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Abstract
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1 Introduction
Multidimensional screening addresses the existence of more than a single source of hetero-
geneity among agents and study how the joint distribution of taste parameters condition
the features of optimal contracts. Existing models have shown that dealing with multi-
ple dimensions of agents’ types leads in most cases to optimal bunching, non–monotone
contracts, and even an optimal positive rent extraction for the highest consumer type. 1

In this paper I distinguish different type components but only up to their money value,
i.e., their combined effect on individual demand. Different type components distinguish
quality dimensions of products that can be aggregated. Thus, they should be interpreted as
different sources of individual demand shifts not related to price. The aggregation (addition
in most cases) of type components defines a single type that is used in characterizing the
bundling solution. If the process of screening the different type components is logically
ordered over time, the unbundled solution is equivalent to sequential screening.

A result commonly found in the literature of multidimensional screening is that
bundling is generally preferred to screening different type dimensions separately even when
individual valuations are independently distributed.2 The approach followed in this paper
has the advantage that explicit, well behaved, solutions can be found for the bundled and
the unbundled cases. Easy to impose regularity conditions of single–dimensional distri-
bution of types avoid binding second order incentive compatibility constraints, and thus
mechanisms are monotone and lead to fully separating equilibria. But most importantly,
this setup makes possible to show that properties of the distribution of the aggregate type
can be derived from those of the distributions of its components. It therefore allows to
explain the principal’s preference for bundling solutions as a result of well defined relations
among the distributions of the type components rather than as a consequence of the
complicated nonlinear optimization problems that multidimensional screening requires to
solve.

The idea of aggregating different type components into a single measure is not
new.3 However, there is no systematic study in the literature on the links between
the properties of distributions of type components and the aggregate type. This paper
investigates how distributional features are affected by this aggregation process and offers
a framework to compare alternative screening mechanisms, i.e., bundling vs. unbundling
solutions. The paper proves that under quite general conditions, common to many models,
the distribution of the aggregate type θ0, is characterized with a uniformly lower hazard
rate than the distribution of any of its components θ1 and θ2. Intuitively, the reason is
that each type dimension adds some uncertainty that increases the proportion of agents
of high type. Since the distribution of aggregate types is more concentrated around high
values of θ0, the principal has to introduce higher distortions to reduce the expected

1 See Armstrong (1996), Rochet and Choné (1998), and Wilson (1995).
2 See Armstrong (1996, §4.6), McAfee, McMillan, and Whinston (1989), and Palfrey (1984).
3 See Baron and Besanko (1999), Biais, Martimort, and Rochet, Miravete (1996), and most of the

papers cited later in this section.
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rents of inframarginal agents. Thus, bundling solutions are commonly characterized by
uniformly higher markups at all purchase levels than mechanism solutions that account
for informational asymmetries of each type component in isolation. Therefore, uniformly
higher markups lead to higher expected profits under bundling. While the profitability
ranking of screening mechanisms based on the hazard rate ordering of distributions is
known since Maskin and Riley (1984), this paper shows how such hazard rate ordering
may arise endogenously from the aggregation of independent type components.

The distinction between aggregate type θ0 and type components, θ1 and θ2, might be
useful if we want to model separately the different elements behind the optimal behavior
of agents, even when all of them fall on a single real line. But at the same time, it is
possible that we are more interested in the aggregate informational parameter θ0 rather
than in its components, thus reducing the dimensionality of the screening problem. Under
the assumption of aggregation of type components into a single–dimensional type, we
can adopt two alternative modeling approaches: we can just impose regularity conditions
on preferences and distributions involving θ0, or ensure that the combination of relevant
properties of the distribution of components θ1 and θ2 are preserved under convolution or
composition so that the solution of the model in terms of θ0 is well behaved.

This paper focuses in this latter alternative in order to produce some useful results in
a broad class of mechanism design problems. Making assumptions on the distributions of θ1

and θ2, instead of on the distribution of θ0 is something that entirely depends on the nature
and goal of each particular model. The results of this paper might be useful in making
such a modeling decision because it shows that under fairly general conditions, the required
distributional assumptions are preserved under convolution. Thus, for instance, dealing
with sequential screening does not require additional assumptions on the distribution of
θ0 because they are rather implied by the distributional assumptions made on θ1 and θ2.

There are two key assumptions that ensure the existence of a separating equilibria in
models of adverse selection. First, the single–crossing property of agents’ payoff functions
with respect to their control variable and the type, so that demands of different agents
can be ordered for each price, and second, the increasing hazard rate (IHR) property of
the distribution of types. In this paper I assume that the single–crossing property holds
both for θ0 and any of its components.4 I will therefore focus on the necessary conditions
that distributions of θ1 and θ2 must fulfill to ensure that the distribution of θ0 is IHR.
A similar approach will be followed to prove the preservation of the monotone likelihood
ratio property (MLR).

The paper is organized as follows. Section 2 briefly reviews an apparently disperse
literature to frame it according to the model of the present paper. Section 3 presents
the mathematical tools needed to prove the preservation of some regularity conditions of
the distributions of type components. Mathematical generality is kept to a minimum in

4 McAffee and McMillan (1988) study the multidimensional generalization of the single–crossing
property and its implications for modeling adverse selection problems.
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order to prove that total positivity is preserved under composition and log–concavity is
preserved under convolution. Section 4 presents the main results, i.e., that IHR, MLR, and
unimodality of the density functions are preserved for appropriately defined problems. This
section also discusses possible extensions and applications of these preservation results to
models of voting and signaling. Section 5 isolates the conditions that ensure that bundling
is preferred to independent screening of type components. This section also discusses the
case of correlated type components. Section 6 concludes.

2 Models of Type Aggregation
This section reviews a heterogeneous literature where an aggregate type θ0 is defined to
depend, without loss of generality, on two type components θ1 and θ2. The bundling
solution screens agents according to the distribution of θ0. There are more than one
alternative to bundling. If type components are screened simultaneously, we have the
case of multiproduct monopolists. If on the contrary these type components are screened
sequentially, we encounter models of optional or sequential screening.

2.1 Multiproduct Monopolist

Consider the model of McAfee, McMillan, and Whinston (1989) where a multiproduct
monopolist who must decide whether to sell his products separately or in a bundle. In
both cases, and in order to reduce consumers’ informational rents, the monopolist engages
in nonlinear pricing. Consumers have independent taste parameters across products that
define their relative intensity for them. Since these valuations are independent, their
addition defines consumers’ valuations of the bundle. Models that distinguish among com-
ponents of a single–dimensional type can also be used in screening mechanisms involving
several products. Thus, θ1 and θ2 are independent valuations of two components while
θ0 is the valuation of their bundle when these components are not correlated. Results
presented later in Section 5 show why even when the valuations of different products are
independent, bundling dominates selling these products separately as reported by McAffee,
McMillan and Whinston (1989). Other contributions in this area are Adams and Yellen
(1976) and Spence (1980).

Observe that the ability to aggregate different type components opens the possibility
to reduce the dimensionality of the screening process. This result has been applied to
models of common agency in Biais, Martimort, and Rochet (2000) who distinguish between
θ1, the signal of the value of an asset that is privately observed by an agent, and θ2, the
agent’s endowment shock of that risky asset. Both type dimensions however aggregate
into a single parameter θ0 representing the marginal valuation of an agent for the asset to
be traded, thus simplifying the design of competitive mechanisms.5

5 A related paper in nonlinear pricing is the work of Sibley and Srinagesh (1997) that studies
whether is is more profitable to screen the different dimensions of consumer types independently by means
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A related stream of papers, such as Baron and Besanko (1999), addresses the issue of
informational alliances, and distinguishes between unit costs of two independent suppliers,
θ1 and θ2, and the cost profile of an informational alliance, θ0, that can be formed to
contract with the principal by consolidating the private information of agents. Other
related papers in this area are Baron and Besanko (1992) and Gilbert and Riordan (1995).

Finally, besides analyzing allocation efficiency, the literature on multi–object auc-
tions shows that it is generally more profitable to auction different items in a bundle than
separately. In Palfrey (1983), θ1 and θ2 are the independent individual valuations of two
objects that define the valuation of the bundle, θ0. Armstrong (2000) shows that bundling
also dominates in the case of positively correlated values in the case of optimal auctions
when types can take only two values. Avery and Hendershott (2000) study whether
bundling is still preferred when there are competing auctions for a subset of the products
as well as when different groups of bidders have different distributions of valuations.

2.2 Sequential Screening

Consider now the following motivating example taken from Miravete (2001). A consumer
wants to buy a service provided by a regulated public utility. In many occasions, the
public utility offers a nonlinear tariff to maximize expected profits and reduce consumers’
informational rents through the use of quantity discounts. Thus, the public utility is able
to recover his fixed costs and induce efficiency gains by pricing high volume customers
closer to marginal cost. Each consumer’s payment is based on her particular consumption
level and the shape of this single nonlinear tariff, which is critically conditioned by the
assumed distribution of consumption profiles in the population. Alternatively, the public
utility may offer different contract options to consumers who are now required to choose
among them before their consumption is realized. Frequently, these optional contracts take
the form of two–part tariffs, and are defined by a monthly fee and a particular rate per
unit of consumption, although more general contracts, through a fully nonlinear tariff are
also feasible, and even in some cases they might include capacity limits to consumption
(e.g., power load) and/or specification of the quality of the service (e.g., reliability).

The difference between these two alternative pricing strategies is that the first one
screens consumers based on their realized demand (bundling of type components) while
the second screens consumers sequentially. In the first stage, consumers have to choose
among different tariff options based on their expectation of future purchase levels. Later,
once the choice have been made and individual demand is realized, each tariff option
introduces different additional discounts or premia on the difference between expected and
realized demand. The key feature of optional tariffs is that when consumers sign up for
a particular contract option, they do not commit to any given level of consumption. At

of two–part tariffs, or alternatively by bundling all these taste parameters to design a single two–part
tariff. There is however an important difference because θ0 is no longer the sum of θ1 and θ2, and thus,
compositions should replace convolutions to carry out the analysis.
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the time of choosing tariffs, consumers are not fully aware of their own type defined as the
price independent component of demand that will eventually determine the consumption
level of each individual under each tariff regime. In this example, expected and actual
consumption define the type of consumers. The actual type of consumers θ0, is defined as
a function of the expected consumption θ1, and some type shock or prediction error θ2.
These are different magnitudes that can be used by the monopolist to design alternative
screening mechanisms.

There are several papers that fit the described sequential screening process. For
instance, in models of expected consumption, such as those of Ausubel (1991), Courty
and Li (2000), Miravete (2000b), and Miravete (2001), individual demands are subject to
independent and privately known shocks over time. The monopolist may offer a contract
based on agents’ actual realized demands, or alternatively a menu of optional contracts that
define the payment schedule before individual demands are realized, thus taking advantage
of potentially profitable effects of agent’s misperception of their future consumption.

A closely related set of papers deal with the topic of contingent pricing. Agents differ
in some idiosyncratic parameter θ1, but their final demand is affected by the realization
of some other variable θ2, common to all consumers, that is easily observable for the
principal, (e.g., weather conditions). Thus, the monopolist may solve the optimal state
contingent tariff that makes payment and discounts dependent on the realization of such
state variable, as in Spulber (1992), or simply design a tariff that mainly target individual
differences although taking into account the effect on individual demands of other variables
(e.g., temperature), that are not known at the time of subscribing the power capacity
option, as in Panzar and Sibley (1978).

Changes in the types of agents is also a common topic in Regulation. The possibility
of errors in the appraisal of his own cost function by the regulated firm allows regulatory
agencies to consider mechanisms based either on realized or expected costs. The literature
on the optimality of linear contracts –for instance in Caillaud, Guesnerie, and Rey (1992),
or in Laffont and Tirole (1986)–, show that these simple contracts are robust to the
existence of an additive noise θ2 because θ2 enters linearly in the objective function
so that neither the incentive compatibility and participation constraints are changed in
expectations. This is not necessarily the case in the models of expected consumption.6

Finally, uncertainty about agent’s own types may also be present in Procurement.
Awarding procurement contracts involves frequently firms bidding when they are uncertain
about their future marginal costs, as in Riordan and Sappington (1987). Alternatively,
the government could ask for a share of total future revenues or profits to the awarded
franchisees, thus making transfers a function of actual rather than expected costs.

6 In the latter case, the distribution of θ2 affects the shape of the tariff based on θ1 because it enters
nonlinearly in the definition of the utility function of agents, thus making more difficult the evaluation of
welfare effects. See Miravete (2001, §3.1, §6) for a detailed discussion and an empirical evaluation of these
effects using data from the local telephone service industry.
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3 Totally Positive and Log–Concave Functions

This section presents the minimal mathematical tools needed to prove the preservation
of some key features of the distribution of asymmetric information parameters. The most
important result proved in this section is that log–concavity is preserved under convolution.

Assumption 1: The random variable θi, i = 1, 2, has a continuously differentiable
probability density function fi(θi) ≥ 0 on Θi = [θi, θi] ⊆ <, such that the cumulative
distribution function given by:

Fi(θi) =

θ∫
θi

fi(z)dz, (1)

is absolutely continuous.

Log–concavity is a smoothness property common to many distributions. It implies
a certain regularity and peakedness of the density functions that makes this property very
useful for the analysis of reliability. The following is a formal definition for continuously
differentiable probability density functions.

Definition 1: A probability distribution function Fi(θi) is log–concave if:

∂2 log[fi(θi)]
∂θ2

i

=
∂

∂θi

[
f ′i(θ)
fi(θ)

]
≤ 0 on Θi. (2)

If the distribution of an asymmetric information parameter is increasing hazard
rate, then it is possible to design a screening mechanism that fully separates agents of
different types, provided that the common single–crossing property of preferences holds.
The IHR property is defined as follows.

Definition 2: If a univariate random variable θi has density fi(θi) and distribution
function Fi(θi), then the ratio:

ri(θi) =
fi(θi)

1− Fi(θi)
on {θi ∈ Θi : Fi(θi) < 1}, (3)

is called the hazard rate of either θi or Fi(θi). The function F i(θi) = 1 − Fi(θi) is the
survival function of θi. A univariate random variable θi or its cumulative distribution
function Fi(θi) are said to be increasing hazard rate if r′i(θi) ≥ 0 on {θi ∈ Θi : Fi(θi) < 1}.

In order to infer the type of an agent from a given observable signal, models of
moral hazard assume that the underlying distribution of agents’ types is characterized
by the monotone likelihood ratio property. This assumption is again critical to ensure
the existence of separating equilibria in Principal–Agent problems characterized by the
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existence of moral hazard. The following is a definition of this property for continuously
differentiable density functions.

Definition 3: If a univariate random variable θi has density function fi(θi, α)
depending on a single indexing parameter α, then θi or fi(θi, α) are said to have the
monotone likelihood ratio property if:

∂2 ln[fi(θi, α)]
∂θi∂α

≥ 0. (4)

In models of voting, the assumption that agents have unimodal preferences over the
alternatives of the choice set becomes critical to avoid the Condorcet Paradox, the well
known cyclic result in defining social preferences. The results of this paper ensure that
such critical assumption is preserved if preferences are aggregated across individuals.

Definition 4: A function fi(θi) is unimodal if there exists a single θ?
i ∈ Θi such

that θ?
i ∈ arg maxθi

fi(θi) in Θi.

In presenting the results, I will proceed from the general to the more specific version
of the model. Thus, for instance, the aggregate type should be defined as any mapping of
several variables into <. Again without loss of generality, I will limit the number of type
components to two.

θ0 = T (θ1, θ2) : <2 → <. (5)

Since θ1 and θ2 are random variables whose distribution is known, it is possible to
characterize the distribution of the aggregate θ0 according to equation (5). Let define the
following composition operation:7

M(θ0, ζ) =
∫
Θj

K(θ0, θj)L(θj , ζ)dFj(θj), (6)

where index j may take values {1, 2}. Thus, M(·) is a function that aggregates the
dimensions θi and θj according to composition of the kernels K(·) and L(·).8 I now have
to identify the set of functions whose relevant regularity properties are preserved under
composition.

Definition 5: A function g(x, y) of two variables ranging over linearly ordered
one–dimensional sets X and Y , respectively, is said to be totally positive of order n (TPn)

7 Kernel K(·) in composition equation (6), as well as fi(·) in the convolution equation (13) later in
the text, are normalized to integrate to one with respect to the corresponding Lebesgue measure so that
they define proper density functions.

8 The nonlinear function (5) that relates θ0 with θ1 and θ2 is implicitly defined by K(·) and L(·).
Thus for instance, K(θ0, θ2) = T−1(θ0, θ2) which expresses the probability density function of θ1 as a
function of θ0 and θ2 according to (5). In addition, L(θ2, ζ) = 1 and dF2(θ2) defines the density of θ0,
M(θ0, ζ), which may also depend on the indexing parameter ζ.
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if ∀x1 < x2 < . . . < xm, xi ∈ X ⊆ <; and ∀y1 < y2 < . . . < ym, yi ∈ Y ⊆ <; and all
1 ≤ m ≤ n: ∣∣∣∣∣∣∣∣

g(x1, y1) g(x1, y2) · · · g(x1, ym)
g(x2, y1) g(x2, y2) · · · g(x2, ym)

...
...

. . .
...

g(xm, y1) g(xm, y2) · · · g(xm, ym)

∣∣∣∣∣∣∣∣ ≥ 0. (7)

The major practical significance of totally positive functions is that their smoothness
properties (continuity, boundedness, and growth rate) are preserved under the composition
operation defined in equation (6). The following Lemma states this property.9

Lemma 1: Let K(x, y) and L(x, y) be TPn, and θ1 and θ2 be stochastically
independent, then the composition:

M(θ0, ζ) =
∫
Θ2

K(θ0, θ2)L(θ2, ζ)dF2(θ2) =
∫
Θ1

K(θ1, ζ)L(θ0, θ1)dF1(θ1), (8)

is also TPn.

Proof: Without loss of generality, let n = 2. By definition of TP2, the composition
M(x, y) defined in (8) has to be such that ∀x1, x2 ∈ X ⊆ < and ∀y1, y2 ∈ Y ⊆ <, such
that x1 < x2 and y1 < y2, the following condition holds:

∣∣∣∣ M(x1, y1) M(x1, y2)
M(x2, y1) M(x2, y2)

∣∣∣∣ =

∣∣∣∣∣∣
∫

K(x1, z)L(z, y1)dFz(z)
∫

K(x1, z)L(z, y2)dFz(z)∫
K(x2, z)L(z, y1)dFz(z)

∫
K(x2, z)L(z, y2)dFz(z)

∣∣∣∣∣∣
=

∫
z1<

∫
z2

∣∣∣∣ K(x1, z1) K(x1, z2)
K(x2, z1) K(x2, z2)

∣∣∣∣ · ∣∣∣∣ L(z1, y1) L(z2, y1)
L(z1, y2) L(z2, y2)

∣∣∣∣dFz(z1)dFz(z2) ≥ 0, (9)

where the last inequality is the Basic Composition Formula that relates compositions of
totally positive functions.10 From here the proof is immediate since the first determinant
in the double integral is positive as K(x, y) is TP2 and the second determinant is also
positive as L(x, y) is TP2.

In most economic models, when we deal with the aggregation of dimensions of
agents’ own types, the simple addition of the aggregate type components suffices to fully
characterize consumers’ types since monotone transformations of utility functions represent

9 Observe that if g(x, y) is TPn this condition requires that all minors of order m ≤ n and not only
the principal minors to be non–negative [Gantmacher (1958, §1.2)]

10 The Basic Composition Formula is the continuous version of the Binet–Cauchy formula that
expresses any minor of order k of the product of two rectangular matrices as the product of all possible
minors of order k [Gantmacher (1958, §1.1)]. The proof of this intermediate result is sketched in Karlin
(1968, §1.2).
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the same set of preferences. However, equation (5) is justified in some other environments,
such as determining the unit costs of a multiproduct firm when they are affected by
production scales of two products, θ1 and θ2, in a specific way determined by technology.
Alternatively, Courty and Li (2000) and Riordan and Sappington (1987) define θ0 as
the distribution of θ2 conditional on the individually realized signal θ1 which, while still
keeping types single–dimensional, allows for complex interactions among type components.
Transformation (6) may prove useful when dealing with the aggregation of preferences
across individuals that carry some sort of weighting. However, for most of the analysis it
suffices that I consider that type dimensions are related as follows:

θ0 = θ1 + θ2, (10)

where, as before, θ1 and θ2 are stochastically independent, so that the distribution of the
aggregate θ0 is defined by the convolution:

F0(θ0) =
∫
Θj

Fi(θ0 − θj)dFj(θj), (11)

and where indices can be reversed because convolution is a commutative operation.

The structure of equations (10) − (11) captures the idea that several sources of
individual heterogeneity simply translates into a single money valued magnitude that
characterizes the individual reservation price of agents. Regardless of whether different
type dimensions capture the effect of taste for different quality of products, the aggregation
of equation (10), or more in general of equation (5), just identify the non–price driven shifts
of individual demands for this product.

An important group of totally positive functions defines the distribution of θ0 as
the convolution of the distributions of θ1 and θ2 according to equations (10) − (11).11

The set of totally positive functions in translation is known as Pólya frequency functions.
The corresponding properties of convolutions of Pólya frequency functions are particular
versions of those of composition of totally positive functions described above.

Definition 6: A function g(z) is a Pólya frequency function of order n (PFn) if
∀x1 < x2 < · · · < xm, xi ∈ X ⊆ <; and ∀y1 < y2 < · · · < ym, yi ∈ Y ⊆ <; and all
1 ≤ m ≤ n: ∣∣∣∣∣∣∣∣

g(x1 − y1) g(x1 − y2) · · · g(x1 − ym)
g(x2 − y1) g(x2 − y2) · · · g(x2 − ym)

...
...

. . .
...

g(xm − y1) g(xm − y2) · · · g(xm − ym)

∣∣∣∣∣∣∣∣ ≥ 0. (12)

11 Equations (5)−(6) reduces to the convolution case of equations (10)−(11) when M(θ0, ζ) = F0(θ0),
K(θ0, θj) = Fi(θ0 − θj), and L(θj , ζ) = 1.
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Lemma 2: Let f1(θ1) and f2(θ2) be PFn, and θ1 and θ2 be stochastically indepen-
dent, then the convolution:

f0(θ0) =
∫
Θ2

f1(θ0 − θ2)f2(θ2)dθ2 =
∫
Θ1

f1(θ1)f2(θ0 − θ1)dθ1, (13)

is also PFn.

4 Results

Preservation of IHR is useful for models of adverse selection where agents’ types are
stochastic, thus opening the possibility to sequential screening. Similarly, preservation
of MLR is useful to study agency relations in which there are several sources of moral
hazard. This section proves that these preservation results are ensured by the equivalence
of log–concavity to PF2, and of MLR to TP2 respectively.

4.1 Increasing Hazard Rate

The mathematical results of the previous section show that the smoothness properties of
Pólya frequency functions are preserved under convolution. While reliability properties
such as IHR depend on the log–concavity of the probability density functions, the preser-
vation of such smoothness condition is easily ensured if we focus on the family of Pólya
frequency functions. Results of this section rely on the equivalence between log–concave
and a class of Pólya frequency functions. The following Lemma establishes this equivalence.

Lemma 3: A continuously differentiable function g(z) is PF2 if and only if g(z) > 0
∀z ∈ < and g(z) is log–concave on <.

Proof: Since g(z) > 0 ∀z ∈ <, it follows from Definition 1 that a continuously
differentiable function g(z) is log–concave if and only if it is monotone decreasing in <.
Next, without loss of generality, assume x1 < x2 and 0 = y1 < y2 = ∆. Then, from the
definition of PF2 in equation (12) and making use of common properties of determinants,
the following inequality holds:

lim
∆→0

1
∆
·

∣∣∣∣∣∣
g(x1) g(x1−∆)

g(x2) g(x2−∆)

∣∣∣∣∣∣= lim
∆→0

∣∣∣∣∣∣∣∣
g(x1)−g(x1−∆)

∆
g(x1−∆)

g(x2)−g(x2−∆)
∆

g(x2−∆)

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣

g′(x1) g(x1)

g′(x2) g(x2)

∣∣∣∣∣∣ ≥ 0,

(14)
which, given g(z) > 0, proves that ∀z ∈ <, g′(z)/g(z) is monotone decreasing in <.

I can now prove the main result of this section. By imposing the log–concavity
assumption on the probability density functions of θ1 and θ2, we not only identify a wide
class of distributions with nice properties for economic modeling but also ensure that the
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distribution of θ0 also share those properties. These results summarized in the following
Proposition and Corollary.

Proposition 1: If the probability density function fi(θi) is continuously differen-
tiable and log–concave, it implies that the following properties are all equivalent:

(a) Fi(θi) is log–concave,
(b) F i(θi) = 1− Fi(θi) is log–concave,
(c) Fi(θi) is IHR in θi on {θi ∈ Θi : Fi(θi) < 1},
(d) li(θi) = fi(θi)/Fi(θi) is decreasing in θi on {θi ∈ Θi : Fi(θi) > 0},
(e) fi(θi) is unimodal.

Proof: See Appendix.

The following Corollary shows that all the above properties are preserved under
convolution, and thus, assuming that the distributions of each type component is log–
concave suffices for all distributions involved to be well behaved.

Corollary 1: If the probability density functions fi(θi), i = 1, 2, are continuously
differentiable and log–concave, and θ1 and θ2 are stochastically independent, then:

(a) f0(θ0) is continuously differentiable and log–concave,
(b) F0(θ0) is log–concave,
(c) F 0(θi) = 1− F0(θi) is log–concave,
(d) F0(θ0) is IHR in θ0 on {θ0 ∈ Θ0 : F0(θ0) < 1},
(e) l0(θ0) = f0(θ0)/F0(θ0) is decreasing in θ0 on {θ0 ∈ Θ0 : F0(θ0) > 0},
(f) f0(θ0) is unimodal.

Proof: By Lemma 3, f1(θ1) and f1(θ2) are both PF2. Thus, Lemma 2 ensures
that f0(θ0) is also PF2. Part (a) results from applying Lemma 3 again to the convolution
density function f0(θ0). Since the premises of Proposition 1 are now fulfilled by f0(θ0),
parts (b)–(f) follow straightforwardly from its application.

The preservation of log–concavity of distributions under convolution is the key result
that ensures that a wide class of agency problems can actually be solved. Results of
Proposition 1 and Corollary 1 ensure that the principal can induce separating equilibria
both under the bundling and unbundling approach. The comparison of these different
solutions is the goal of Section 5.

4.2 Single–Peakedness

Results of the previous section are applicable not only to screening problems. For instance,
Proposition 1 and Corollary 1 also show that log–concave densities are also unimodal, and
that this property is also preserved under convolution. This result is suitable to be applied
to substantial issues in Political Economy since the preservation of single–peakedness of
preferences is ensured.
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If individual preferences are single–peaked on the single–dimensional space of choice,
Black’s (1948) median voter theorem proves that there is a unique outcome under majority
rule, and that it coincides with the ideal profile of the voter at the median of the distribu-
tion. Proposition 1 proves that single–peakedness is a feature of log–concave preferences.
Using log–concavity of preferences, Caplin and Nalebuff (1991) show that if the space of
choices is multidimensional, the unique outcome under a 64%–majority rule is the ideal
profile of the mean voter. Preservation of unimodality is an interesting result for models
of Political Economy because it allows to ensure that politicians’s preferences will share
the relevant features of voters’ preferences. For instance, each fi(·) may represent the
preference of an individual for the provision of a public good net of her individual tax con-
tribution. Thus, f0(·), the preference of the representative that gets elected with the most
votes, shares the same peakedness properties than the electors that voted him. Thus, these
results make possible to study how voters’ preferences are mapped into political decisions
when it is not decided through a referendum but by means of the elected representatives.

4.3 Monotone Likelihood Ratio

Models of moral hazard require that optimal signals used by agents keep a one–to–one
correspondence with agents’ types [Holmström (1979); Laffont (1989, §11)]. The tools
presented in this paper allows to extend this basic model to environments where the
resulting distribution of single–dimensional types is the outcome of the combination of
several signals of the agents. The idea in this case is that agents use different signals.
However, since there is an aggregate type defined either through the addition (10) or the
mapping (5), the different signals can also be summarized by the aggregate signal that also
keeps a one-to-one correspondence with the aggregate type. Thus, the principal can use
individual signals or their aggregate to infer the type of agents.

Preservation of MLR holds for a wider class of functions than the preservation of
IHR. The reason is that it relies on properties common to the family of distributions that
are TP2 and not only PF2. The following Proposition and Corollary prove these basic
results.

Proposition 2: A continuously differentiable probability density function f(x, α)
is TP2 in xi and the indexing parameter α, if and only if it is MLR.

Proof: See Appendix.

Corollary 2: If fi(θi, αi), i = 1, 2, are MLR and θ1 and θ2 are independently
distributed, then f0(θ0, α0) defined according to equation (8) is also MLR.

Proof: Proposition 3 ensures that fi(θi, αi), i = 1, 2, are TP2 while Corollary 1
ensures that the composition of functions that are TP2 is also TP2. Thus, f0(θ0, α0) is
MLR.
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5 When is Bundling Optimal?

The multidimensional screening literature has frequently found bundling to be optimal
even when types are not correlated. In screening models with a single–dimensional type
it is possible to rank the profitability of different mechanisms depending on the hazard
rate ordering of different informational structures. A well known sufficient condition to
compare the optimal solutions of different mechanisms is to require a particular hazard rate
ordering of the involved distributions. Since in the present model different types aggregate
into a single dimensional variable, the hazard rate ordering is endogenously explained by
the properties of the convolution of distributions of type components. Optimal contracts
critically depend on the value of the hazard rate of the corresponding distribution, and I
thus have to establish how large is the hazard rate of the convolution distribution F0(θ)
relative to Fi(θ). Proposition 3 shows that θ0 dominates in hazard rate to θi if the support
of the distribution of types is restricted to <+.

Proposition 3: Let Fi(θi) be IHR, i.e., r′i(θi) > 0 in θi on {θi > 0 : Fi(θi) < 1},
for i = 1, 2. Let F0(θ0) denote the convolution distribution of θ0 = θ1 + θ2, with hazard
rate r0(θ0). Then r0(θ) ≤ min{r1(θ), r2(θ)} on {θ > 0 : Fi(θ) < 1; i = 0, 1, 2}.

Proof: See Appendix.

The result of Proposition 3 implies that the distribution of θ0 always puts more
weight on higher values than the distribution of θ1 or θ2 . Therefore, given some value
θ?, the probability that θ0 > θ?, 1 − F0(θ?), always exceeds the probability that θi > θ?,
1− Fi(θ?). This intuitive result is formalized in the following corollary.

Corollary 3: If r0(θ) ≤ ri(θ) on {θ > 0 : Fi(θ) < 1; i = 0, 1, 2}, then θ0 first
order stochastically dominates θi.

Proof: Since ri(θi) = −d log[1− Fi(θi)]/dθi it follows that ∀θ > 0:

1− F0(θ) = exp

− θ∫
0

r0(z)dz

 ≥ exp

− θ∫
0

ri(z)dz

 = 1− Fi(θ), (15)

and therefore F0(θ) ≤ Fi(θ) ∀θ > 0, which is the definition of first order stochastic
dominance, of θ over θi.

Observe that the first order stochastic dominance ordering of stochastic objective
functions analyzed by Athey (2000, §2) arises endogenously here within this framework of
asymmetric information dealing with multiple characteristic of agents. According to Laf-
font and Tirole’s interpretation (1993, §1.4–1.5), Proposition 3 means that the distribution
of θ0 is more favorable than the distribution of θ1 or θ2, i.e., it puts more weight on the
high valuation customers. Corollary 3 shows that this result can be generated by a model
of individual stochastic demands if the existence of an independent but systematically
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positive type shock θ2 ensures that the actual purchase (or valuation) θ0 is always higher
in first order stochastic dominance sense than the expected purchase (or valuation) θ1.12

Addressing the problem of optimal pricing by a monopolist, Maskin and Riley (1984,
§4) already considered the effect of changes in the distribution of consumer types on the
shape of the nonlinear tariffs. Combining the above Proposition 3 with Proposition 5
of Maskin and Riley (1984), it follows that a nonlinear schedule based on F0(·) involves
higher markups and expected profits than the nonlinear tariff based only on Fi(·) while
integrating out the effect of θj for all consumption levels.13

Observe that these results can only be ensured to hold in models where the support
of the distributions are restricted to <+.14 But this is actually the case in many multi-
dimensional screening problems discussed before. For instance, in the auction literature,
θi is the nonnegative value of each individual object to be auctioned. In Palfrey’s (1983),
the individual valuation of the bundle that defines a multi–object auction cannot be lower
than the sum of valuations of the individual components. Thus, the auctioneer is more
uncertain about the valuation of bidders when selling a bundle because the addition of
the valuations of its components puts more probability weight at the top end of potential
bids whenever the distribution of the valuation of each item is IHR. In a discriminatory
auction, the mechanism needs to be more powerful in order to induce self–selection of all
participating agents, leading to uniformly larger rent extraction for low types.

Dealing with informational decentralization, Baron and Besanko (1992) and Gilbert
and Riordan (1995) identify θi with the non–negative marginal cost of the members of
integrated alliance of suppliers. The role of Assumption 3 in Gilbert and Riordan (1995)
is to ensure that the convolution distribution of the marginal cost of the bundle has a
smaller hazard rate than the distribution of its components, and thus characterize properly
a separating equilibria with several sources of asymmetric information (marginal costs of
each firm producing an element of the bundle). However, since these are distributions of
on nonnegative variables, Corollary 3 shows that Gilbert and Riordan’s assumption is in
fact not necessary, because it is ensured by the convolution of IHR distributions of the
aggregate type components.

Many other agency problems could define environments where the support of type
components is constrained in a natural way. For instance, we could think of θ1 ∈ <+

as general skills of workers before being hired (e.g., acquired through education and/or
working experience in other jobs). If hired, workers will develop some specific skills and
abilities due to learning by doing, and therefore increase their productivity. It is not
unreasonable within this framework to exclude the possibility of negative learning, and

12 Although there is no a priori reason to assume that expectations are biased, there is enough
evidence not to rule out this possibility. See Miravete (2000a, §5).

13 In addition to Maskin and Riley (1984, §4), Propositions 3 and 4 of Miravete (2001) proves formally
these well known results.

14 If type components are not restricted to <+, the hazard rate dominance has to be imposed
exogenously as in the regulatory model of Laffont and Tirole (1993).
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thus θ2 would also be restricted to take only positive values. The principal could then
design contracts contingent on either the credentials and qualifications of the worker, or
on the actual performance after learning.15 The previous results show that the principal
will prefer to tie workers’ compensation to their performance.

In all these models, bundling is optimal even when type components are indepen-
dently distributed. The result is a consequence of Corollary 3 as well as for the hazard rate
of the distribution being inversely related to the optimal markup of the monopolist. When
there is more than one source of asymmetry of information it is more difficult to screen
consumers of different types. If all sources of asymmetry tend to get every consumer type
closer to the highest type possible, the monopolist has to introduce important distortions
to reduce the informational rents of infra–marginal types and thus enforce the incentive
compatibility of contracts.

Finally, we can address the case of correlated valuations. Bundling will be pre-
ferred to independent screening depending on the effect of correlation on the hazard rate
ordering of the distribution of the aggregate type relative to its components, –normally a
highly nonlinear relation–. For instance, consider the reference case where θ1 and θ2 are
independent and F0(θ) ≤ F1(θ) ∀θ ∈ Θ ⊆ <. Assume now that type components θ1 and θ2

are negatively correlated, and denote by F ?
0 (·) the cumulative distribution of θ0 = θ1+θ2

under negative correlation.16 The distribution of θ0 is now less dispersed, with less mass
of probability at the tails of the distribution than if θ1 and θ2 were independent.17 In some
sense the monopolist is now “less uncertain” about the value that consumer types may take,
because there is a larger mass of probability around the mean of θ0. Thus, for low values
of θ0 (below the mean), the probability of finding a type above a given θ0 is higher under
negative correlation than under independence. Therefore, the hazard rate function is lower
under negative correlation than under independence for low values of θ0. Just the contrary
holds for high values of θ0, i.e., the hazard rate of the distribution with negative correlation
will exceed that of the distribution of independent type components. If r?(θ) ≤ r(θ) only
for low values of θ, then for high valuation customers bundling markups will be lower under
negative correlation of type components than under the assumption of independence as
markups and hazard rate of the distribution of types are inversely related. Types are more
concentrated around the mean under negative correlation than under independence, and
thus it is necessary to introduce important distortions to distinguish among low consumers
and preserve the IC property of the mechanism. The opposite will hold if valuations are
positively correlated. But then high valuation customers will face higher markups relative
to the independence case.

15 A model that shares many of these features in Regulatory Economics is Sappington (1982).
16 One of the few cases where F ?(θ) can be written explicitly is that of θ = θ1 + θ2 where (θ1, θ2) ∼

BV N [µ1, µ2, σ2
1 , σ2

2 , ρ]. In this case, θ ∼ N [µ = µ1+µ2, σ2 = σ2
1+2ρσ1σ2+σ2

2 ]. To illustrate the argument
of this paragraph, I computed the hazard rate functions of θ1 + θ2 under independence, r(θ), and under
perfect negative correlation (ρ =−1), r?(θ). For the case where µ1 = 0, σ2

1 = 1, µ2 = 1, σ2
2 = 0.5, I found

that r?(θ) > r(θ) ∀θ > 0.12.
17 Note that the effect of correlation fulfills the requirements of the particular kind of mean preserving

spread that Courty and Li (2000, §3) need to order their type space defined by probability distributions.
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This discussion may shed some light on the discrepancy of predictions between
Palfrey (1983) and Armstrong (2000) regarding whether bundling auctions will be optimal
for the seller. According to the analysis of the previous paragraph, the presence of positive
correlation favors the sale of bundled products in multi–object auctions. This result is
opposite to that of Armstrong (2000), but similar to the one of Palfrey (1983) with a
small number of bidders. Types in the present model, as well as in Palfrey’s (1983) are
continuous. The result would hold however if types take a discrete number of possible
values, a sequence, and frequency functions replace distributions. The critical difference
with Armstrong (2000) model appears then to be that type components aggregate into a
single parameter while his model consider a truly multidimensional model although with
binary types only.

6 Concluding Remarks
This paper has described some preservation results that may prove useful in the field
of mechanism design. Most results, except those related to unimodality, also hold for
non–continuously differentiable frequency functions that fulfill the discrete version of total
positivity [Karlin (1968, §8)]. The most important application to screening is to prove
that solutions based on the aggregate type introduce higher distortions to enforce incentive
compatibility constraints because it comprises several sources of asymmetric information.
This result requires that each type component has an IHR distribution function defined
on positive compact support.

In order to solve explicitly the problem of multidimensional screening and show that
bundling is an equilibrium feature of these models Armstrong (1996, 2000) suggest the use
polar coordinates to ensure that incentive compatibility holds along rays. The present
model takes a different approach by modeling the money–value of each type dimension so
that their linear aggregation convey some economic meaning to the difference between
bundled (centralized, ex–post) and unbundled (decentralized, ex–ante) screening. By
making the different type dimensions to lie on the real line, the mechanism design problem
becomes tractable and the focus of the analysis is shifted to the statistical properties of
the distributions of types, that now identify whether the bundled solution is preferred.

A limitation of the analysis, common to the literature of multidimensional screening,
is the study of cases where types are correlated. Convolutions and compositions are
well defined when type components are independent. If they are not independent, the
distribution of the aggregate type is no longer the product of the individual distributions
of type components, and except in some few cases, the distribution of the aggregate type
can only be characterized by numerical methods [Miravete (2001, §4.3)], This confirms the
opinion of Armstrong (2000) and Rochet and Choné (1998) to rely on numerical methods
to gain some new insights of the features of equilibria in general models of multidimensional
screening.
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Appendix 1

• Proof of Proposition 1

In order to prove parts (a) and (b) of this Theorem let first study the total positivity
properties of the function δ : < → {0, 1} defined as follows:

δ(x− y) =
{

0 if x < y
1 otherwise (A.1)

From Definition 6, δ(x − y) is PF2 if ∀x1, x2 ∈ X ⊆ < and ∀y1, y2 ∈ Y ⊆ <, such that
x1 < x2 and y1 < y2, the following condition holds:∣∣∣∣ δ(x1 − y1) δ(x1 − y2)

δ(x2 − y1) δ(x2 − y2)

∣∣∣∣ ≥ 0. (A.2)

Simple analysis of all possible cases show that δ(x− y) is PF2. It is then straightforward
to show that δ̂(x− y) = 1− δ(x− y) is also PF2. By Lemma 3, γ̂(θi), the convolution of
δ̂(x− θi) and fi(θi) is PF2. Hence:

γ̂(θi) =
∫
<

δ̂(x− θi)fi(θi)dθi =

x∫
−∞

fi(θi)dθi = Fi(θi = x), (A.3)

because δ̂(x − θi) = 1 only if x < θi, and therefore the cumulative distribution function
Fi(θi) is PF2. Similarly, γ(θi) the convolution of δ(x − θi) and fi(θi) is also PF2, which
in this case implies that:

γ(θi) =
∫
<

δ(x− θi)fi(θi)dθi =

∞∫
x

fi(θi)dθi = F i(θi = x), (A.4)

because δ(x− θi) = 1 only if x ≥ θi, and the survival function 1− Fi(θi) is also PF2.

To prove part (c), note that by Definition 2, it follows that the hazard rate is
ri(θi) = −F

′
i(θi)/F i(θi) on {θi ∈ Θi : Fi(θi) < 1}, which has to be increasing in Θi

because by part (b) of this Theorem, F i(θi) is log–concave, and according to Definition 1,
this implies that the quotient F

′
i(θi)/F i(θi) is decreasing in Θi.

Similarly, to prove part (d), note that part (a) of this Theorem ensures that Fi(θi)
is log–concave, which by Definition 1 implies that l′i(θi) ≤ 0.

In order to prove part (e), observe that since fi(θ) is log–concave, for x1 < x2

Definition 1 requires:
f ′i(x1)
fi(x1)

≥ f ′i(x2)
fi(x2)

, (A.5)
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or equivalently: ∣∣∣∣∣∣
f ′i(x1) fi(x1)

f ′i(x2) fi(x2)

∣∣∣∣∣∣ ≥ 0. (A.6)

Assume that θ?
i is such that f ′i(θ

?
i ) = 0. If θ?

i = x2, then condition (A.6) implies that
f ′i(x1)fi(θ?

i ) ≥ 0. Since fi(θ?
i ) > 0, it must be the case that f ′i(x1) ≥ 0 for x1 < θ?

i .
Conversely, if θ?

i = x1, then −f ′i(x2)fi(θ?
i ) ≥ 0. Thus, it must be the case that f ′i(x2) ≤ 0

for x2 > θ?
i . Therefore, if θ?

i exists, fi(θi) is increasing for values of θi < θ?
i and decreasing

for θi > θ?
i . Otherwise, if θ?

i does not exists, fi(θi) is either monotone increasing or
decreasing. Thus, fi(θi) is unimodal.

• Proof of Proposition 2

Density function f(x, α) > 0 is TP2 in x and α if for x1 < x2 and α1 < α2:

D =

∣∣∣∣∣∣
f(x1, α1) f(x1, α2)

f(x2, α1) f(x2, α2)

∣∣∣∣∣∣ ≥ 0, (A.7)

Assume, without loss of generality, that α1 = α, α2 = α + ∆α, with ∆α > 0. Then, using
common properties of determinants it is straightforward to show:

D =

∣∣∣∣∣∣
f(x1, α) f(x1, α + ∆α)

f(x2, α) f(x2, α + ∆α)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
f(x1, α) f(x1, α + ∆α)− f(x1, α)

f(x2, α) f(x2, α + ∆α)− f(x2, α)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
f(x1, α)

f(x1, α + ∆α)− f(x1, α)
∆α

f(x2, α)
f(x2, α + ∆α)− f(x2, α)

∆α

∣∣∣∣∣∣∣∣ ·∆α ≥ 0. (A.8)

Since ∆α > 0, it follows that:

Dα = lim
∆α→0

(
D

∆α

)
=

∣∣∣∣∣∣
f(x1, α) fα(x1, α)

f(x2, α) fα(x2, α)

∣∣∣∣∣∣ ≥ 0. (A.9)

Proceeding similarly with x and assuming that x1 = x, x2 = x + ∆x, with ∆x > 0, it
follows that:

Dα =

∣∣∣∣∣∣
f(x, α) fα(x, α)

f(x + ∆x, α) fα(x + ∆x, α)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
f(x, α) fα(x, α)

f(x + ∆x, α)− f(x, α)
∆x

fα(x + ∆x, α)− fα(x, α)
∆x

∣∣∣∣∣∣∣ ·∆x ≥ 0, (A.10)
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so that:

Dxα = lim
∆x→0

(
Dα

∆x

)
=

∣∣∣∣∣∣
f(x, α) fα(x, α)

fx(x, α) fxα(x,α)

∣∣∣∣∣∣ ≥ 0. (A.11)

But observe that:

Dxα = f2(x, α) · ∂2 ln f(x, α)
∂x∂α

≥ 0, (A.12)

which according to Definition 3 hold if and only if f(x, α) > 0 is MLR.

• Proof of Proposition 3

Suppose not, i.e., for instance assume that r1(θ) < r0(θ):

f1(θ)
F 1(θ)

<
f0(θ)
F 0(θ)

. (A.13)

Using the definition of convolution in equation (11), this inequality is equivalent to the
following three inequalities:

f1(θ)F 0(θ)− f0(θ)F 1(θ) < 0, (A.14a)

f1(θ)

∞∫
0

F 1(θ − z)f2(z)dz − F 1(θ)

∞∫
0

f1(θ − z)f2(z)dz < 0, (A.14b)

∞∫
0

[
f1(θ)F 1(θ − z)− F 1(θ)f1(θ − z)

]
f2(z)dz < 0. (A.14c)

Since f2(θ) ≥ 0 on 0 ≤ θ < ∞, it must be the case that the term between brackets is
negative ∀θ ≥ 0. But observe that this condition then requires:

f1(θ)
F 1(θ)

≤ f1(θ − z)
F 1(θ − z)

∀z ≥ 0, (A.15)

so that F1(θ1) should be decreasing hazard rate. Similarly, r2(θ) < r0(θ) violates F2(θ2)
being IHR. Contradiction.
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