0 for all v. Suppose that there ezists Cy > 0 such that ||[u”|| < Cy for all v.
Then there ezists Cy > 0 such that ||v”|| < Cy for all v.

Proof. In Appendix A.

Now we prove the following analogue of Claim 3.4.

Lemma 4.5: Let a sequence {(e*,T")} C E x T converge to (e,T) € E X T and a se-
quence {p"} C SLINRE, converge top € S*INORY. Let y(TV,p") and c(p”, e, y(T",p"))
denote the optimal solutions of the problems (FWV) and (HV), respectively, and set excess

demand
d(pua el/’ TV) = Z(Ch(pua 6U7 y(TIJ’pl/)) - e}Ul) - ny(TU’pl/)
h !
Then

lim ||d(p”,e",T")|| = oo.

v—00

Proof. In Appendix A.

Finally, we can complete the proof of Theorem 4.1. If {(e”,T")} C ©' is a sequence
converging to (e,T) € E x T, choose a corresponding sequence {(y”,p”)} such that
Y (p”,y") has rank less than full, that is, detY(p”,y”) = 0. We claim that it has a
subsequence converging to some (y,p) € (RY x ]RS;FQ)F x RE_ . Since the unit sphere
SL=1is compact, we may choose a subsequence of {p”}, without loss of generality the
sequence itself, converging to some p € S*~!; by Lemma 4.5, we have p > 0. Then
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by Lemma 4.2, {y”} also converges, and by Lemma 4.3, the corresponding sequence
{c¢"} converges. An argument similar to the one used in Lemma 4.2 to prove that the
mapping 7 is continuous shows that the sequences {Dot%” (47", y%")}, { Dty (¥, y$)}
converge. Now if {(\”, )} is the corresponding sequence of Lagrange multipliers solving
(4.1)-(4.6), it is obvious that it also converges, hence the whole sequence of tuples of
endogenous variables converges and the limit of the sequence is WE. Now by continuity,
if (y,p) = }Lr&(y”,p“), then det Y (p,3) =0, so (e,T) € ©'. Q.E.D.

4.2 Perturbation technique and density

In this section, we prove density of the set © in F x 7. We are going to prove it
by contradiction. Suppose that © is not dense, then there exists a point (e,T) € ©’
and its open neighborhood W (e, T) such that W (e, T) C ©'. By definition of product
topology, there exist open sets U C E, V C T such that (6,T) e UxV Cc W(e,T) C ©'.
Starting with this assumption, we will eventually arrive at a contradiction. We are going
to append to Kuhn-Tucker equations (3.1)—(3.6) additional equations which express the
fact that the return matrix has less than full rank. Then, we will perturb all endogenous
and exogenous variables in this extended system and write linearized extended system.
If we show that its matrix has the highest possible rank, we will be able to conclude that
there does not exist W (e, T) C ©'. The main problem here is that (e,T) is an element
of an infinite dimensional set, so to be able to perform the procedure described above,
we construct a finite dimensional family {T(A)}ac4 C T, where A C R*" is an open
set containing the origin, such that the map T : A — T is continuous, and T(0) = T.
After that, we will consider the open set

M=UxT*V)CExA

parameterizing a set of WE for which the rank of the return matrix is not full. Notice
that M is a smooth manifold, because it is an open subset of F x A C ]Rff x REE,
We will show that there exists a smooth surjective map from a finite union of smooth
manifolds of dimension less than dim M onto M, which will give a contradiction.

We start with the description of the family {7(A)}ac4. Let
A= (Apf, A= ()

w=0"

where o4 € R* are such that a‘}’j > —1 for all j. Drop indices f and w for the time
being. For a function ¢ € 7y and a vector a € R?¢ (o > —1, V j), introduce a function

ta: R xR — R

y = ta(y) =ta-y),
where a is the matrix a = I +diag[o/]3%,. Notice that a;; = 0 if 7 # j and a; > 0, Y 7; in
particular, a is invertible. It is easy to see that such parameterization of transformation
functions is equivalent to a change of units of input-output vector.
First of all, we have to verify that the family of functions described above belongs to
the class of transformation functions 7.
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Lemma 4.6: t, € 7y.

Proof. By the chain rule,
Dty(y) = Dyt(a-y) = Dt(a-y) -a < 0,
i.e. t, is strictly decreasing. Next,
D?*t,(y) = Dy(Dyt(a-y)) = Dy(Dt(a-y)-a) = a’ - D*t(a-y) - a.
Hence D?t(a-y) = a”  D?t,(y)-a~". Since for every 0 # v € R*¢ v - Dt(a-y)-v < 0,
(a )" - D*t(y) - (a7 'w) < 0.
Since a~! : R2¢ — R?“ is an isomorphism, we can write the last condition as
wl - D*a(y)-w <0, V0#weRY,
which means that ¢, is differentiably strictly concave. It is straightforward to check that

all other assumptions concerning the behavior of ¢ € 7 hold for ¢,. Q.E.D.

Now we must check that T : A — T is continuous. In other words, we have to prove
the following lemma.

Lemma 4.7: Given a sequence o — «,
(i) for any compact K C R x RS, tov K= ta|K uniformly on K and
(ii) for any compact K C RE_ xRY, ¢

++7 ba¥
to the second order uniformly on K.

Proof. In Appendix C.

In order to prove density of ©, we will have to work with linearized equilibrium equa-
tions. Therefore, we need the following result.

Lemma 4.8: At any y € R¢_ x R¢

P ta‘ x together with all the derivatives up

++
Duta(y) - Aa = Dio(y) (a7" - yOAe);
2G
1 - -
D,Dt,(y) - Aa = diag [Eajta(y) (a7t - yOAa) + Dt (y) (a7 - yOAQ) .
j=1

Here, O denotes component-by-component product of vectors, and 0; stands for the
partial derivative of t,(y) with respect to the j-th argument.
Proof. Is obtained by direct computation with the help of the formulas derived in the
proof of Lemma 4.6.

The finite dimensional parameterization of a subset of ©' having been defined and
its main properties having been established, we are ready to outline in more details the
argument by which we arrive at a contradiction. If rankY (p, ) < Q then there exists a
vector S € R® such that

(4.3) B-Y(p,9) = 0;

(4.4) B-BT =1.
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Introduce .

= G QG

E=RYE xRY, x (RO, xR7S)” xRY, x R,
a manifold of endogenous variables with the typical element & = (¢,p,y, A\, u). Let
E = Z x R?, the manifold of extended endogenous variables with the typical element
(&, ). Let

N=H(L+1)+FL+Q+L+1+Q+1.
We append equations (4.3) and (4.4) to the system (3.1)-(3.6) and introduce
$p:EXExT —RY,
a smooth map consisting of the left-hand sides (3.1)-(3.6), (4.3) and (4.4). Define
I ={(B8eT)| 6(&B,e,T) =0} CEXEXT,
or equivalently, IT = ¢~1(0). Obviously,
o' = (1),

where 7 : Z x E x T — FE x T is the natural projection. Let M be a smooth manifold
defined at the beginning of this subsection. Consider a smooth map

Y:Ex M — RV,

I3k

given by the composition
(67 /6’ e’ A) '_> (6’ ﬂ’ e’ T(A)) '_> ¢(§’ IB’ e’ T(A))

Let I' = ¢~ 1(0), which is the inverse image of I in Z x M, and 7y : = x M — M be
the natural projection. By construction, 7y, (I') = M. We will prove that I is contained
in a finite union of submanifolds of £ x M of dimension less than dim M. Once this is
obtained, the equality 75/(I') = M becomes impossible, and we are done.

For an element ¢ = (£,e, A) € 2 x M, let Tg(é x M) denote the tangent space to = x M
at (. We identify the tangent space to RY at the origin with RY itself, then for every
point ( € T, we have the differential

Dy|, : T¢(E x M) — RY.

By the corollary to the Preimage Theorem (see Magill and Shafer (1990)), if we can show
that rankD1ﬁ| ¢ > N—1forall ( € I', then I' is contained in a finite union of submanifolds
of Zx M of dimension dim Z4dim M — (N —1) = (N —2)+dim M — (N —1) = dim M —1.
Fix a point ¢ € T'; we complete our argument with the following theorem.

Theorem 4.9: rank(Dw‘C) = N — 1, which is the highest possible rank of the Jacobian.

Here we will just outline the idea of the proof of the last theorem, and the complete
proof is presented in Appendix C. We start with writing the system of equations (Dw‘ C) .

AC = Ab, where Ab € RY is arbitrary. Notice that this system cannot be solved for
any right-hand side since the original equilibrium equations (3.1)—(3.6) are not linearly

independent because of the Walras’ Law : p- (Zh(ch —en) — D g yf> = 0. This implies

some condition on Ab which defines a hyperplane in RY. Therefore rank(D¢| C) cannot
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be higher than N — 1. Below, in order to avoid introducing numerous new notation, we
will put ** for arbitrary right-hand sides of all equations in this system:

(45) DQUh(Ch) . ACh - /\hAp - A)\hpT =%x V h;

— p(Ach — Aeh — Z Sthyf) —
f

—(ch—eh—ZShfyf)T-Ap:** Y h;
!

(4.6)

Ap( +Z[AufD0t + (Dgot - Ayj+
(47) w>0

+D3,Ot‘a’fAy? + DaDOt‘a’anf)} =x*xx*x V[

(4 8) Ap( )+A/'L(})D taf +:u’f (DOw afAyf+
+D? wlafAYF + Do D taonzf) =xx V fiw>0;

Here we use the notation Doty = Dyota (yf,yf) Dty = Dyets (y5,y%), and Dgyts,

Yy af Yy af
DZyts s, Dgte;, D2 denote the correspondlng Jacobians evaluated at (y7, y%).

ww af
(410) Z(Ach—Aeh)—ZAyf = %%,
h f
(4.11) p-Ap = *x;
(4.12) D CARPW)YE + Y BUYY Ap(w) + Y BUp(w)AyY = xx ¥ f;
w>0 w>0 w>0
(4.13) B-AB = *x .

We prove the theorem by the following steps.
Step 1. Prove that the system (4.11)-(4.13) can always be solved for Ap, Ag and Ay~.
Step 2. Set

Aa? A~ _ Y At
ser= (30 )+ o= (5) = ()25,

then show that given Ap and Ay“, the system (4.7)-(4.9) is solvable for Ay® and A~~.

Step 3. Given Ap, Ay and Aey, for h > 1, the system (4.5), (4.6), (4.10) is solvable for
Ac, Ae; and A if the right-hand sides of these equations satisfy some condition (see
the proof), which is derived from the Walras’ Law.
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These facts together imply that the whole system (4.5)-(4.13) is solvable provided its
right-hand side satisfies a certain condition. This condition defines a hyperplane in RY .
Thus,

dimIm(Dy| ) = rank(Dy| ) = N — 1.
Q.E.D.

5. GENERIC EFFICIENCY

5.1 Preliminary results

In the previous section, we proved that there exists an open dense subset © C F x T
such that for every (e,T) € © and any WE (p, ¢, y), the return matrix Y (p,7) has full
rank. Therefore, by Lemma 3.1, there exists z such that (p,c,y, z) is FE. Now we are
going to show that there exists a dense set of economies ©gp C © such that for any
(e,T) € Oq, FE (p, ¢, y, z) have complete financial markets, i.e., rankY (p, §) = . If this
is the case, then again on the strength of Lemma 3.1, FE is allocation equivalent to WE,
hence it is efficient.

Unfortunately, we cannot use the same argument as in Subsection 4.2. We can ap-
ply the perturbation technique, as before, but we cannot show that the corresponding
Jacobian has the largest possible rank unless we know that the return matrix has full
rank, but that is what we need to prove here. Therefore the proof of density will be
more complicated. We are going to introduce pseudo-equilibria which are allocation
equivalent to FE. After this, we will prove that there is a dense set ©qg C © such that
pseudo-equilibria with rankY (p, §) < Q do not exist on Oq. This will imply that FE are
efficient on Og.

Introduce the following notation. If the return matrix has rank less than full, let

1 < p =rankV(p,g) < Q — 1. (Notice that since p(w)yf > 0V f,w > 0, we have
rankY (p,y) # 0.) Fix subsets 3= = {i1,...,4,} and I+ = {ji,...,j,} of {1,...,Q},
where 3~ (J7) denotes a set of linearly independent rows (columns) of Y'(p, 9). Let

Y=Yl Y° = Wighas, jeos
evidently, Y has full rank.
Let

P = dla‘g[p(zl)]‘f:D 61’1» = (CZ)ZPZI; éh = (eill)lp:l; gf = (y;“l)ZPZI
Clearly, for every w € J~, there exists a vector 8* € R°*! such that
Y, YO T
/J’“-[ L w }=0, Y- gy =1,
(P(w)y§) =

1.e.

p
> Byl + Bp(w)y? =0V fV w g T
=1
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Notice that since the matrix Y is invertible by assumption, it follows that B2 # 0 for all
w. Recall that the following budget constraint defines the budget set By(p,Y) in (H"):

(5.1) P(en—én—Y_ suplly) =Y (D, 9)z.
!
Now we can rewrite it as
(5.2) P (&, —én— Zé‘hfﬂf) = [V Y]z
I

P-(Eh—éh—z Shf:l]f) :| _
5.3 o [ " w f " = 0Vwée&I .
(5:3) P)(& — & = 3y sns1fd) ?

The last equation is equivalent to

p
> Bep(i) (el — e =) snpy) + Bopw)(ch — € — Y sngyf) =0V fVw g I
=1 f f

5.2 Pseudo-equilibria
Introduce vectors o € R indexed by w ¢ J~, defined as follows
By it jeT
(5.4) of =9 By ifj=w
0  otherwise

Since % # 0 for all w, the vectors o are linearly independent; moreover, on the strength
of (5.3),

(5.5) o Pe(en—en—Y suply) =0VwgI .

f
Re-label w € 3~ as 1= 2,...,{2— p+ 1 and introduce new price vectors
(5.6) p'=p; p'=1+[0,a)P i>2,
where 1 = (1,...,1), a vector of length 2 + 1. Notice that since ||5¥|| =1V w ¢ T,
we have ||[a“|| = 1V w ¢ J7; moreover, since 3 # 0, and, clearly, at least one 3}’ # 0
(because p(w)y$ > 0), we have [af| <1 for all j =1,...,Q. In particular, ) > —1, so

the vectors 1 + o' are linearly independent, whence so are the vectors p* (because the
matrix P has full row rank.) Also, 1 + o’ > 0, so p' > 0 for all 7. The next lemma
allows us to reformulate the household A’s problem.

Lemma 5.1: If rankY (p, ) = p < 2, then the sets

B,(p,Y) ={cn € Ri+| p-(ch—en— Zshfyf) =0
!

and 3 2z : p(éh —ép — Z snrly) = Y (D, 9)zn}
f
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and

By({p'}) = {ChERi+| pi'(ch_%—zshfyf):(), Vi=1,... ,Q—p—|—1}
f

are equal.
Proof. In Appendix C.

Define an (J*, 37 )-equilibrium for an economy (e, T’) as a vector (p, ¢, y) such that

(i): rankY (p,y) = p and T (resp. J7) is a set of linearly independent columns
(resp. rows) of rankY (p, 7);

(ii): firms solve (FF);

(iii): households solve

(H?) max upy(cy) subj. to ¢, € By({p'})
ch

where p; are defined by (5.3), (5.4) and (5.6);
(iv): contingent commodities markets clear, i.e.,

Z(Ch —ep) — ny =0.
!

h

Now we are in a position to show that (3, 37)-equilibria are allocation equivalent to FE
with rankY (p, ) = p.

Lemma 5.2: (i) If (p,c,y,z) is FE such that rankY (p,§) = p and I+ (resp. IT7)
denotes the set of linearly independent columns (resp. rows) of Y (p,9), then (p,c,y) is
an (3, 37)-equilibrium.

(i3) If (p,c,y) is an (I*,37)-equilibrium, then there exists z € RH? such that
(p,c,y,2) is FE.

Proof. Part (i) is obvious. For part (ii), by Lemma 5.1, we know that there exists
z € RE®? gatisfying (5.1) (and hence (5.2)). We must prove that z can be chosen so that

Zzhz().
h

Since (p, ¢, y) is an (J*, ™ )-equilibrium, equation (5.2) uniquely determines z for f €
J%, while the rest of z}: remain undetermined. We can set them equal to zero, then by
construction,

Y ozl =0V fegat.
h
We can rewrite (5.2) as

(5.7) P (én—én— Z snpfiy) = Yz
!
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Summing up individual budget constraints over h and using goods market clearing, we

derive
Y-) =0 = > %=0
h h
because Y is invertible by construction. Q.E.D.

5.3 Characterization of pseudo-equilibria

It is obvious that (3,37 )-equilibria can be characterized by the Kuhn-Tucker condi-
tions. Let A, € RY.”"" be a vector of Lagrange multipliers for households’ problem. De-
fine A = (M), € R+(Q P+1)’ P = (p )Q Pl o RL(Q P+1), B = (8)wgr- € R©Q-p)(p+1)
The rest of the notation remains the same as in the previous sections. The system of
equations for a (J*,J7)-equilibrium can be written as

Q—p+1
(5.8) Du(cn) Z Xipt = 0 VB
(5.9) ch—eh—Zshfyf = 0Vh, i=1,...,9—p+1)
; _ 1+ B ))pt(w) fweT orw=1i

(5.10) for1>2, plw) = { p'(w) otherwise ’
(5.11) p'(0)+ > u4Dots(y},y5) = 0V f;

w>0
(5.12)  p'(w) + ufDuti(yy.yf) = 0V fw>0;
(5.13) Wy = 0V fiw>0;
(5.14) Zch—eh ny = 0;

h
(5.15) plopt = 1
(5.16) Y AP (Wi +Bp @y = 0 i=2,...,Q—p+1, Vf;

weJ~

(5.17) gp =1, i=2...,Q9-p+1

5.4 Density argument

In this subsection we show that there exists a dense subset of © such that for any
(e,T) in this subset, FE has the return matrix of full rank. Let X = R}, x (RE,)¥
(RY_ x R¥?)*¥ be the manifold of endogenous variables for FE with the typical element

= (p, ¢, y). Introduce

2 ={(z,e,T) € X x O] z is FE}.
For p=1,...,Q, set
0,={(e,T) € 0| 3 (z,6,T) € " : rank¥ (,9) = p



20 S. BOYARCHENKO

and V (2',e,T) € F, rankY (%', 9') > p}.
Notice that for any p' # p, ©, N O, = 0.

-1

Thus O is the set of efficient economies, and O = © \ ©q = |J ©, is the set of
p=1

economies such that in some equilibria financial markets are incomplete. Notice that in

the latter economies, there may exist equilibria with complete financial markets. On the

other hand, an economy is efficient when all equilibria have complete financial markets.

Suppose that Oq is not dense, then there exists a point (¢,T) € OF and its open
neighborhood W (e, T) such that W (e,T) C ©§. Let Eg and Te be the natural projec-
tions of © on E and T, respectively. By definition of product topology, there exist open
sets U C Eg and V' C Tg such that

(e,T)eUxV c W(eT) C 6.
Using the same finite dimensional family of transformation functions as before, we focus
on the open set
M=UxT'\V)CExA

parameterizing a subset of nonefficient economies. As in Subsection 4.2, we are going to
show that there exists a smooth surjective map from a finite union of smooth manifolds
of dimension less than dim M onto M which will give a contradiction. Introduce

20 = RIT x R % (RE. x RYS)T x RIS+ x RTD x RO+,
a manifold of endogenous variables for (I, 37 )-equilibria with typical element
£=(¢,P,y. A\, i, B). Let
N,=HL+Q—-p+ 1)+ FL+Q)+L+L(Q—p)+14+(Q2+1)(2—p).
Introduce
¢(3+7j—) 2P x 0 — RN”,
a smooth map consisting of the left-hand sides of equations (5.8)—(5.17). Define
g+ 5-) = qﬁ(_jiﬂ_)(()). Obviously
@?2 = U T(H(j+7j*)),
(3+,37)
where 7 is the natural projection. Consider a smooth map
w(j-i-,j—) 2P x M — RN”
given by the composition
(& e, A) —> (&6, T(A) — ¢(& e, T(A))
Let I'ig+5-) = 1/1(_3+ 3,)(0), which is the inverse image of I3+ 5-) in 27 x M and let

)
mar 2 2P X M — M be the projection. By construction,

M = U T (Lot 5-))- (1)

(3+,97)
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It is evident that the number of different pairs (J*,J7) is finite. We will prove that each
['(3+ 3-) is contained in a finite union of submanifolds of Z# x M of dimension less than
dim M. Once this is shown, the equality ({1) becomes impossible and we are done.

For a point ¢ = (£,e, A) € = x M, we have the differential
D+ g |+ Te(EP x M) — R

If we can show that rank D5+ 5-) ‘ ¢ > dim EP+1 for all ¢ € '3+ 5-), then by the corollary

to the Preimage Theorem, '3+ 5-) is contained in a finite union of submanifolds of =¥ x M
of dimension dim M — 1.

Fix a point ¢ € '3+ 5-).

Theorem 5.3: rank (D¢(3+’j—)‘g> =N,—(Q—p+1).
Proof. The proof basically repeats the main steps of the proof of Theorem 4.9 (see
Appendix C).
In Subsection 4.2, the proof of Theorem 4.9 completed the density argument for WE. Here

the proof of Theorem 5.3 is insufficient to establish density of ©q due to the following
reason. We have

dim=" = H(L+Q—p+1)+L(Q—p)+L+F(L+Q)+(Q—p)(p+1) = N,— (Q—p)*—1,
so by Theorem 5.3,
rank (Dy|,) > dim=” + 1
& N,—(Q-p+1)>N,—(2-p)?
(5.18) s Q-p@Q-—p—1)>1.

Obviously, (5.18) only holds if p < Q —1, but at least we know that I'(3+ 5-) is contained
in a finite union of submanifolds of =” x M of dimension less than dim M for all p =
#(37) = #(37) < Q — 1. It remains to consider I'iz+ 5-) for #(J3") =#(37) =Q - 1.

So far, we have only used the fact that if rankY (p, ) < Q, then the rows of the return
matrix are not linearly independent, and we have never used linear dependency of the
columns. Assume that rankY (p, ) = 2 — 1 and re-label the states and assets so that the
first Q2 — 1 rows and columns of Y (p, 3) are linearly independent. There exists a vector
v € R? such that

Q-1
(5.19) > v W)yd + et @)yE = 0 Y w;
F=1

(5.20) vyt = 1.

Append equations (5.19) and (5.20) to equations (5.8)-(5.17) written for the case p =
2 —1. Let

= _ mHL 2L G Qc\F 2H FQ Q Q
=R xRY x (R xRYF) xR xR xR? xR
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be a manifold of extended endogenous variables with the typical element £ =(£,7). Let
N =Nq_1+Q2+1, and let

$:Ex6 —RY
be the smooth map consisting of the left-hand sides of the extended system of equations.
Also, as before, we introduce

15 CEx M — RN,
and I = ¢ 1(0). Fix { € I'. We want to show that
rank (D@E‘E) >dimE+1=N-2.

If we prove this, then, using the corollary to the Preimage Theorem, we may conclude

that T is contained in a finite union of submanifolds of = x M, each of dimension less
than dim M.

Lemma 5.4:
rank (D1z|4~> =N-2.

Proof. In Appendix C.

6. CONCLUSION

We have examined the general equilibrium model incorporating households’ and firms’
optimizing behavior, uncertainty and potentially complete real asset markets. The two-
period economy is specified by households’ endowments and firms’ transformation func-
tions. The transformation functions belong to a sufficiently wide family of functions; the
technology is state dependent and goods in period 0 are used as inputs to produce state
dependent outputs in period 1. The main motivation for this analysis was to provide
justification for complete asset markets models used in theoretical Finance. In those
models, it is common to take stock prices as given and just to assume completeness of
financial markets.

In the first part of the paper, we proved, in the most general setting allowed by
a two-period general equilibrium model, that generically the model with neoclassical
firms and stock shares as financial instruments has an equilibrium. We had to use the
weak notion of genericity in terms of an open dense set of parameters, but if we consider
parametric transformation functions instead of more general functions, we will be able to
establish the same result on an open full measure set of parameters, i.e. strong genericity
applies. In the second part of the paper, we showed that FE are efficient on ©q which
is a dense set of parameters. Similar result was obtained in Cass and Rouzaud (2000)
for the relevant set of parameters specifying the economy and family of transformation
functions. Unfortunately, so far we managed neither to prove that this set was open, nor
to find a counterexample for this fact. In our opinion, there is no particular reason for
this set to be always open, or equivalently for the complement to this set to be always
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closed. To explain the last statement, we reproduce here one of the constraints defining
a household’s budget set in FE:

(6.1) P(en—eén—Y suplly) =Y (5, 9)zn V b
!

Let a sequence {(e”,T%)}52, C ©F converging to (e,7) € E x T be such that in FE
specified by the sequence, rankY (p”,9") = p < §2 and

P&y —eép =Y snyify) € ImY (5, 9°) V b
i)
or equivalently, there exist z;/, V h such that

V (¢h —éh— Zshfyf Y(p",9")z V¥ h.

Suppose that rankY (p,y) < p, then it is very unlikely that p(éh — ép — Zf ShflUs) €
ImY (p, ), and if this is the case, then there is at least one h such that zj, satisfying
(6.1) does not exist, or equivalently, FE with incomplete markets disappear in the limit.
Now, unless (e,T) € ©' (the set of parameters for which FE do not exist), on the
strength of density of efficient economies, by small perturbations, we may be able to find
{(e”,T")}52, enjoying all the above properties such that (e T) € Oq, which will imply
that ©Ff, is not closed. If this result can be obtained, it is rather a bad news for the
researchers who assume ad hoc complete real asset markets in their models. It will also
imply that Arrow’s Equivalency Theorem does not necessarily apply to real asset models
of FE. More precisely, it applies in the following sense: generically WE constitute a subset
of FE, and there is a dense set of economies such that FE are allocation equivalent to

WE.

Dept. of Economics, University of Pennsylvania, 3718 Locust Walk, Philadelphia, PA
19104-6297, U.S.A.; e-mail: sboyarch@ssc.upenn.edu
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APPENDIX A.

A.1. Proof of Lemma 3.1

First of all, notice that after re-formulation of FE, the firm’s problem and spot goods
market clearing conditions are the same for WE and FE. Existence of z is obvious since
rankY (p,y) =  implies that (6.1) has a solution z for any left-hand side. Hence if
¢n € Bi(p), then there is z, such that ¢, € Bp(p,Y). It remains to show that asset
markets clear. To this end, sum up (6.1) over A to get

p (Z Ch — €n) ny) Y(p, ?))Zzh

From commodities market clearing, the left-hand side of the last equation equals zero,
and since Y (p, 9) has full rank, we obtain ), z, = 0.
(b) Is obvious. Q.E.D.

A.2. Proof of Claim 3.2
In the firm’s problem (FW), drop subscript f and define ®(¢,p) = {y € RY XR$G| py >
0, t(y) = 0}.
We show that:
(i) ®(t,p) is bounded, and, since it is evidently closed, it is compact.

(i) The set ¥(t,p) = {y € R x ]RiEG‘ p-y > 0, t(y) > 0} is nonempty, so that
®(t,p) D Y(t,p) is nonempty as well.

We argue boundedness of ®(¢,p) as follows. Let y = (y°,w) and p = (p(0), py). By
property T'7 and equivalence of norms in RY, for any € > 0, there exists ¢, such that

ZZw‘*’g <ec —eZyOg
w>0 g

for any (y w) € ®(t,p). Also p(0)y°+p,w > 0. Take € > 0 such that 2(e, ... ,¢) < p(0),
then for 3% <0, p(0)y® < 2¢ 3, 4" and hence, since p, < 1,

0 < p(0)y° + puw < 2621109 +) Y wr < GZyog + Ce.
w>0 g
Hence — > 4% <c/eand > o> w*? < 2c.. Therefore ®(t,p) is bounded.
To establish non-emptiness we need to prove two auxiliary lemmas.
Lemma A.1: For any w >0 and v € RE_, t(u,0) > 0.
Proof. By the mean value theorem, there exists 6 € (0, 1) such that ¢*(u,0) — ¢t“(0,0) =

Dt“(6u,0)u. But fu < 0 and T2 imply that Dt“(Au,0)u > 0, and since from T4,
t“(0,0) = 0, we are done. Q.E.D.
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Lemma A.2: For all p > 0, there exists € > 0 such that ¥V 6 € (—¢,0), 3 0 > 0 such
that V. w > 1,

(u,v) =(6,...,0,0,...,0) € ¥(t“, p),
where
U, p) = {(u,v) € RE x ]Rf| t“(u,v) > 0, p(0)u + p(w)v > 0}.

Proof. From T1, D,t*(u,v) is bounded in a neighborhood of (u,v) = (0,0), hence from
T6,

|| Dyt” (u, v)|| = o(|| Dut(u,v)||) as (u,v) — 0.
On R__ x R, , define
“(r,p) =t“(r,...,7,p,..., p).
Then
| D, (r, p)| = o(| Dt (r, p)|) as (r, p) =0,
and from T2, D, < 0, Dpf“’ < 0on R _ xR,,. By applying the Implicit Function

theorem, an equation #(r, p) = 0 defines p as a function of r with

dp  0t/or dp
= afw/8p<0’dr_> oo asr — —0.

From T1 and T3, p(—0) = 0, and by applying to p = p(r) the Mean Value Theorem on
(—r,0), we obtain

p(r)/r — —oo as r — —0.
Hence, for any C' > 0, there exists ¢ > 0 such that if r € (=6, 0),

p(r) > —2Cr.

It follows that for o = p(r)/2, #“(r,0) > 0, and if C is chosen large enough (for a given
p) then
—r-p(0) + 0 - p(w) >0,

completing the proof. Q.E.D.
Now by the Maximum Value Theorem, there exists an optimal solution y(p) to

(F") maxp - y subj. to y € ®(t,p).

Since ¥(t,p) # 0, and by the strict monotonicity of the objective function in (F"), we
may conclude that the constraint p -y > 0 in the definition of ®(¢,p) is nonbinding,
i.e., any y,(p) solving (F") also solves (FV). Uniqueness of an optimal y(p) follows
from strict concavity of the transformation function. This completes the proof of Claim

3.2. Q.E.D.
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A.3. Proof of Lemma 3.6
(1) ygpt < 0 since otherwise v = 0 from T4, and then p -y < 0. But from Claim 3.2,
D - Yopt > 0.

(2) Let ¢ = ygpt < 0. Then a firm finds ¥, w > 1, by maximizing p“-v on the constraint
set

ot p,y") = {v > O‘ t“(y°v) >0, p*-v > 0}.
Since y° < 0, from Lemma A.1, t“(yy,v) > 0 in a neighborhood of 0; from T2 and T3,

so the set {v > 0| #“(y% v) > 0} is convex. From T5, D,t“(y°,v) is orthogonal to
coordinate axes and planes where {v > O| t(v) = 0} intersects them, and since p > 0,
an optimal v cannot be at the boundary of ]Rff. Q.E.D.

A.4. Proof of Lemma 4.2
Recall our previous notation:

(t,p) = {y € RE x RY®| p-y >0, t(y) > 0};

U(t,p) ={y € RY xR{| p-y >0, t(y) > 0}.
We know that the problem (4.1) is equivalent to

max p-y,
ye®(t,p)

so it suffices to verify that the correspondence ® satisfies the assumptions of Theorem
B.1 (b) (Appendix B). On the strength of T3, ® is convex-valued, and it is nonempty and
bounded-valued by the proof of Claim 3.2. Hence we must check that it is continuous, in
the sense of definition in Appendix B. So let {(¢,p")}32, C (75)® x RZ, be a sequence
converging to (¢,p) € (To)® x RL, . We have to prove that

(i) if a sequence {y” € ®(t",p")}>2, converges to some y € RS x R, then y € ®(t, p);
(ii) if y € ®(¢, p), then there exists a sequence {y”} C RE x RY? converging to y and a
number N € N such that for any v > N, y” € ®(¢t",p").

Introduce R = (7)) x RS, x (RY x RS™?). First we show that the map

n:R — R

(t,p,y1 (L(y),p-y)

is continuous. Let {(t”,p",y”)} C R be a sequence converging to (¢,p,y) € R. Clearly,
lim p¥-y” = p-y, hence we must show that lim ¢“(y") = t(y). Let € > 0 be given. Since
V—0o0

v—00

the set K = {y”} U{y} is compact, t* — ¢ uniformly on K (by definition of topology on
To), so there is N; € N such that

V>N, Vaek, |[tz)—t"(z)] < 65.
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Since ¢ is continuous, there is N € N such that for all v > Ny, |[t(y) —t(y”)|| < §. Then
for all ¥ > max{Ny, No}, we have

) = ¢ < [1ty) = )|+ l1tw) = @) < 5+ 5 =«

Now (i) is obvious. For (ii), we first consider a point y € ¥(p,t), that is, n(t,p,y) €
RYT!. Since 7 is continuous, the set 7~ (RY1") is open; by definition of product topology,
there are open sets U; C (75)%, U, C RY, , and U, C RS x RY" such that

(t,p,y) € Uy x U, x U, € H(REL).

Since t¥ — ¢ and p” — p, there exists N = N, such that for all v > N,, t* € U; and
p” € Up. Then for all v > N, n(t/,p",y) € RIT, that is, y € U(t*,p").

Now let y € ®(t,p) be arbitrary. By convexity of ®(¢,p), non-emptiness of ¥(¢,p)
(Lemmas A.1 and A.2) and strict concavity of ¢ on RE_ x RY?, there is a sequence
{yn} C ¥(t,p) which converges to y. We have just shown that for each n € N, there
exists N,, € N such that for all v > N,,, y, € ¥(p¥,1”). We will construct a new sequence
{y"} C RY x RY“ which converges to y such that for v > Ny, y” € ¥(t¥, p”), as follows.
First, define a sequence {n”} C N by the following recursive formula: n' = n? = ... =
n™M =1 and for v > N,

7’Lu+1 _ n’ if v +1< Nn"—I—l
] n¥+1 otherwise

Then let y” = y,». By construction, v > N, for all v > Ny, hence y* € ¥(t”,p") for
v > Ni. It is also clear that the sequence {n”} is (nonstrictly) increasing and is not
eventually constant, thus y” — y. This completes the proof of (ii) and with it of Lemma

4.2. Q.E.D.
A.5. Proof of Lemma 4.3
The argument is entirely similar to the proof of Lemma 4.2.

: p-(e+ 2 r55r)

57(]7, €, y) = 2 Zg prg(w)

We know that p-e > 0 and p-y; > 0, thus &(p,e,y) > 0. Since u is strictly increasing,
problem (4.2) is equivalent to the following problem

max u(c)
c€®(p,e,y)
where
b(p,e,y) ={ceR | —p-(c—e=_s;y7) >0, u(c) —u(clp, e,y)) > 0}.
f
Introduce

@(paeay) :{CERf}I—+| —p'(C—e—ZSfyf) >07 U(C)_u(é(p:€7y)) >O}
f
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Since u is strictly increasing, ¥(p, e,y) (and hence ®(p,e,)) is nonempty; for example,
3.¢(p,e,y) € U(p, e y). It is clear that ® is convex-valued and bounded-valued. Thus,
as in the proof of Lemma 4.2 |

(i) if a sequence {¢ € ®(p”,e”,y")} converges to some ¢ € RE, then ¢ € ®(p, e, y);

(i) if ¢ € ®(p, e,y), there exists a sequence {c”} C R’ converging to ¢ and a number
N € N such that for any v > N, ¢¥ € ®(p”,€e",y").
This time, however, our task is a little easier since it is evident that the mapping

i:BxRL, — R
(D ey, e (—p-(c—e =D spyy),ulc) — u(elp,e,y)))
i

is continuous. The proof of (ii) is exactly the same as in the proof of Lemma 4.2; therefore,
we will not present it here. For (i), the only difficulty is that we have to allow the limit
point ¢ € R¥, whereas 7] is only defined on B x RZ, . This problem can be avoided as
follows. Since &(p”,e”,y") — €(p,e,y) € RY ., there exists € > 0 such that for all v € N,
& (p”, €, y”) > €. Since u is strictly increasing, we have u(¢(p”,€”, ")) > u(e, ... ,€) for
all v € N, whence u(c”) > u(e,...,¢€) for all v € N. But the closures of indifference
surfaces of u are contained in RY |, so ¢ € RY_ . After this, the argument proceeds as in

-+
the proof of Lemma 4.2. Q.E.D.

A.6. Proof of Lemma 4.4

We claim that there exists r > 0 such that ¢(u,v) < 0 for all (u,v) € R x R with
llul| < Cy and |[v|| = 7. Indeed, if this is false, then for all » > 0, there exists a pair
(u,v) € RY x RS such that ||u|| < Cy, ||v|| = r and ¢(u,v) > 0. Since ¢ is strictly
decreasing, by applying T'7 with € = 1, we find C' > 0 such that ||v|| < C'+ ||u]| for these
u and v. As r was arbitrary, we obtain r < C'+ C for all » > 0, which is a contradiction.
Now for the r described above, the set

By ={y = (u,v) € RS xRY| [[ul| < C1, [jv]| =1}

is a compact, so since ¢ is continuous, there exists ¢ > 0 such that for all (u,v) € B,
t(u,v) < —2c. By definition of topology on Ty, t¥ — ¢ uniformly on B,, so there exists
N € N such that for all v > N and all y € B,, |t(y) —t“(y)| < ¢. Then for all y € B, and
all v, tV(y) < —c. Since each t” is decreasing, we also have t(y) < —c for all y = (u,v)
such that |ju|| < C; and ||v|| > r.

Similarly, for all v = 1,2,... , N — 1, there exists r, > 0 such that for all (u,v) € B,,,

t’(u,v) < 0. Now by construction, if ||u|| < C; and ||v|| > max{r,ri,re,... ,rnv_1},
we have t“(u,v) < 0 for all v. Hence in the statement of the lemma, it suffices to take
Cy = max{r,ry,re,... ,'N_1} Q.E.D.

A.7. Proof of Lemma 4.5

To simplify notation, write y¥ = y(T",p"), ¢ = ¢(p”,€",y") and
dv =d(p¥, e, T").
(1) If 4} — —oo for some f, then ||d”|| — oo because ¢” > 0 and {e”} converges.
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(2) Suppose there exists C; > 0 such that ||y}’|| < C; for all f and v. By Lemma 4.4,
there exists Cy > 0 such that for all f, w and v, |[y%”|| < Cy. Since e” converges,
there exists C5 > 0 such that for all v,

1> er+ Y ufll < Cs.
h f

By the boundary condition for utility functions, ||c}|| — oo for all h. Therefore
@[] — oo.
Q.E.D.

APPENDIX B

In this appendix, we state and prove a version of the Maximum Theorem which is
used in the proof of Lemmas 4.2 and 4.3.

Let A be a metric space and X C R"” a subset. Let ® : A — X be a correspondence
and f: X x A — R a continuous function. We are interested in problems of the form

Jnax f (z, ).

For a € A, denote by o(«) the set of optimal solutions of the problem above.
We say that @ is
(i) upper hemi-continuous (uhc) if, given a sequence {a”} C A converging to o € A and
a sequence z” € ®(a”) converging to z € R*, z € ®(«);
(ii) lower hemi-continuous (lhc) if, given a sequence {a”} C A converging to o € A and

an element z € ®(a), there exists a sequence {z”} C X converging to z and a number
N € N such that for all v > N, z¥ € ®(a”);

(iii) continuous if it is both uhc and lhe;
(iv) bounded-valued if for all « € A, ®(«) is bounded;
(v) convex-valued if for all « € A, ®(«) is convex.

Note that our definition of upper hemi-continuity is weaker than the conventional one
(see, for example, Stokey et al. (1989)).

The main result is as follows.

Theorem B.1: (a) If ® is continuous, bounded-valued and nonempty, then the corre-
spondence o : A — X is nonempty and uhc;

(b) If, in addition, @ is conver valued and o is single-valued, then o is continuous as a
function.

Proof. (a) It is obvious that if ® is uhc, then ®(«) is closed for all & € A. If ® is also
bounded-valued, then ®(a) is compact for all & € A; thus o is nonempty. To prove
upper hemi-continuity, consider a sequence ¥ C A converging to a@ € A and a sequence
¥ € o(a”) converging to x € R". Since ® is uhc, x € ®(a). To prove that x € o(a),
it suffices to show that for any 2’ € ®(a), f(z,a) > f(2',a). Choose such an z’, then
by lower hemi-continuity of ®, there is a sequence {z'"} C X converging to z’' and a
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number N € N such that for all v > N, 2™ € ®(«”). By definition of o, for all v > N,
f(z¥,a”) > f(z",a”). Taking the limit as v — oo yields f(z,a) > f(z', @).

(b) We claim that if a sequence {a”} C A is converging, then the set o({a”}) is bounded.
First we show how the claim implies the theorem. Let {a*} C A and o € A be such

that lim o” = a. By the claim, the sequence {o(a”)} is bounded, thus it contains a
V—0oQ

converging subsequence {o(a7)}%2,. By upper hemi-continuity and single-valuedness of
0-7

jli)rgoo(oz 1) = o(a).

Now if the whole sequence {o(a”)} does not converge to o(c), there is 6 > 0 and a

subsequence {o(a*)}2, such that

(B.1) llo(a) —o(a)|| > VieN,

but the sequence {o (i)}, is itself bounded, thus by the argument above, it contains

a subsequence converging to o(a). This contradicts (B.1). Hence lim o(a”) = o(«),
V—0oQ

and o is a continuous function.

To prove the claim, assume that the sequence {o(a”)} is unbounded, then there is a
subsequence (without loss of generality the sequence itself) such that

(B2) Jlim [[o(a")]| = .

Let {a”} converge to @ € A. Choose a point z € ®(«) (this is possible since ® is
nonempty). By lower hemi-continuity of ®, there is a sequence {2} C X converging to
z and a number N € N such that for all v > N, 2¥ € ®(a”). Choose R € R,. We
will prove that there is a point y € ®(«) such that ||z — y|| = R; this will contradict
the boundedness of ®(«). Since ¥ — x, there exists a number N; € N such that for all
v > Ny, ||z¥ — z|| < 1. By (B.2), there exists Ny € N such that for all v > Ns,

o ()| = [l=[| + R + 1.
Then for all v > M = max{N, N1, N}, we have 2" € (o), o(a”) € ®(”) and
lo(a”) —2”|| = [[o(”) — & — (2" — z)|| =
o (@) = [[z]| = [|&” = ][ > [|lz|| + R+ 1= |[z]| -1 = R.

Since ® is convex-valued, for v > M, the whole line segment between z” and o(”) lies
in ®(«”) and has the length greater than R by the calculation above. Thus we may
choose a point y” € ®(a”) on this segment so that ||y — z¥|| = R. For v > M, we have
" = 2|l < |ly” = 2"[| + [|l2" — 2] < R+ 1,
thus the sequence {y”}°°,, is bounded and hence it contains a converging subsequence
{y"}%2,. Let y = lim y*. By upper hemi-continuity of ®, y € ®(a). Passing to the
j—oo
limit as j — oo in the equality ||y* — z"i|| = R gives ||y — z|| = R. Q.E.D.
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APPENDIX C

C.1. Proof of Lemma 4.7

First, we show that if o — « (equivalently, ¢’ — a), then for every compact K C
RE_ X RS, , D%, (y) — D%,(y) uniformly on K.
Let K = {a-y|y€ K} and @’ = ¢’ -a ' = I + diag[a?]?%, then K C RS_ x RY_ is
also a compact and

D%t (y) — D?to(y) uniformly on K < D?t4 (y) — D*(y) uniformly on K.

Hence we may assume without loss of generality that a = I is the identity matrix. Since
a” — I, there exists a compact K' C RY_ x RY, such that K C K’ and o’ x K C K'
for all v. Since t is C?, there exists a constant M > 0 such that for all ¢/ € K’,
||[D?t(y")|| < M. Then for all y € K and all v,

||D?t0r (y) = D?t(y)|| = [|(a”)" D*t(a"y)a” — D*t(y)||
< |l(a")" D*t(a"y)a” — D*t(a"y)|| + || D*t(a"y) — D*t(y)l],
and
1(@”)" D*(a"y)a” — D*t(a"y)|| < C'- [|a” = I||* - || D*t(a"y)|| < C- M - ||a” = I|?
for some constant C' > 0. Since ||a” — I||*> — 0 as v — oc independently of y, it suffices
to show that D?*¢(a"y) — D?*t(y) as v — oo uniformly for y € K. Choose ¢ > 0. By
definition of continuity, every point y; € K’ has an open neighborhood V,,, C RE_ x ]Rf N
such that for all y' € Vj,, [|D*t(y") — D*t(yo)|| < €/2. By the triangle inequality, for
all ', y" € Vi, ||D*(y") — D*(y")|| < e. The open set {V,,| yo € K'} obviously form
an open cover of K'. By the Lebesgue Lemma (see for example, Bredon (1993)), there
exists > 0 such that if ¢/, y" € K’ satisfy ||y’ — ¥"|| < 0, then there is yo such that
y',y" € Vy,. Since K is compact, there exists a constant N > 0 such that ||y|| < N for
all y € K. Then for large enough v, we have ||a¥ — I|| < 0/N (because a — I), and
then for all y € K (and large v),
v v 0 . N=

oy =yl < lla” = 1|] - lyll < 7N =2
This means that if v is large enough, then for each y € K, there is yy € K’ such that
y,a"y € V,, and then by construction, ||D?t(a"y) — D?*t(y)|| < e.

Since there exists a compact such that if y € K, then a”-y,a-y € K. It is well-known
that every continuously differentiable function satisfies the Lipschitz condition: there
exists C' > 0 such that for all y,y' € K, [t(y') —t(y)| < C- ||y —y||- Now for all y € K,
we have

ltar () = tar ()| = [t(a-y) = t(a” - y)| < C-|[(a—a”)yl[ < C-la —a”|| - ||y]],

where ||a — a”|| is the norm of the matrix ¢ — a”. Since K is compact, there exists

M = sup ||ly|| < oo. Since o — «a, we have a” — a, that is, given, € > 0, there is N € N
yek
such that for all v > N,

la” —al| <

€
M-C
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Then for allv > N and all y € K, |t,(y) —tar (y)| < €, as was to be shown. Note that we
only used the fact that ¢ is continuously differentiable. Hence, in view of T1, the same
argument shows that the partial derivatives of order up to 2 of ¢,» converge to those of
to uniformly on K.

Note that we cannot use exactly the same argument for (i), since we cannot even prove
the Lipschitz condition for ¢ on RY x RY. Instead, we will prove directly that, given
€ > 0, there is N € N such that for all v > N and all y € K,

t(a”-y) —tla-y)| <e (*)

First, as before, choose a compact K C RS x ]Rf such that for all » and all y € K,
a’ -y € K. Since t is continuous and t = 0 on ORE x {0}, there exists # > 0 such that if
j € K and

dist(g, ORE x {0}) < 7, then |t(y)| < £. By the triangle inequality, it follows that
(%) holds for all v and all y such that dist(y,0R® x {0}) < r, where we pick r > 0

such that [|a”|| - r < 7 for all v; such an r exists because ¢ — a. Now it remains
to check that there is N € N such that (%) holds for all v > N and all y € K with
dist(y,0R® x {0}) > r. But the set of all these y is again a compact, and now, by T1,
t is continuously differentiable on this compact, so the argument above (using Lipschitz
condition) works to complete the proof. Q.E.D.

C.2. Proof of Theorem 4.9

Step 1. It is obvious that since p > 0 and 5 # 0, equations (4.11) and (4.13) can be
solved for Ap and ApS for any right-hand sides. Consider equations (4.12) as equations
in Ay%. Since p(w) > 0 and there is at least one w > 0, without loss of generality
w =1, such that 8" # 0, we can solve (4.12) say for Ay}'. Thus, if £ denotes the linear
operator corresponding to the left-hand sides of equations (4.11)-(4.13), such that

£ R x (R?)" x R? — R?2,
we have shown that £' is surjective.
Step 2. First, notice that by Lemma 4.8,

(C.1)  Dats-Aa = Dyt Ay + Dyté Ay
w 3 1 ¢ w w w
(C.2) DoDoty - Aa = diag {ﬁagtaf(y)] . A} + Dot }Avyj + D2t (A
g:

w : 1 w w w w
(C.3) DoDytyp - Ao = diag [Wagtaf(y)] - Ay + Dj bt Ay + D2t A

g=1
For a given f, let
£ RY x R x R? — ROTEOHD
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be the linear operator corresponding to the left-hand sides of equations (4.7)—(4.9). We
claim that these equations have a unique solution (Ay?, AVE Apf,w > 0) for any right-
hand sides or, equivalently (by the rank-nullity theorem), Ker€; = {0}, i.e.

-l A% | =0 & Ay?:Av}”:(), Apg = 0.

To show this, rewrite equations (4.7)-(4.9) as equations with respect to
(Ayd, Aq/f,A,uf,w > () with zero right-hand sides, using (C.1)—(C.3):

(C.4) > AUDots + > [Dzotaf,pzot < )

w>0 w>0

w w A 7
A/,LfD taf +,U/f [Dow af’wa Otf] < A ;‘{j )
(C.5)

1 G
+ pfdiag [ygwagtaf(y)} Avf = 0;

g9=1

OT, wT D()t(;f _
(C.6) [Ayf s Avy ] ( D, ) = 0.

Premultiply (C.4) by Ay?T and each of the equations (C.5) for w > 0 by AV;*JT and add
these equations, using (C.6). As a result, we get the following equation

T
Ay?@ Z 0 (Dgoth + Diot(&}f) Ay?—i—

w>0
r 1 “
+A’y}u Zru’(}} ( Ow af + wa af + dlag [ gwagtaf(y):| ) A’Y? =0
w>0 Yy 9=1
T T AyO
(©7) o A s ) (DR | 3 | <o
w>0

where RY is a 2G' X 2G negative semi-definite matrix:

0 0
Rf = ( 0 diag [ygwﬁ tas(y )]G_1 )

By strict concavity of the functions ¢4, (C.7) is possible only if
Ay?l:Av;’:OVw>O.
Now from equations (C.5) it follows that
Apy =0V w>0.
Summing up, we have established that the linear operator
£= (Sf)l;:b
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consisting of the left-hand sides of equations (4.7)-(4.9) for all f, is surjective.

Step 3. It remains to consider equations (4.5), (4.6) and (4.10). Notice that these
equations cannot be solved for any right-hand sides because due to the Walras’ Law,
they are not linearly independent. Rewrite equations (4.5), (4.6) and (4.10) as a system
of equations in the unknowns Acy,, A\, V h and Ae; (we can choose any other Aey,):

(CS) DQ’U,h(Ch)ACh — A/\hpT = Aiﬁh A h;
(C.9) —p(Acy — Aer) = Awy;
(C.10) —pAcy, = AwpV h>1;
(C.11) > Acy—Aep = Ad,

h

where Az, Awy, V h and Ad stand for arbitrary right-hand sides. From (3.2), (4.6) and
(4.10) it follows that if the system (C.8)—(C.11) is solvable, the right-hand sides have to
satisfy Zf Ay, = —p - Ad.
Let

o RUH o RE x RE — RE(LFD+L
be the linear operator consisting of left-hand sides of equations (C.8)-(C.11). As we have
just remarked, dimIm&” < H(L 4+ 1) + L — 1. We claim that, in fact, equality holds.
For this, it suffices to check that dimImg” > H(L + 1) + L — 1. By the rank-nullity
theorem, this is equivalent to showing that dim Ker£” < 1. To describe the kernel of £",
we rewrite the system (C.8)-(C.11) with zero right-hand sides:

(C.12) D*up(cp) — Adpp” =0V b
(C.13) — p(Ac; — Aey) = 0;
(C.14) —pAcy, =0V h > 1;
(C.15) D Acy — Aey =0.

h

On the strength of (3.1), Dup(cp) = App, hence from (C.12) and (C.14) it follows that,
for all h > 1,

Dup(cp)Acy, =0 and Acj D*up(cy)Acy, = 0.
Due to the strict quasi-concavity of u;, these equations imply that Ac, = 0 for all A > 1.
Now from (C.12), AX, = 0 for A > 1, and from (C.15), Ac¢; = Aey, and (C.13) is trivially
satisfied. Thus we are left with

(C.16) D*uy(ci1)Ac; = A); - pL.
Now strict quasi-concavity of u; implies that
(KerD?uy(c1)) N (Dus(cy))* = {0},
or, equivalently,
(C.17) (KerD?uy(cy)) N (pL) = {0},
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where, for a vector v, v denotes the set of all vectors w such that w” - v = 0. Since
dim(pt) = L — 1, we have

(C.18) dim KerD*u,(c;) < 1.
We have two cases. If KerD?u;(c;) = {0}, then (C.16) shows that Ac; is uniquely

determined by A\, so the whole tuple (Acp, A, Aep) € Ker€” is uniquely determined
by A); and therefore dim Ker£” < 1. Now let dim KerD?u;(¢;) = 1. From (C.17), there

exists Ac, € KerD?u;(c;) such that p- A¢}, = 0. Premultplying (C.16) by Ac)", we get
Al D*uy(c1)Acy = ANy - Al - pT,
S0
0 = (D*uy(c1)Ac)" - Acy = AX - (p- AT
Since p - Ac} # 0 by assumption, we get AA\; = 0, and then by (C.16),
D2u1 (Cl) . ACl =0.
Now (C.18) implies that the set of all Ac; satisfying the last relation is at most 1
dimensional.
Thus we have proved that dim Ker€” < 1, so that dimIm&" = H(L+ 1)+ L — 1.

Summary. Consider again the system (4.5)-(4.13). In steps 1-3, we have shown that

e the system (4.11)-(4.13) can always be solved for Ap, AS and Ay“.

e Given Ap and Ay“, the system (4.7)-(4.9) is solvable for Ay® and Ay~.

e Given Ap, Ay and Ae, for h > 1, the system (C.12)-(C.15) (equivalently, the
system (4.5), (4.6), (4.10) under a corresponding condition on the right-hand
sides) is solvable for Ac and A\ under a condition ) ;, Aw, = —p-Ad. Note that
the last condition defines a hyperplane in RV .

These facts together imply that the whole system (4.5)-(4.13) is solvable provided its
right-hand side satisfies a certain condition which defines a hyperplane in RY. Thus,

dimIm(Dq/J|C) =N-1.

This completes the proof of Theorem 4.9. Q.E.D.
C.3. Proof of Lemma 5.1
Let
By(p,Y) = {ch ERY [Tz : Pr(en—en— > susly) =Y (5, g)zh} :
We have f

ch € Bu(p,Y) © P-(éh—en— Y snriy) € ImY(p,9)
f

& Po(th—én— Z snrly) € (KerY (,9)")"
f

A

& VA eKerY(p,9)", X-P-(én—eén— Y snpiy) =0.
f
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We have dimKerY (p, )" = Q — p, hence KerY (p, )" is spanned by Q — p linearly
independent vectors. There is no loss of generality in choosing them equal to the o”
defined earlier. Hence instead of the constraint (5.1), we can write equations (5.5).
Adding to each of the equations (5.5) the Walrasian budget constraint p - (¢, — e, —
> Shsys) = 0 which defines By (p,Y’) together with (5.1), and using (5.6) gives us

pi-(ch—eh—ZShfyf)z(), i=1,...,Q—p+1.
f
Q.E.D.

C.4. Proof of Theorem 5.3
As in the proof of Theorem 4.9, we start with writing the system of equations
(Dwmg_) | C) AC = Ab.
Consider the linearized equations (5.10) and (5.15):
Ap'(w) — 1+ BL)Ap' (w) — ABLp'(w) = Al(w) fwed orw=i (i>2);
Ap'(w) — Apt(w) = Aj,(w) otherwise (i > 2);
pt-Apt = A,.

Obviously, this group of equations can be solved for Ap’ (i > 1). Hence, the linear

operator
£I . RL(Q—p—i—l) N RL(Q—,D)-H

which sends (Ap’)i**" to the left-hand sides of these equations is surjective (for all
values of other variables).

Consider linearized equations (5.16) and (5.17):
D [ABp @) + ()7 AP (@) +p' () Agf] +

weJ~
(C19) +AB ()} + Bi(yy)" + Bip' (Ay; = A}V f,Vi=2,...,Q-p+1;
(C.20) B-AB = A, i=2,...,Q—p+1.

We can solve equations (C.20) for Af" since ' # 0. After that, we can view (C.19) as
equations in Ay¥ (w > 0, all f). For example, we can solve (C.19) for Ay (V f, Vi =

2,...,Q—p+1) because 3! # 0 and p' (i) > 0. Therefore, the linear operator
o (RGQ)F w RE=P)p+1) __, R(+1)(2-p)

which sends ((Ay?)ﬁf:l, (Aﬂi)?:}”ﬂ) to the left-hand sides of equations (C.19) and

(C.20) is surjective (for all values of other variables).

Notice that equations (5.11)-(5.13) are exactly the same as equations (3.3)—(3.4),
hence the linearized equations will be the same as well, and by Step 2 of the proof of
Theorem 4.9 we know that the linear operator

£: (RY x R¥ x R — RF(OHL)
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defined there is surjective.

Finally, consider linearized equations (5.8), (5.9) and (5.14) with arbitrary right-hand
sides.

Q—p+1 Q—p+1

(C.21) D2up(cn)Acr — > ANp — Y MApPT = Azy Vb

i=1 i=1

— pi(Ach — A@h — Z Sthyf) —

(C.22) AV
— (ch —ep — Zshfyf)TApZ =Aw; 1 <Q—-—p+1, Vh
f
(C.23) D (Acy — Aep) = ) Ayp = Ad.
h i)

Notice that these equations cannot be solved for any right-hand sides because from
(5.9), (C.22) and (C.23), it follows that if (C.21), (C.22) and (C.23) are satisfied, then
Yo, Awi, = —pAd (i=1,...,Q2—p+1). Rewrite (C.21)-(C.23) as a system of equations
in the unknowns Acy, AN, ¢ =1,... ,Q—p+1,V h, and Ae;.

Q—p+1
(C24) DQU,h(Ch)ACh — Z A)\;lpZT = A.fh A h;
=1
(C.26) —p'Acy, = AW, h>2;
(C.27) Z Acyp + Ac; — Aey = Ad.

h>2
Define a linear operator

LV R 5 REOrHD) x RE — RAEHO—p )L

which corresponds to the left-hand sides of equations (C.24)—(C.27). As we have just
remarked, dimIm€” < H(L+Q—p+1)+L—(Q2—p-+1). We claim that, in fact, equality
holds. By the rank-nullity theorem, this is equivalent to showing that dimKerg? <
Q — p+ 1. To describe the kernel of £7, we rewrite the system (C.24)—(C.27) with zero
right-hand sides:

(C.28) D?up(cp)Acy, — Z AN Pl = 0
(C.29) P (Acp — Aey) = 0;
(C.30) p'-Acy, = 0, h>2
(C.31) Z Acp, + Ac; — Ae; = 0.

h>2
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On the strength of (5.8), Duy(cy) = >, Aip', hence from (C.28) and (C.30) it follows
that for all A > 2,

Dup(cp)Ac, =0 and  Ac} D*uy(cn)Acy, = 0.

By strict quasi-concavity of up, Ac, = 0 for A > 2. Now due to linear independence of
p', from (C.28) we get

AN =0, h>2 i=1,...,Q—p+1.
From (C.31) it follows that Ae; = Ac¢y. For h =1, rewrite (C.28) as
(032) D Uy Cl ACl ZA)\

Strict quasi-concavity of u; implies that

(KerD?u,(c1)) N (Duy(er)) ™ = {0},

or, equivalently,

(C.33) (KerD?us(c1)) N (Z /\’ipiT) = {0}.

Since dim (ZZ )\’ﬁoiT>L = L — 1, (C.33) implies that dim KerD?u;(c;) < 1. Consider
two cases. If KerD?u;(c;) = {0}, then (C.32) shows that Ac; is uniquely determined
by {AX} P 5o the whole tuple (Acy, AN Aey) € Ker€ is uniquely determined by
{AXi}P™ ) and therefore dimKer? < Q — p+ 1.

Now we consider the case dim KerD?u;(c;) = 1. By (C.33), there exists Ac} € KerD?u;(cy)
such that Y, Aip" - Ac| # 0. Premultiplying (C.32) by Ac’lT, we obtain

0= (D2u1 (Cl)ACI ACl Z A)\Z ACl y

which shows that (C.32) cannot hold if AN, = )} V 4. Consider a linear operator
Q . RL+Q—p+1 N RL

(Acy, AN1) — D?uy(ci)Act — Z A)\ipiT

where AX\; = (AX)”*!. We have shown above that dim Ker€” = dim Ker£ and that
(Aci, \i) € Ker€ V Ac; € RE.

Consider the projection
RO RO

(Acl, A)\l) — A/\l
We have \; € 7 (Kerf:), whence

(C.34) dim 7 (Keré) <Q-p.
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Also, equation (C.32) shows that Ac; is determined by A); up to KerD?u,(c;), which
is one-dimensional, so

(C.35) dim Ker (7|, 5) < 1.
Combining equations (C.34) and (C.35) with the rank-nullity theorem gives
dim Ker£ < Q2 — p+ 1, completing the proof. Q.E.D.

C.5. Proof of Lemma 5.4

Let £, £". £7 be the same linear operators as in the proof of Theorem 5.3. We know
that

rank + ranke"” +rankC’ = F(L+ Q)+ L+ 1+ H(L +2)+L—2=

No1—2—-(Q+1)=N-2-2(Q+1).
Let £¥ be the linear operator corresponding to the linearized equations (5.16), (5.17),
(5.19), (5.20). If we prove that dim Im£¥ = 2(£2+1), then we are done because we obtain

rank (D1Z|C> =N-2.

Consider the linearized system (5.16), (5.17), (5.19), (5.20) with arbitrary right-hand
sides:

Q-1
D (ABup @)y + Bu(y) " Ap' (W) + Bup' (w) AyY) +
w=1
(C.36) + ABap' (y? + Ba(yD)T AP () + Bap! () = %+ ¥ f;
(C.37) B AP = xx;
Q-1

(Ayppt (w)yf + 71 (W5) " Ap' (w) + 70 (W) Ay +
1

T

(C.38) + Ayap' (W)yg + ve(ys)" - Ap'(w) + Yap' (W) Ayg = ** V w;

It suffices to show that we can always solve this system for AZ, Ay and Ay. It is clear
that for f < €2, we can solve equation (C.36) for Ay;2 because p'(Q) > 0 and Bq # 0.
Similarly, if w < €2, we can solve (C.38) for Ayg. It remains to see that if f = Q, we can
solve the system (C.36)—(C) for AS, and if w = 2, we can solve the system (C.38)—(C.39)
for Avy. Now with respect to AJ, the system (C.36)—(C) has the following form:

Apy

PrMyy .- Pyl ' _
(C.40) 5 o 4 Q . = Ap.

Afq
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By construction,
Q
D Bup' W)y =0,
w=1

so the matrix on the left-hand side of equation (C.40) has orthogonal rows, which are
also nonzero, so the matrix has full row rank. Thus (C.40) can always be solved for Aj.
The argument for the system (C.38)-

(C.39) is similar. Q.E.D.
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