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Abstract 
Investors making complementary investments typically do not have in­

centives to invest efficiently when they cannot contract with each other prior 
to their decisions because of the hold-up problem: when they bargain over 
the surplus generated by their investments, they will usually not obtain the 
full fruits of the investment. Intuitively, the hold-up problem should be 
ameliorated if, in the bargaining stage, each agent has alternatives to the 
partner he is bargaining with. We characterize the matching and division of 
surplus in finite economies for any initial investment decisions. We provide 
conditions on those decisions that guarantee that each agent will capture 
the change in the aggregate social surplus that results from any investment 
change he makes. We further show that for any given problem, there exists 
a bargaining rule by which pairs split their surplus that will support efficient 
investment choices in equilibrium. We also show, however, that overinvest­
ment or underinvestment can occur for natural bargaining rules. 
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1. Introduction 

Investors making complementary investments typically do not have incentives to 
invest efficiently when they cannot contract with each other prior to their decisions 
because of the hold-up problem: when they bargain over the surplus generated by 
their investments, they will usually not obtain the full fruits of the investment. 
Intuitively, the hold-up problem should be ameliorated for a given agent if, in 
the bargaining stage, there are alternative partners for the agent he is bargaining 
with. When there are close substitutes for any given agent, competition among 
those potential partners can ameliorate the hold-up problem, resulting in more 
efficient investments. Cole, Mailath, and Postlewaite [3] analyzed a two-sided 
matching model in which a continuum of buyers and sellers make investment 
decisions prior to a matching stage. Subsequent to those investments, agents 
match, produce, and split the surplus that results from that production. We 
showed there that if bargaining respected outside options in the sense that the 
resulting allocation was in the core of the assignment game, efficient investment 
decisions could always be supported in equilibrium. 

With a continuum of agents, nearly all agents have essentially perfect substi­
tutes. Further, no agent can affect other agents' payoffs through his own invest­
ment. For some problems, a continuum plausibly captures intense competition 
among agents for partners, but for other problems, there is a natural pairing of 
partners, with each agent facing inferior alternatives should he leave the match 
which is most efficient. In this paper we present a finite agent model that allows 
us to analyze the case of imperfect competition among potential partners, the 
effect that reduced competition has on investments, and the possibility that an 
individual agent's investment can affect other agents' payoffs. We show that the 
finiteness of the set of agents is not necessarily a barrier to efficient investment de­
cisions. Agents' investment decisions will depend on the bargaining process that 
determines the split of the surplus any pair splits, and for any efficient investment 
decisions, there is a bargaining rule that respects the outside options represented 
by rematching which will support those efficient investment decisions. This does 
not necessarily mean that efficient investments are guaranteed, however. Bargain­
ing rules are not a choice variable of the participants; it is reasonable to think of 
bargaining rules that have historically evolved within a given society. Any given 
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bargaining rule governing a society will generally not be consistent with efficient 
equilibrium investments for most configurations of agent characteristics. 

Even if the "right" bargaining rule is in force, equilibrium investment deci­
sions need not be efficient. While there is always some bargaining rule that will 
support efficient investment, there will often be multiple equilibria, some of which 
exhibit inefficient equilibrium choices stemming from coordination failure: each 
side is investing inefficiently, but neither side finds it beneficial to unilaterally 
alter investment. 

The outline of the paper is as follows. In the next section, we present the 
formal model (Section 2) and characterize the bargaining outcomes (Section 3). 
Section 4 provides sufficient conditions for agents to receive the social value of 
their investments, and Section 5 compares the cases in which agents can and 
cannot contract prior to investing. The simplest version of the sufficient con­
ditions for agents to fully appropriate the value of their decisions (to use the 
language of Makowski and Ostroy [11]) involves binding outside options, so that 
all agents' payoffs are completely determined by the payoffs that any single agent 
receives. With a finite population, this requires that multiple agents are choosing 
the attributes that are also chosen by other agents. If each agent is idiosyncratic 
(for example, has different costs of acquiring attributes), then efficient attribute 
choices will not imply binding outside options. Efficiency then results only if the 
bargaining between agents results in a particular outcome (see, in particular, the 
discussion after Proposition 5). On the other hand, outside options do limit the 
agreements that agents can come to, and the richer the set of chosen attributes, 
the closer to binding the outside options become. A plausible (but incorrect) 
conjecture is that as the number of agents becomes large, outside options become 
binding and so in large economies, we have full appropriation. The conjecture 
fails even when the set of agents is rich (in the sense that each agent has a close 
competitor in exogenous characteristics), precisely because attributes are endoge­
nous: agents may not have a close competitor in attributes. Moreover, even if 
all agents have close competitors, the outside options that need to bind to ensure 
full appropriation may not. 

2. The investment problem 

An investment problem r is the collection {I,J,B,S,'l/J,c,v}, where 

• 	 I and J are disjoint finite sets of buyers and sellers; 

• 	 Band S are, respectively, the set of possible attributes (income, wealth, or 
willingness to pay) buyers can choose from and the set of possible attributes 
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(quality of good) for sellers; 

• 	 'IjJ : B x I --t ~+, where 'IjJ(b, i) is the cost to buyer i of attribute b; 

• 	 c: S x J --t ~+, where c(s,j) is the cost to seller j of attribute S; and 

• 	 v : B x S --t ~+, where v(b,s) is the surplus generated by a buyer with 
attribute b matching with a seller with attribute s. 

We assume Band S are compact subsets of ~+. We assume (without loss of 
generality) that there are equal populations of buyers and sellers. I We assume 
that v displays complementarities in attributes (v is supermodular): for b < b' and 
s < s', v(b', s) +v(b,s') ~ v(b,s)+v(b',s'). Equivalently, if V isC2, (;2v/8b8s ~ O. 
We will sometimes assume that the surplus function is strictly supermodular, i.e., 
v(b', s) + v(b, s') < v(b, s) + v(b', s') for all b < b' and s < s'. We also assume v 
is continuous and strictly increasing in b and in s, and that 'IjJ (', i) and c (.,j) are 
continuous and strictly increasing in b and in s, respectively. 

We model the bargaining and matching process that follows the attribute 
choices as a cooperative game. Given a fixed distribution of attributes of buyers 
and sellers, the resulting cooperative game is an assignment game: there are two 
populations of agents (here, buyers and sellers), with each pair of agents (one 
from each population) generating some value. To distinguish this assignment 
game from the assignment game we describe in Section 5, we call this assignment 
game the ex post assignment game (indicating that attribute choices are taken as 
fixed). An outcome in the assignment game is a matching (each buyer matching 
with no more than one seller and each seller matching with no more than one 
buyer) and a bargaining outcome or payoff (a division of the value generated by 
each matched pair between members of that pair). We denote the buyer's share 
of the surplus by x ~ 0 and the seller's share by p ~ 0, with x +p ~ v(b, s).2 

Definition 1. A matching m is a function m : I --t J U {0}, where m is one-to­
one on m -1 (J), and 0 is interpreted as no match. 

Definition 2. A bargaining outcome (x,p) E ~~ x ~{ is feasible for the 
matching m if Xi + Pm(i) ~ V(bi, Sm(i)) whenever m(i) =f. 0, Xi = 0 whenever 
m(i) 0, and Pj 0 whenever j (j:. m(I). A bargaining outcome is feasible if it 
is feasible for some matching. 

1 The case of more buyers than sellers, for example, is handled by adding additional sellers 
with attribute 0 and setting v(b,O) = 0 for all b. 

2Note that shares are amounts, not fractions. 
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buyer's share (Xi) 2 41 
2 

buyer's attribute (bi ) 2 3 
buyer (i) 1 2 
seller (j) 1 2 

seller's attribute (Sj) 2 3 
seller's share (pj) 2 41 

2 

Figure 1: An example with two buyers and sellers. 

41Xi 3 2 
bi 2 3 
i 1 2 
j 1 2 
Sj 3 3 

Pj 3 41 
2 

Figure 2: Seller 1 with attribute S = 3. 

To illustrate the matching-bargaining process, suppose there are two buyers, 
{1,2}, and two sellers, {1,2}. For now, we fix the attributes of the buyers and 
sellers as in Figure 1. The surplus generated by a pair (b, s) is given by the 
product of their attributes, v (b, s) = b . s. Figure 1 displays one particular bar­
gaining outcome for this environment with each of the two columns representing 
a matched pair and the split of the surplus for that pair. Total surplus is max­
imized by the indicated matching, and the split of the surplus for the pairs is 
unique if the sharing rule is symmetric with respect to buyers and sellers. 

Suppose now that attributes are not fixed, but are chosen from the set {2, 3}. 
We focus on the behavior of seller 1, with the attributes of the other agents 
unchanging.3 If the surplus is always divided equally and seller 1 chose instead 
S = 3, then the matching and surplus division are as in Figure 2. 

In this example, equal division violates equal treatment: The two sellers have 
the same attribute but receive different payoffs. But then seller 1 could make 
buyer 2 a marginally better offer than he gets when matched with seller 2. In 
other words, there is a pair of agents who by matching and appropriately dividing 
the resulting surplus can make themselves better off. We take into account each 

3The following cost functions for the two buyers and for seller 2 ensure (assuming the bar­
gaining is monotonic) that their optimal choice of attributes are given in Figure 1: '¢(2,1) 
'¢(b, 2) = c(s, 2) = 0, '¢(3, 1) 10. 
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agents' outside options by requiring that no pair of agents can, by matching and 
sharing the resulting surplus, make themselves strictly better off: 

Definition 3. A bargaining outcome (x, p) is stable if it is feasible and for all 
i Eland j E J, 

(1) 

A matching associated with a stable bargaining outcome is a stable matching. 

In a feasible and stable bargaining outcome, Xi +Pm(i) V(bi,8m (i»), and so 
there are no transfers across matched pairs. As usual in assignment games, stable 
bargaining outcomes are core allocations of the assignment game and, conversely, 
where the characteristic function of the assignment game has value V(A) at a 
coalition A c I U J given by the maximum of the sum of surpluses of matched 
pairs (the maximum is taken over all matchings of buyers and sellers in A).4 Since 
buyer attributes are described by the vector b and seller attributes are described 
by the vector s, we sometimes write V(b, s) for V(l U J). 

We are thus modelling the game facing buyers and sellers as one of simulta­
neously choosing attributes and, subsequent to the choice of attributes, match­
ing and sharing the surplus generated by the matches. We restrict attention to 
matches and payoffs that are stable, given the choice of attributes. Since v is 
supermodular, it is straightforward to show directly that there always exists a 
stable payoff for any vector of attribute choices. 

There is, however, one important issue in considering the attribute invest­
ment decisions as a noncooperative game. Typically there is not a unique stable 
outcome associated with a vector of attributes; in fact, as we will see, there is 
usually a continuum of stable outcomes. In order to treat attribute choices as 
a noncooperative game, each agent must be able to compare the payoffs from 
two different attribute choices, given other agents' choices. This requires a well­
defined (stable) payoff associated with every possible set of attribute investments. 
That is, there must be a baryaining outcome function 9 : BI X SJ ---> ~~ X ~~, 
with g(b, s) = (x, p) a stable outcome for each vector of attribute choices (b, s). 
We will refer to such a function as a bargaining functions. We denote by Xi (b, s) 
buyer i's share when the vector of attributes is (b, s) and by pj(b, s) the j-th 

4 Assignment games have received considerable attention in the literature. The core of any 
assignment game is nonempty and coincides with the set of Walrasian allocations (see Kaneko 
[8] and Quinzii [13] for the finite population case). Our case is particularly simple, since v is 
supermodular. 

While the set of stable bargaining outcomes coincides with the core, the notion itself is not in­
herently cooperative. Equilibrium outcomes of almost any noncooperative game with frictionless 
matching will be stable. See, for example, Felli and Roberts [5]. 
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seller's share. Observe that given g, buyers and sellers are simultaneously choos­
ing attributes, with payoffs xi(b, s) - ¢(bi , i) to buyer i and pj(b, s) c(sj,j) to 
seller j. This is a standard strategic form game. We next define a notion, weak 
ex post contmcting equilibrium, that combines the requirement that every vector 
of attribute choices lead to a stable payoff of the induced ex post assignment 
game with the requirement that attribute choices are a Nash equilibrium of the 
strategic form game. 

Definition 4. Given an investment problem r = {I, J, B, S, ¢, c, v}, a weak ex 
post contracting equilibrium is a pair {g* , (b*, s*)} such that 

1. 	 g* : BI X SJ -t ~~ X ~:L, where for any choice of characteristics (b, s), 
g*(b,s) (x*(b,s),p*(b,s)) is a stable payoff for (b,s), and 

2. 	 for each i E I and b~ E B, xi(b~i' bi, s*) ¢(bi, i) 2:: xi(b~i' b~, s*) ¢(b~, i), 
and for each j E J and sj E S, p;(b*,s~j's;) - c(sj,j) 2:: p;(b*,s~j,sj)­
c(sj,j). 

This equilibrium notion combines a noncooperative notion (Nash) and a coop­
erative notion (stability), along with the requirement that the cooperative notion 
apply after all histories. Each individual is best replying to the actions of every­
one else, the future consequences of any attribute choice are correctly foreseen, 
and any attribute choice must lead to a stable payoff. 

We think of the bargaining function, g, as capturing the way bargaining tran­
spires in an investment problem. Restricting the sharing of the surpluses arising 
from a given vector of attribute choices (b, s) to stable payoffs constrains the 
allowable bargaining process. However, it still leaves considerable indeterminacy, 
since there is typically a multitude of stable allocations for a given vector of 
attributes choices. For some investment problems, that indeterminacy might be 
resolved through bargaining that favors the buyers to the greatest extent possible, 
given the constraints imposed by stability. For other problems, bargaining might 
resolve the indeterminacy in favor of the sellers, while in still others, bargaining 
might result in as equal a division as is consistent with stability. 

An alternative to including the bargaining function in the definition of the 
equilibrium is to include it in the description of the investment problem. For ex­
ample, if bargaining favors buyers, the bargaining function capturing this could 
be included in the specification of the investment problem, leading to a "buyer­
friendly" bargaining problem. There are two difficulties with this approach. First, 
the bargaining function is endogenous. Second, for some bargaining functions, 
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there may be no pure strategy equilibrium. This nonexistence reflects an incon­
sistency between an exogenously specified bargaining function and the given data 
of an investment problem, I, J, B, 5, 1/;, c, and v. The way in which bargaining 
resolves indeterminacy must be endogenously determined in concert with agents' 
investment choices. 

We impose further restrictions on weak ex post contracting equilibria, in an 
equilibrium-selection spirit. As defined, for a given set of attribute investments, 
the outcome selected by the bargaining function can depend on the identity of 
the individuals who have chosen particular attributes. We focus on the case in 
which bargaining is anonymous in the sense that it depends only on attributes, 
independent of the identities of the agents choosing those attributes. 

Even with anonymity, the definition of weak ex post contracting equilibrium 
allows for bargaining functions that embody a substantial amount of arbitrariness. 
Consider, for example, a bargaining function selects the stable outcome that is 
most favorable to buyers as long as all buyers choose attributes that are consistent 
with maximizing aggregate net value, and selecting the stable outcome that is 
most favorable to sellers otherwise.5 A bargaining function that utilizes a trigger 
specification of this type would break any link between the marginal social return 
from an investment and its private return: A single buyer's change in attribute 
would alter the payoffs to all agents. Clearly, such bargaining functions will not 
provide agents with incentives to invest efficiently, but the reasons underlying the 
inefficiency are economically uninteresting. We restrict attention to a subset of 
weak ex post contracting equilibria that reduce the arbitrariness of the bargaining 
function by fixing the split at the bottom pair. 

Definition 5. An ex post contracting equilibrium (EPeE) is a weak ex 
post contracting equilibrium, {g*, (b*,s*)}, that is anonymous and, if for any 
two attribute vectors (b', s') and (b", s"), there exists i E I such that b~ = 
minCEl{be} = b~' = mincEl{bC} and there exists j E J such that sj = mincEJ{se} = 
" Sj . { "} thmmtEJ BC' en 

x;(b',s') x; (b" ,s") and 

pj(b',s') = pj (b", 8"). 

If there is an imbalance between the number of buyers and sellers, then we 
(along the lines of footnote 1) add enough dummy agents to equalize the number 

5In our setting, all buyers agree on the best and worst stable payoff vectors (and all sellers have 
the reverse ranking). Moreover, with a finite set of buyers, even in an anonymous equilibrium 
any deviation is detected, since any deviation results in a different empirical distribution over 
attributes. 
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of buyers and sellers. In this case, the bottom pair necessarily receives a payoff of 
zero, and consequently, the stable outcome necessarily favors agents on the short 
side of the market. 

3. 	Characterization of stable allocations for a finite population 

We now characterize the stable allocations. The simple proposition below summa­
rizes several characteristics: For any attribute vector (b, s), any stable outcome 
matches attributes positively assortativelYi all buyers with equal attributes re­
ceive equal payoffs, and similarly for sellers; and finally, in checking stability, one 
need not examine all unmatched pairs, but only those unmatched pairs for which 
the partners have attributes which are "close" to those of their matches. Before 
stating the proposition we make the following definition: 

Definition 6. A matching m is positively assortative ifm(I) = J and for any 
i,j E I, bi > bj ::::} 8 m (i) 2:: 8m U)' A labeling of agents is positively assortative 
if I, J {I, ... ,n} and attributes are weakly increasing in index. 

Proposition 1. Given a vector of attributes (b, s) and a positively assortative 
labeling of agents, 

1. 	 every stable matching is positively assortative on attributes; 

2. 	 every stable payoff exhibits equal treatment: bi = bi, b ::::} Xi Xi' == Xb 
and 8j 8y = 8 ::::} Pj = Pj' Psi and 

3. 	 a payoff (x, p) is stable if and only if for all i, 

Xi +Pi V(bi,8i), 

Xi +PHI > V(bi,8i+1), and 

Xi+1 +Pi > V(bHI,8i). 

Proof. The first two statements are straightforward. Without loss of generality, 
the stable matching can be taken to be by index, yielding Xi + Pi = V(bi' 8i). The 
two inequalities are immediate implications of stability. 

In order to show sufficiency, we argue to a contradiction. Suppose there exists 
a k > 1 such that Xi + PHk < V(bi' 8iH)' Then 

Xi+1 + PHk 	 < Xi+1 + v(bi , 8iH) - Xi 

< Xi+1 + v(bi , 8iH) v(bi , 8HI) +PHI 

= V(bHI, 8i+1) + v(bi , 8Hk) - v(bi , 8Hd < v (bHI, 8iH), 
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x 2 2 4 4 4 7 7 7 15 
b 2 2 3 3 3 4 4 4 6 
s 2 2 2 3 3 3 4 4 4 

P 2 2 2 5 5 5 9 9 9 

Figure 3: Equal treatment can imply stability. 

where the last inequality holds because v is strictly supermodular. Induction then 
yields Xi+k-l + Pi+k < v(bi+k-l' Si+k) , a contradiction. • 

The third part of this proposition implies that in order to check the stability 
of a payoff vector, we need only check adjacent pairs in a positively assortative 
matching. If no buyer (or seller) can block when matched with a partner adjacent 
to his or her current partner, the payoff vector is stable. 

Since stable payoffs exhibit equal treatment, we sometimes refer to the payoffs 
to an attribute rather than the payoffs to an individual, and we often will not 
distinguish between the two. 

Proposition 1 states that equal treatment is necessary for stability; in some 
cases, it is sufficient for stability as well. Consider the allocation in Figure 3 with 
v(b, s) = b· s. As before, matches should be read by columns. 

Once the bottom (left-most) pair's shares have been determined in this exam­
ple, all other agents' payoffs are uniquely determined by equal treatment because 
of the "overlap" in the players' attributes. 

The next proposition and corollary formalize the intuition illustrated by this 
example. If we order the values of chosen attributes of the buyers from low to 
high, we denote by b(K,) the /'i:-th value and, similarly, by s(K,) the /'i:-th value for 
the seller.6 

Definition 7. The pair of attribute vectors (b, s) is overlapping if, for a pos­
itively assortative matching m and any /'i:J there exists i, if such that bi = b(K,) , 

bil = b(K,+l), Sm(i) = Bm(i')' 

Overlapping attribute vectors have the following more transparent formula­
tion. Suppose we index the buyers and sellers by the integers 1 through n so 
that attributes are weakly increasing in index. Matching by index (Le., i m(i)) 

6Note that we are ordering distinct values of attribute choices, not individual agent choices. 

Consequently, b(",-l) < b(",) < b(K+l), even if two buyers have attribute be,,). In particular, be,,) 
is not the t\';th order statistic. 
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is then positively assortative on attributes. The attribute vectors are overlap­
ping if bj- l =1= bj =? Sj-l = Sj. Note that the notion is symmetric, since 
bi - l =1= bi =? Si-l = Si implies Si-l =1= Si =? bi - l bi . 

Proposition 2. Suppose the attribute vectors are overlapping, the labeling of 
agents is positively assortative, and (x, p) is a payoff vector for a positively as­
sortative matching that satisfies 

1. equal treatment, and 

2. no waste: Xi + Pi = v(bi , Si). 

Then (x, p) is stable. 

Proof. Since we have assumed no waste, we need only check to see that for 
adjacent pairs, if the matching is switched, neither of the new pairs can block. 
But since the vectors of attributes are overlapping, either both buyers have the 
same attribute or both sellers have the same attribute, and the assumption that 
Xi +Pi = v(bi ? Si) ensures that neither of the new pairs can block. • 

In what follows, we denote the payoff to attribute b(K) (S(K») by X(K) (P(K) , 
respectively). 

Corollary 1. Suppose (b, s) is overlapping and the pair (X(1),P(l») satisfiesX(l) 2 
0, Pel) 20, and XCI) + Pel) = v(b(1) , S(l»)' Define (x,p) recursively as follows: 

X(K+l) = X(K) + [V(b(K+1) , s) - V(b(K)' s)], 

where S = Sm(i) = Sm(i') and bi b(K)' bi' b(K+l) for some positive assortative 
matching m and i, i' E I, and similarly for the sellers'? Then the payoffs (x,p) 
are stable, and every stable payoff can be constructed in this way. 

Proof. Since there is a unique positive assortative matching of attributes, there 
is a unique seller attribute that satisfies, for any positively assortative matching of 
agents, S sm(i) = Sm(i') and bi = b(K)' bil = b(K+l) for some i, i' E I. Moreover, 
the hypothesis of overlapping attribute vectors ensures that S exists and that for 
all matched attributes (b, s), Xb + Ps = v(b, s). Hence, we have equal treatment 
and no waste, and Proposition 2 applies. 

Equal treatment in stable payoffs guarantees that every stable payoff has this 
property. • 

7This defines the payoffs to attributes. Every agent with the same attribute receives that 
payoff. 
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Corollary 1 provides a complete characterization of stable outcomes when 
attribute vectors are overlapping. When attribute vectors don't overlap, there is 
a degree of indeterminacy in stable payoffs, even fixing the division of the value 
for the bottom pair. One can, however, construct stable payoffs for a vector of 
positively assortative, nonoverlapping attributes in a straightforward way: Fix 
the share for the bottom pair. For the largest overlapping subset of attributes 
containing this bottom pair of attributes,S use equal treatment to determine the 
payoffs to those attributes. Where there is a gap between the attributes for 
this subset of agents and those higher, Proposition 1 puts constraints on how 
the surplus for the pair above the gap can be divided. Choose an arbitrary 
distribution of surplus for that pair, subject to those constraints. Allocate the 
surplus for the adjoining pairs so long as there is overlap, and each time a gap is 
encountered, proceed as above. 

We now formalize this idea and provide bounds on the indeterminacy of stable 
payoffs. Note that, without loss of generality, given an attribute vector (b, s), a 
positively assortative labeling of agents, and a stable matching m, we can assume 
buyer i is matched with seller m{i) = i. Let (bt , st) denote the vector of attributes 
for a population of agents (It, Jt), I C It and J C Jt, with overlap constructed 
as follows: if there exists i such that bi =I- bHl and Si =I- SHl, then in the extended 
population, there is an additional buyer (with index i + ~) with attribute bi and 
an additional seller (also with index i+~) with attribute Si+l. We refer to (bt , st) 
as the buyer-favored extension of (b, s). Note that a stable matching for (bt , st) 
is given by mt(i) = i for all i. This maintains the original matching on I and 
extends it to the new agents by matching any new buyer i + ~ with the new seller 
i + ~. Similarly, let (b1, s1) denote the vector of attributes for the population 
(11, J1) obtained from (b, s) by giving attribute bi+l to buyer i + ! and attribute 
Si to seller i + ~. We refer to (b+, s1) as the seller-favored extension of (b, s). 
Note that (b+, sf) also satisfies overlap and that It It and J+ = Jt. Note also 
that for any stable payoff for either extension, the restriction of the payoff to the 
original agents, I U J, is stable. 

The attribute vectors (bt , st) and (b+, sf) are minimal extensions of (b, s) 
that yield overlapping attribute vectors by adding just enough of the "right" 
attributes. Note that the bottom pair of matched attributes is unaffected by the 
extension, so that bt = bf = minbi == Qand 8t = sf = minsj == §.. Since (bt,st) 
is overlapping, by Corollary 1, there is a unique stable payoff corresponding to 
each value of x~, which we call a buyer-favored payoff, and similarly for (bt , s1). 

BThis subset may consist of only the bottom pair. 
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The following proposition shows that the vector (bt , st) uniformly favors buy­
ers in the sense that it gives the maximal payoff to buyers over stable payoffs given 
xl. Suppose that buyers and sellers are positively assortatively matched and that 
there are adjacent pairs for which both the buyers' and sellers' attributes differ. 
The buyer-favored extension maximizes the buyer's payoff by having a seller with 
the same attribute as his partner match with a buyer with a lower attribute, 
which minimizes the payoff to that attribute (by Proposition 1). The buyer then 
receives the remainder. Analogously, the seller-favored extension (bl , sf) gives 
the maximum payoff to the seller subject to the bound. 

Proposition 3. Suppose (b, s) is a vector of attributes and (x, p) is a stable 
payoff. Let (xt, pt) be tlle unique stable payoff for the buyer-favored extension 
of (b, s) satisfying xl=xQ, and let (xl, pl) be the unique stable payoff for the 

seller-favored extensi~n of (b, s) satisfying x~ = xk: Then, (xt, pt) and (x+, pt) 
are stable payoffs for (b, s). Moreover, -

(2) 

and 
(3) 

Finally, for any attribute in (b, s), any share Xb satisfying (2) or Ps satisfying (3), 
there is a stable payoff for (b, s) giving shares Xb to b or Ps to s. 

Proof. It is immediate from Proposition 1 that (xt, pt) and (xt, pl) are stable 
payoffs for (b, s). Since no new attributes are introduced in (bt , st) or (b+, sl), and 
every pair of attributes in (b, s) matched in a stable matching remains matched 
when the attribute vector is (bt , st) or (bl , sl), it is enough to show that Xb :::; xl 
'\Ib to verify (2) and (3). 

Let b(K,) be the first buyer attribute at which there is no overlap, and note 

that b(K,) = b!K,' The attribute b(K,)'s stable payoff is at a maximum when the 
stable payoff ot the sellers with attribute sK, is at a minimum, where sK, is the 
smallest seller attribute matched with the buyer attribute b(K,)' This occurs when 
X(K,-l) + PsI< V(b(K,_l), sK,). Thus, 

x(><) :::; X(K,-l) + v(b(K,), sK,) - V(b(K,-l) , sK,) X!K,) (X(K,-l»), 

with equality yielding a payoff that is consistent with stability. Moreover, X!K,) (X(K,-l») 

is the payoff of attribute b(K,) when the population attribute vector is (bt , st), 

since attribute b(K,-l) receives a payoff of x(K,-l)' Note also that x1K,/X(K,-1») is 
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increasing in X(,,;-l)' Proceeding recursively up buyer and seller attributes shows 
that buyer attribute be,,;) 's maximum stable payoff is calculated as if there is the 
pattern of overlap of (bt,st). 

Now consider the sufficiency of (2) for a single buyer attribute's share to 
be stable. Fix some share satisfying (2) for an attribute b. We now proceed 
inductively to fill in shares to the other attributes above and below. For attributes 
above b, apply the procedure described just after Corollary 1. The same procedure 
can also be applied for attributes below b, starting at b and working down. The 
bounds (2) guarantee that each step will be feasible and result in the bottom pair 
receiving the split (xQ.'p.~). • 

Note that the proposition does not assert that any vector of shares that sat­
isfies (2) for all attributes can be achieved in a single stable payoff. PropositioI1.<; 
2 and 3 characterize the stable outcomes associated with any attribute vector 
(b, s). These propositions provide the tools we use in the next section to analyze 
the incentives agents have in making investment decisions. 

4. Incentives for efficient investment 

The investment inefficiency that can result from the hold-up problem is illustrated 
by the following bargaining function. Given a vector of attributes (b, s), suppose 
the labeling of agents is positively assortative and buyer i matches with seller i. 
The bottom pair divides the surplus equally, so that Xl = PI = ~V(bl,Sl)' We 
then proceed recursively, dividing the surplus net of the outside options equally. 
Given a sharing of the surplus for pair i-I, v (bi-I, Si-I) = Xi-l + Pi-I, the 
surplus net of the outside options for pair i is 6.i == V (bi , Si)-(V (bi , Si-I) - Pi-I) 
(v (bi-I, Si) Xi-I) = v (bi , Si) + v (bi-I, Si-I) - v (bi' Si-I) V (bi-l, Si), which is 
nonnegative, by supermodularity. Set Xi v (bi,Si-l) Pi-l + ~6.i' and Pi = 
v (bi - I , sd - Xi-l + ~6.i. The resulting bargaining function, which yields stable 
payoffs for all attribute vectors, is the result of applying the symmetric Nash 
bargaining solution to each matched pair in order, with the disagreement point 
given by the outside option of matching with the preceding pair. Accordingly, we 
refer to this bargaining function as the Nash bargaining function. 

Under the Nash bargaining function, an agent typically shares the social value 
of any change in attribute with his or her partner, and so in general we would 
not expect such an function to yield incentives for efficient investment. Trivially, 
if there is only one buyer and one seller, there is underinvestment (this is the 
standard hold-up problem). Moreover, there is a sense in which the Nash bar­
gaining function typically will not lead to efficiency. If efficiency requires each 
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x 2 4 4 4 7 7 7 11 15 
b 2 3 3 3 4 4 4 5 6 
s 2 2* 2 3 3* 3 4 4* 4 
p 2 2 2 5 5 5 9 9 9 

Figure 4: The result of a buyer's change in attribute. 

buyer to choose a distinct buyer attribute and each seller to choose a distinct 
seller attribute (as would be the case if each agent had a different cost of acquir­
ing attributes and attributes were continuous), then the outside options are not 
binding, and agents do not receive the full social return on their attribute choices 
under the Nash bargaining function. 

The situation is very different when outside options bind. Suppose, for exam­
ple, that in the example in Figure 3, a buyer with attribute b = 2 changed his 
attribute to b = 5. If we leave unchanged the bottom pair's division, the unique 
payoffs consistent with equal treatment are as in Figure 4 (an asterisk indicates 
a seller for whom the matched buyer has a different attribute level as a result of 
the change). 

The share to the buyer whose attribute changed increased by 9. In principle, 
this need not be the change in the social value. The change in the buyer's attribute 
from 2 to 3 alters the matching of buyers and sellers. A buyer who increases his 
attribute will "leapfrog" other buyers and match with a higher attribute seller. 
This will result in some of the other buyers being matched with lower attribute 
sellers than they had originally been matched with and some of the sellers being 
matched with higher attribute buyers than before. In other words, when this 
buyer (or other buyers or sellers) chooses an attribute, he imposes an externality 
on other players simply because the matching is changed. While an increase 
in a buyer's attribute causes some of the other players to be in matches with 
higher total surplus and others to be in matches with lower total surpluses, it is 
unambiguous that the aggregate surplus is increased. When a buyer increases his 
or her attribute, a number of the sellers are matched with higher attribute buyers 
following the increase, while none is matched with a lower attribute buyer. Hence, 
the increase in the social value is the sum of the increases in the total surplus of 
those pairs with sellers matched with higher attribute buyers after the increase. 

These externalities may lead individuals to either overinvest or underinvest 
from a social perspective. While it is true that, in general, changes in attribute 
can result in changes to the individual's payoff that differ from the change in 
social value, it is not the case in this example. The particular pattern of overlap­
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ping attributes for the vectors of attributes results in each of the players whose 
attribute is unchanged getting the same payoff after the specified player's change 
as before. Since no other agent's payoff is changed by the buyer increasing his 
attribute, it follows trivially that this buyer captures the full social value of the 
attribute change. The qualitative characteristics of this example are quite general 
as shown by the next proposition (which is proved in the appendix). 

Proposition 4. Let (b, s) and (b', s) denote two vectors of attributes satisfying 
bi = bL Vi =1= e. Let {(x, p), m} denote a stable payoff and matching for (b, s), 
and {(x', pi), m'} a stable payoff and matching for the attributes (b' , s). IfPm(£) = 

P'm(e) and Pm'(£) P'm,(£), then 

Xl = X£ + V(b', s) - V(b, s). 

Definition 8. The attribute vector (b, s) is doubly overlapping if (b, s) is 
overlapping and each matched pair of attributes appears at least twice. 

Corollary 2. Let (b, s) and (b', s) denote two vectors of attributes satisfying 
bi = b~, Vi =1= e. Let {(x,p),m} denote a stable payoff and matching for (b,s), 
and {(x', p'), m'} a stable payoff and matching for the attributes (b', s) satisfying 
x~ = xl!: If (b, s) is doubly overlapping, then 

X~ = X£ +V(b',s) V(b,s). 

Proof. If (b,s) is doubly overlapping, then the vector of attributes following 
any single agent's change of attribute is overlapping. It is straightforward to 
see that if x~ = X!!, the construction in Corollary 1 results in Pm(£) = P'mC£) and 
Pm'(£) = P'm,{£), Hence, the proposition applies. • 

The proposition and corollary provide sufficient conditions that rule out one 
source of inefficiency in investments. If the attribute choice vector is doubly 
overlapping, each agent captures exactly the incremental aggregate surplus that 
results from his attribute choice. Competition among future potential partners 
eliminates any "holdup problem" that might arise due to the investment choice 
being made prior to matching and bargaining over the surplus. 

Double overlap is not necessary for agents to receive the correct incentives for 
efficient attribute choice. There are trivial examples for which double overlap may 
fail, yet Proposition 4 still holds. There are, however, trivial examples for which 
there are equilibria for which an agent will not capture the change in surplus that 
results from a change in his attribute when the conditions for Proposition 4 fail. 
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It is important to note that Proposition 4 does not say that when the hy­
potheses of the proposition hold, the outcome is efficient. The proposition only 
guarantees that any inefficiency in the investment choices does not stem from 
a single person's decision, Le., the proposition provides sufficient conditions for 
constrained efficient investment choices.9 There remains the possibility of ineffi­
ciencies due to coordination failures resulting from the choices of multiple agents. 
For example, if we consider the surplus function that we have used in the exam­
ples above, v(b, s) = b· s, it is clearly an equilibrium for all buyers and sellers to 
choose attribute 0 if the cost of choosing this attribute is 0, regardless of the cost 
of higher investment levels. The problem, of course, is that unilateral deviations 
from no investment have no value. We will show in the next section, however, 
that for any investment problem, there is always one equilibrium for which each 
agent will capture precisely the change in surplus that results from a change in 
attribute and, further, that no pair of agents can jointly change their attributes 
in a way that increases their surplus, net of investment cost (or other set of agents 
for that matter). 

All stable bargaining functions are essentially equivalent when the attribute 
vector is double overlapping, since equal treatment (together with the bottom pair 
division) completely determines the returns to an attribute. On the other hand, 
when the attribute vector is not overlapping, different bargaining functions have 
different efficiency properties. We suggested at the beginning of this section that 
the Nash bargaining function can be expected to have poor efficiency properties 
(in particular, constrained inefficient equilibrium attribute choices are consistent 
with the Nash bargaining function). We illustrate this idea in the context of 
a symmetric investment problem, so that I = {1, ... , n}, v (b, s) = v (s, b), and 
1/J (b, i) = c (b, i). Suppose also that B S is a compact interval, and that 1/J is C2 

, 

with a1/J (b, i) lab strictly increasing in i. In any symmetric ex post contracting 
equilibrium with the Nash bargaining function, each buyer chooses a distinct 
buyer attribute, and each seller chooses a distinct seller attribute. Moreover, every 
such equilibrium is inefficient. Since the Nash bargaining function is symmetric, 
in any symmetric equilibrium outcome, each matched pair is dividing the surplus 
equally. 

Consider now the following bargaining function 9'. For any attribute vector, 
give the agents a positively assortative labeling so that buyer i matches with seller 
i. If the attribute vector (b, s) is symmetric, i.e., b = s, 9' divides the surplus 

9 Cole, Mailath, and Postlewaite [3] show that in a continuum version of this model all equi­
libria are constrained efficient. Intuitively, this is a consequence of the inability of a single agent 
to affect other agents' payoffs through his investment. Note that this property is stronger than 
the condition in Proposition 4. 
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equally for each pair. If the attribute vector (b,s) is not symmetric, let i' be 
the first pair for which bi, =1= Si'. Pairs with smaller attributes equally divide the 
surplus. For the pair i', the agent with the smaller attribute receives under g' half 
the surplus that would have resulted had he been matched with an agent with the 
same attribute as his own, and his partner receives the residual. For buyers and 
sellers with higher index, g' uses the buyer-favored extension if bi, > Si', and uses 
the seller-favored extension otherwise. This bargaining function has the property 
that given a symmetric attribute vector, any agent who increases his attribute 
will receive the full social value of that increase. lO As a consequence, for this 
bargaining function, there are no symmetric equilibria with underinvestment that 
is constrained inefficient. 

5. Ex ante contracting equilibrium 

We now compare the investments taken in an ex post contracting equilibrium 
with the investments agents would make if buyers and sellers could contract with 
each other over matches, the investments to be undertaken, and the sharing of the 
resulting surplUS. If a buyer i and seller j agree to match and make investments b 
and S respectively, then the total surplus so generated is v(b, s)-'ljJ(b, i)-c(s,j). In 
a world of ex ante contracting, investments maximize this total surplus. Thus, if 
buyer i and seller j are considering matching, they are bargaining over the surplus 
'P(i,j) = maxb,s v(b, s) - 'IjJ(b, i) - c(s,j). The ex ante assignment game is the 
assignment game with the population I of buyers, J of sellers, and value function 
'P. Just as we considered stable outcomes for the ex post assignment, we impose 
stability on outcomes of the ex ante assignment game. A stable outcome, together 
with the implied attribute investments, is an ex ante contracting equilibrium: 

Definition 9. The outcome of the ex ante assignment game {m*, (b* ,8*), (x* ,p*)} 
is an ex ante contracting equilibrium (EACE) if 

lOFix a symmetric attribute vector, and suppose each buyer chooses a distinct buyer attribute. 
Consider a replica economy in which each attribute is chosen by two agents, with a positively 
assortative labeling, so that b(K} = b2 ,., for K, 1, ... ,n, in the replica economy. Now consider 
the result of buyer i' changing attribute from be to b;, > bil. Let K, be the rank order of bil, 
Le., b(K} = bi" If y,! < b(K+l), then buyer i' is still matched with seller ii, seller i"s share is 
unchanged, and so buyer i' captures the full social value of the change. If b~, > b(I<+1)' then 
buyers and sellers are rematched, and because each other attribute is chosen by two agents, 
there is overlap between seller i' and the seller who is now matched with buyer i'. This pattern 
of overlap corresponds to the buyer-first extension for sellers j > il. Since the payoff to seller i' 
is unchanged, the proof of Lemma A applies here and so buyer i' again captures the full social 
value of the change in attribute. 
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1. (bi,s:n*(i») maximizesv(b,s) -¢(b,i) -c(s,m*(i)) ifm*(i) E J; 

2. (x*, p*) is feasible for m*; and 

3. for all i E I and j E J, 

xi - ¢(bi, i) +pj - c(sj,j) ~ <p(i,j). 

Since the ex ante assignment game is a finite assignment game, ex ante con­
tracting equilibria exist (see footnote 4). It is immediate that (x*, p*) is a sta­
ble payoff of the ex post assignment game associated with the attribute vector 
(b*, s*). 

We pointed out in the previous section that investments could be inefficient. 
Given the bargaining function in the equilibrium, some agents might not be able 
to capture the incremental surpluses that would result from altering their invest­
ments in attributes. Further, regardless of the bargaining function, there may be 
coordination failures in which Pareto improvements are possible, but only if pairs 
of agents jointly change their attributes. 

We should not be surprised that an inability to contract over investment 
choices in the presence of complementarities can lead to inefficiency. Indeed, one 
might expect that in such an environment inefficiency is inevitable, but this is 
not the case. The following proposition states that any outcome achievable under 
ex ante contracting is part of an ex post contracting equilibrium. 

Proposition 5. Given an ex ante contracting equilibrium {m*, (b*, s*), (x*, p*)}, 
there exists g* such that (g*, (b*, s*)) is an ex post contracting equilibrium. 

Proof. If necessary, relabel buyers and sellers so that I = J {1, ... , n} and 
m*(i) = i. Define g*(b*, s*) = (x*, p*). Since ex post contracting equilibria 
are Nash equilibria, we need only be concerned with unilateral deviations (any 
specification of g* for multilateral deviations consistent with the definition of an 
ex post contracting equilibrium will work). Consider then an attribute vector 
(b~ll be, s*) for some be E Band £ E I (the extension of g* to a deviation by a 
seller is identical). Denote the stable payoff we are defining by (x, p). 

Suppose be < be, and let if satisfy bi'-l < be ::; bt, (where bo== -1); clearly, 
if ::; £. Since stable matchings are positively assortative in attributes, m(i) = i 
for i < if, m(i) = i + 1 for i ~ i', i =1= £, and m(l!) = if is a stable matching for 
(b:,e,be,s*). Since m(i) = m*(i), we can set (xi,pd = (xi,pi) for i < if. Set 
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(this is the most that seller if can receive consistent with stability and Pi'-l­
Proposition 1),11 and then complete g* as described above. Before considering 
be > bi, we show that be < bi is not a profitable choice with this specification. 
The difference in payoffs is 

xe-'l/J(be,f) {v(be,si') pi'-'l/J(be,fn 

xi 'I/J(bi,f) - {v(be,si'_l) - pi'-l 'I/J(be,f)} 

xi 'I/J(be,f) +Pi'-l {v(be, Si'-I) 'I/J(be,f)} 
> <p(f,i' -1) - {v(be,si'_l) - 'I/J(be,f) - C(Si'_l,if I)} ~ 0, 

where the first inequality comes from the stability of ex ante contracting outcomes 
in the ex ante assignment game, and the second comes from the definition of <po 

Now, suppose be> be, and now let i' satisfy bi, < be ~ bi'+1 (where b~+1 == (0); 
clearly, i' ~ f. Set m(i) = i for i < f, m(i) = i 1 for f < i ~ i', m(f) = i', 
and m(i) = i for i ~ i' + 1. As before, for i < f, we set (Xi,Pi) = (xi,pt). 
Potentially all the matches between seller f and seller i' (inclusive) involve the 
seller being matched with a different buyer attribute than under m *. Moreover, 
all these sellers are matching, under m, with buyers whose attributes are at least 
as large as those under m*. Then it is still feasible (and stable) to set Pe = Pe 
and Xf+1 v(be+1' si) Pe (note that Xf+l ~ xi+1)' We now proceed inductively, 
settingpi+1 = v(bi+2,si+1) (v(bi+2,st) Pi) andxi+2 = v(bi+2,S;)-Pi fori ~ f. 
By Proposition 1, we have described a stable outcome of the ex post assignment 
game associated with (b::'e, be, s*). Moreover, Pi' ~ pi,. [The proof is by induction. 
Note that Pe ~ pi, and suppose that Pi ~ pi· Then, Pi+I v(bi+2,si+1) - Xi+2 = 

V (bi+2 ,si+1) - v(bi+2' 8;) +Pi ~ v(bi+2' Si+1) - v(bi+2, st) +pi ~ v(bi+l' si+1) ­
v(bi+1,si) + pi ~ v(bi+1,si+1) - Xi+l = Pi+1 (where the first inequality follows 
from Pi ~ pi, the second from the supermodularity of v, and the third from 
stability).] The difference in payoffs for buyer f for the deviation to be is then 

Xe 'I/J(bi, f) - {v(be, si,) - Pi' - 'I/J(be, fn 
> xi - 'I/J(be,f) - {v(be, si,) - pi, - 'I/J(be,f)} 

xi - 'I/J(bi, f) + pi, - {v(be, si,) - 'I/J(be, f)} 
> <p(f, if) - {v(be, si,) - 'I/J(be, f) c(si" if)} ~ 0, 

where the second inequality comes from the stability of ex ante contracting out­
comes in the ex ante assignment game and the third from the definition of <po • 

11 If i' = e, then there is no rematching as a result of the lower attribute choice, and p; may 
be feasible in a stable outcome. If it is, then setting Pi = P; also works. 
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The result is trivial when the ex ante contracting attribute choices are doubly 
overlapping. The nontriviality comes from the possibility that there may be gaps 
in the attribute matchings (after a deviation), so that stability and the bottom 
pair do not uniquely determine attribute payoffs. This indeterminacy is impor­
tant. It is because of this indeterminacy that we do not interpret Proposition 5 
as a strong positive result. It is true that for any outcome that is supportable a..<; 

part of an EACE, there is an EPCE yielding the same investments and payoffs. 
But the EPCE that does this depends crucially on the bargaining function. The 
issue is the interpretation of bargaining function. We suggested above that we 
could think of it as generally determining how surplus is shared subject to the 
constraints of competition implicit in stability. For some problems sellers might 
capture most of this, and in others, it may be the buyers. But in Proposition 5, 
the bargaining function responds to changes in the underlying investment problem 
(e.g., changes in the costs of investment 'IjJ or c), since it depends upon (b*,s*). 

While the indeterminacy is eliminated if the ex ante contracting attribute 
choices are doubly overlapping, there is good reason not to expect double over­
lap. Typically, if each agent has different costs of acquiring attributes and at­
tributes are continuous variables, then the efficient attribute choices (b*, s*) will 
not be doubly overlapping. Proposition 3, on the other hand, provides bounds 
that suggest that as the set of chosen attributes become sufficiently rich (in the 
sense that the set of attributes looks like an interval), the indeterminacy in stable 
payoffs disappears. However, attributes are endogenous, and even if there are 
many agents, the set of chosen attributes may not be rich. The complementarity 
of attributes means that, in general (in particular, when the complementarity is 
strong), in the limit the set of efficient attributes may be a disconnected set. The 
case of a continuum of agents is analyzed in [?]; an example in which the set of 
efficient attributes is a disconnected set is described there. Consider an increasing 
sequence of finite populations of agents, with the space of their exogenous char­
acteristics becoming increasingly rich (so that in the limit, every agent has dose 
competitors, in the sense that the limit space of characteristics is an interval). 
The efficient attributes along the sequence must then eventually fail to be doubly 
overlapping, and so the failure of double overlapping is not a "small numbers" 
problem. 

5.1. Inefficient investment: underinvestment 

We mentioned at the end of Section 4 that ex post contracting equilibrium out­
comes might easily be inefficient (the example of v(b, s) = b . s and all buyers 
and sellers choosing attribute 0). While having all agents choose attribute 0 is a 
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particularly simple way to illustrate the possibility of inefficiency, it isn't difficult 
to construct examples in which all agents are choosing positive attributes. In fact, 
we can modify any investment problem to generate inefficiency; moreover, this 
inefficiency cannot be eliminated by any restrictions on the bargaining function. 

Fix an investment problem r = {I,J,B,8,'IjJ,c,v}, and define B' == B U {b'} 
and 8' == 8 U {s'}, where b' > b maxB and s' > s == max 8. Extend the 
definition of v to B' X 8' by setting v(b, s') = v(b, s) for all b E Band v(b', s) = 
v(b, s) for all s E 8 and setting v(b', s') = v(b, S)+maxi 'IjJ(b, i)+maxj c(s,j)+2a+ 
1, where a > v(b, s). Extend the cost functions by setting 'IjJ( tJ ,i) 'IjJ(b, i) + a for 
all i E I and c(s', j) = c(s, j) + a for all j E J. Note that, unless both the buyer 
and the seller in a pair choose the added elements b' and s', the new attributes 
are simply expensive substitutes for band s. 

The only efficient outcome in the investment problem r' {I, J, B' , 8' , 'IjJ, c, v} 
is for every buyer to choose b' and every seller s' (since v(b', s') -'ljJ(b', i) -c(s' ,j) = 
v(b, s) + maxi, 'IjJ(b, i) + maxj c(s,j) + 2a + 1 - 'IjJ(b, i) - a - c(s',j) = c(s,j) - a ~ 
v(b, s) + 1). 

Fix an ex post contracting equilibrium of r', and denote its bargaining func­
tion by g. We claim that there is another ex post contracting equilibrium of r' 
with the same bargaining function 9 that involves inefficient attribute choices. 
Consider the strategic form game implied by 9 on the attribute sets Band 8. 
This has an equilibrium (perhaps in mixed strategies). Moreover, this will be an 
ex post contracting equilibrium of r': If all other agents are choosing attributes 
in Band 8, then no matter how the bargaining function divides the surplus, 
since a > v(b, s), there is insufficient total surplus to justify choosing the added 
attribute. 

5.2. Inefficient investment: overinvestment 

The previous subsection illustrated an ex post contracting equilibrium outcome 
with agents making inefficiently low investment in attributes. There is a similar 
possibility of overinvestment, but with an important difference. We first give a 
simple example with overinvestment. 

There are two buyers, {I, 2}, and two sellers, {1,2}. The possible characteris­
tics for buyers and sellers are B = 8 = {4, 6}. The surplus function is v(b, s) = b·s. 
The cost functions are 'IjJ(4, i) = c(4,j) = 5, i,j 1,2; 'IjJ(6, i) = c(6,j) = 16, 
i,j = 1,2. The efficient attribute choices are for all buyers and sellers to choose 
attribute level 4. These efficient choices can be part of an EPCE. Suppose that 
when all agents choose attribute 4, the surpluses are shared as in the left side 
of Figure 5 and as in the right side of Figure 5 if a single agent (here, a buyer) 

21 




Xi -1/J 3 3 Xi -1/J 3 0 
Xi 8 8 Xi 8 16 
bi 4 4 bi 4 6 
i 1 2 i 1 2 
j 1 2 j 1 2 
8i 4 4 8i 4 4 

Pi 8 8 Pi 8 8 
Pi - c 3 3 Pi -c 3 3 

Figure 5: The efficient equilibrium. 

Xi -1/J 2 2 Xi -1/J 1 2 
Xi 18 18 Xi 6 18 
bi 6 6 bi 4 6 
i 1 2 i 1 2 
j 1 2 j 1 2 
8j 6 6 8i 6 6 
Pj 18 18 Pi 18 18 

Pi - c 2 2 Pi - c 2 2 

Figure 6: The overinvestment equilibrium. 

deviates and chooses attribute 6. 

Since a single agent switching from attribute 4 to attribute 6 decreases his 
net payoff from 3 to 0, the efficient choice of attribute level 4 for all agents is 
an EPeE. However, there may be another EPeE in which all agents overinvest; 
that is, all agents choose the high attribute level 6. Suppose that the payoffs 
resulting from all agents choosing attribute level 6 and those following a single 
agent deviating and choosing level 4 are as given in Figure 6. 

These figures make clear that it is an EPeE for all agents to choose the 
inefficient attribute level 6. Note that there is a common bargaining function 9 
that supports (that is, is part of) both equilibria. 

This illustrates that we can get inefficient overinvestment as well as inefficient 
underinvestment, but as we stated above, there is a difference between the two 
cases. For the example in the previous section illustrating an equilibrium with 
underinvestment, we pointed out that the inefficiency could arise regardless of the 
bargaining rule 9 (that is, there was no 9 for which the underinvestment outcomes 
would not be an equilibrium). 
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Xi 2 2 6 
bi 2 2 4 
i 1 2 3 
j 1 2 3 
Sj 2 2 4 
Pj 2 2 10 

Pj -c 2 2 3 

Figure 7: The efficient equilibrium. 

We conjecture that there are bargaining functions 9 that might preclude over­
investment for many investment problems. For example, for finite symmetric 
investment problems with the net surplus function v(b,s) - ¢(b,i) - c(s,j) con­
cave in attributes, it can be shown that every EPeE overinvestment cannot occur 
with the bargaining investment function g' defined at the end of Section 4. We 
believe a similar bargaining function will also work for nonsymmetric problems 
even without concavity of the net surplus function; an investigation of this is 
beyond the scope of the present paper however. 

5.3. Inefficient investment: coordination failure 

There is a final source of inefficiency due to the finite number of agents, identified 
by Felli and Roberts [5]. We illustrate it in a simple example with three buyers 
and three sellers. The set of possible attributes is B = S = {2, 3, 4}. We treat the 
buyers' attributes as fixed, with b1 = b2 = 2 and b3 = 4. The sellers' cost function 
is given by: c(2,j) = 0 for all j; c(3,1) = c(4,1) c(4,2) = 8, c(3,2) = 3~, 
c(3,3) = 3!, and c(4,3) 7. The cost function was chosen so that seller 1 will 
always choose 81 = 2, and the cost to seller 3 of attribute level 3 or 4 is less 
than to seller 2. We suppose that the bargaining function is that implied by the 
seller-favored extension with equal division at the bottom. The efficient attribute 
choices are illustrated in the first matrix of Figure 7. It is straightforward to 
verify that this is an equilibrium. 

There is however the possibility of a coordination failure between sellers. In 
particular, the configuration on the left in Figure 8 is also an equilibrium. In this 
equilibrium, seller 2 (who has higher costs than seller 3) chooses a larger attribute 
and so matches with buyer 3--a clearly inefficient outcome. Under the seller­
favored bargaining function, seller 3 cannot profitably deviate to the attribute 4 
(his choice in the efficient attribute vector) because buyer 3 can demand a payoff 
of 8, reducing the return to seller 3 (see the configuration on the right). 
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Xi 2 2 6 Xi 2 2 8 
bi 2 2 4 bi 2 2 4 
i 1 2 3 i 1 2 3 
j 1 3 2 j 1 2 3 
8j 2 2 3 8j 2 3 4 
Pj 

Pj -c 
2 
2 

2 
2 

6 
21

4 

Pj 

Pj -c 
2 
2 

4 
1 
4 

8 
1 

Figure 8: An equilibrium illustrating coordination failure. 

Note that this example illustrates a qUalitatively different type of inefficiency 
than that due to the coordination failures between buyers and sellers illustrated in 
the earlier subsections. In particular, this inefficiency is mitigated as the numbers 
of agents increase, and cannot arise in a model with a continuum of agents. 

6. Discussion 

We treat in this paper the case in which the relevant groups for production are 
pairs. We could easily have extended the analysis to cover the case in which 
production necessitated a group of people, one of each of a number of different 
types. With analogous assumptions on the surplus and cost functions, we would 
have had similar results regarding positive assortative matching, equal treatment, 
etc. An interesting extension that is not so direct is to treat the case in which 
groups need not have every type of agent with the surplus a group generates 
depending on the composition of that group. 

In our model matching is frictionless, that is, there is no cost in agents' search­
ing out appropriate partners. It is clear that frictionless matching drives some of 
the qualitative results; for example, we would not expect to see perfectly assor­
tative matching if matching is accomplished through costly search.12 

For many of the problems the model is meant to address-such as match­
ing workers to firms-the process of matching and production is ongoing. That 
is, there is a sequence of periods in which matching may take place, and once 
matched, the pair may stay matched for several periods. A natural way to model 
such a problem would be with a new cohort of individuals on each side of the 
market entering each period, making investments in the first period of their lives 
and entering the matching market the next period. If the cost functions vary 

l2See Burdett and Coles [1] for an analysis of such a model, although one in which attributes 
are given exogenously. 
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stochastically across cohorts, individuals who are looking for partners might find 
it profitable to defer matching until later periods in the hope of finding a better 
match. The static nature of our model clearly precludes an analysis of such be­
havior. Extending it to such an environment would be difficult, but potentially 
quite interesting. 

7. Related literature 

Our focus is on whether agents have the right incentives in terms of their invest­
ment decisions, given that a core allocation of the induced assignment game will 
result. Since the core in this case coincides with the set of Walrasian allocations, 
a question related to ours is whether in a competitive equilibrium, agents have in­
centives to make efficient ex ante investments. This question has been addressed 
by Hart [6, 7], Makowski [10], and Makowski and Ostroy [11J. See Cole, Mailath 
and Postlewaite [3] for a discussion of how these papers relate to our approach. 

MacLeod and Malcomson [9] study the hold-up problem associated with in­
vestment decisions taken prior to contracting and provide, in a specific model, 
the idea that ex ante investments will be efficient, as long as the investments are 
general and there are outside options. That investments in their model are gen­
eralleads to competition for the individual making the investment, assuring him 
of the incremental surplus that results from the investment. This is similar to the 
effect of "local competition" in our overlap case above. Their model, however, 
doesn't give rise to the coordination inefficiencies in our model. 

Subsequent to our work, there have been several other papers that study 
the case in which contracting at the time investments are made is ruled out. 
Felli and Roberts [5] analyze a finite agent model with one-sided investment and 
Bertrand competition. Their focus on one-sided investment and a particular 
selection from the set of stable payoffs (which is either the buyer-favored or seller­
favored payoff) allows a more specific analysis of inefficiencies. DeMeza and 
Lockwood [4] and Chatterjee and Chu [2J analyze models in which both sides of 
a market can undertake investments prior to matching. Both, however, analyze 
models that are constructed to generate inefficient investment, with the aim to 
understanding how different ownership structures affect the inefficiency. Peters 
and Siow [12] analyze a model in which utility is not transferable between parties 
(the marriage problem) and demonstrate conditions under which investments will 
be efficient. 
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A. Proof of Proposition 4 

Proposition 4 follows from the following 2 lemmas. 

Lemma A. Let (b, s) and (b/,s) denote two vectors of attributes satisfying bi = 
b~, 'Vi =f. f. Let {(x,p),m} denote a stable payoff and matching for (b,s) and 
{(x' ,pI), m'l a stable payoff and matching for the attributes (b/,s). If (b/,s) are 
overlapping and Pm(t) = p:n(t) , then 

x~ = Xt +V(b',s) - V(b,s). 

(A similar result holds for the sellers.) 

Proof. Suppose b~ > bt (the same argument applies, mutatis mutandis, to the 
case ~ < bt). Let ",, denote the rank order of bi in b', i.e., ~ = b(/I:')' and let "," 
denote the rank order of min{bi : bi > be} in b'. Since (b/,s) has no gaps, 

/1:' 

x~ = x(/I:') = x(/l:II) + 2: [v(bCk), sk) - V(bCk- 1) , sk)], (4) 
k=/I:" 

where, for each k, sk = Sm'(i) = sm'(i') and ~ = b(k)' ~, b(/I:-l) forsome positive 
assortative matching m' and i, i' E f. 

Since the only difference between the attribute vector (b,s) and (b/,s) is that 
one worker has a higher attribute, the only attribute matchings that are different 
involve exactly one matching for each of the attributes {sk : k = ",", ... , ",I}. For 
each k = "," + 1, ... ,,,,I, one seller of attribute sk matches with a worker with 
attribute bCk- 1) under (b,s) and matches with a worker with the next higher 

attribute b(k) under (b/, s). For k = ",", one seller of attribute s/l:" matches with 
a worker who has the same attribute (bt) as worker f under (b, s) and matches 
with a worker with attribute b(/I:") under (b/,s). Thus, 

/1:' 

V(b/,s) - V(b, s) =v(b(/l:II), S/l:II) - v(bt, S/l:II) + 2: [v(bCk)' sk) - V(b(k_l)' sk)]. 
k=/I:"+l 

Now, using x(",II) + p:n(t) = V(b(",II), S",II) and p:n(t) = Pm(t), equation (4) can 
be rewritten as 

",' 

xi = V(bC",II), s"''') - Pm(t) + 2: [v(bCk)' sk) - V(bCk- 1)' sk)] 
k=/I:" 
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= v(b(lI;lI) ,SII;II) [V(bl, SII;II) Xl] + L: [V(b(k)' Sk) v(b(k_l)' Sk)] 
k=lI;" 

= xl + V(b/,s) - V(b,s). 

• 
Lemma B. Let (b, s) and (b/,s) denote two vectors ofattributes satisfying bi = 
b~, 'iii =I- l. Let {(x, p), m} denote a stable payoff and matching for (b, s), and 
let {(x/,p/),m/} and {(x",p"),m'} be two stable payoffs and matchings for the 
attributes (b/,s). IfPm(i) = P~(l) and Pm'(l) = P'/n'(l) , then 

x~ - Xl ::; V(b/,s) - V(b, s) ::; x1- xe. 

(A similar result holds for the sellers.) 

Proof. The bound on x'i is immediate, given the bound on x'e (reverse b and 
b/). If (b',s) has no gaps, the value of ~ is determined uniquely once P~(e) is 
fixed, and by Lemma A, the bound holds with equality. 

Suppose now that (b', s) has gaps and b~ > be (the same argument applies, 
mutatis mutandis, to the case b~ < be). 

Consider the impact of buyer l's attribute change in a related collection of 
buyers and sellers that is a combination of the buyer and seller attributes that 
are rematched. Let]' = {i : be ::; bi ::; b~}, J' = m(I') and J" = m' (I'). 
Consider an economy (i,l,(h,s)) with Iii = III = 2 '1]'1 buyers and sellers, 
h = ((bi)iEl',(bi)iEI'), and S = ((Sj)jEJI,(Sj)jEJ")' (Note that {s : S = Sj, j E 
J'} = {s : S= Sj, j E JII}.) The attribute vector of buyers after buyer l changes 
attribute is h' = ((bi)iEI', (~)iEl')' Observe that (h', s) has no gaps and that 
(h', s) is the buyer-favored extension of (b', s), apart from the bottom matched 
pair (but the seller's attribute in that pair is the same as in (b',s)) and some 
repeated matched pairs. By Lemma A and Proposition 3, 

x~::; Xe + V(h/,S) - V(b,s), 

which yields the desired upper bound, because V{h',s) - V(b,s) = V{b',s) ­
V(b, s). • 
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