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Abstract

In this paper, we propose an instrumental variable approach to constructing con�-

dence sets (CS�s) for the true parameter in models de�ned by conditional moment in-

equalities/equalities. We show that by properly choosing instrument functions, one can

transform conditional moment inequalities/equalities into unconditional ones without

losing identi�cation power. Based on the unconditional moment inequalities/equalities,

we construct CS�s by inverting Cramér-von Mises-type or Kolmogorov-Smirnov-type

tests. Critical values are obtained using generalized moment selection (GMS) proce-

dures.

We show that the proposed CS�s have correct uniform asymptotic coverage probabili-

ties. New methods are required to establish these results because an in�nite-dimensional

nuisance parameter a¤ects the asymptotic distributions. We show that the tests consid-

ered are consistent against all �xed alternatives and have power against some n�1=2-local

alternatives, though not all such alternatives. Monte Carlo simulations for three di¤erent

models show that the methods perform well in �nite samples.

Keywords: Asymptotic size, asymptotic power, conditional moment inequalities, con�-
dence set, Cramér-von Mises, generalized moment selection, Kolmogorov-Smirnov, mo-

ment inequalities.

JEL Classi�cation Numbers: C12, C15.



1 Introduction

This paper considers inference for parameters whose true values are restricted by

conditional moment inequalities and/or equalities. The parameters need not be iden-

ti�ed. Much of the literature on partially-identi�ed parameters concerns unconditional

moment inequalities, see the references given below. However, in many moment in-

equality models, the inequalities that arise are conditional moments given a vector of

covariates Xi: In this case, the construction of a �xed number of unconditional moments

requires an arbitrary selection of some functions of Xi: In addition, the selection of

such functions leads to information loss that can be substantial. Speci�cally, the �iden-

ti�ed set� based on a chosen set of unconditional moments can be noticeably larger

than the identi�ed set based on the conditional moments.1 With moment inequalities

there is a �rst-order loss in information when moving from conditional to unconditional

moments� one loses identifying information. In contrast, with moment equality mod-

els, there is only a second-order loss when moving from conditional to unconditional

moments� one increases the variance of an estimator and decreases the noncentrality

parameter of a test.

This paper provides methods to construct CS�s for the true value of the parameter �

by converting conditional moment inequalities into an in�nite number of unconditional

moment inequalities. This is done using weighting functions g(Xi): We show how to

construct a class G of such functions such that there is no loss in information. We
construct Cramér-von Mises-type (CvM) and Kolmogorov-Smirnov-type (KS) test sta-

tistics using a function S of the weighted sample moments, which depend on g 2 G:
For example, the function S can be of the Sum, quasi-likelihood ratio (QLR), or Max

form. The KS statistic is given by a supremum over g 2 G: The CvM statistic is given

by an integral with respect to a probability measure Q on the space G of g functions.
Computation of the CvM test statistics can be carried out by truncation of an in�nite

sum or simulation of an integral. Asymptotic results are established for both exact and

truncated/simulated versions of the test statistic.

For reasons explained below, the choice of critical values is important for all moment

inequality tests, and especially so for conditional moment inequalities. Here we consider

critical values based on generalized moment selection (GMS), as in Andrews and Soares

1By �identi�ed set,�we mean the set of parameter values that are consistent with the population
moment inequalities/equalities, either unconditional or conditional, given the true distribution of the
data.
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(2010). For comparative purposes, we also provide results for subsampling critical values

and �plug-in asymptotic�(PA) critical values. However, for reasons of accuracy of size

and magnitude of power, we recommend GMS critical values over both subsampling and

plug-in asymptotic critical values. The GMS critical values can be implemented using

an asymptotic Gaussian distribution or the bootstrap.

The main contribution of this paper is to establish the properties of the CS�s de-

scribed above. Our results apply to multiple moment inequalities and/or equalities and

vector-valued parameters � with minimal regularity conditions on the conditional mo-

ment functions and the distribution of Xi: For example, no smoothness conditions or

even continuity conditions are made on the conditional moment functions as functions

of Xi and no conditions are imposed on the distribution of Xi (beyond the bounded-

ness of 2 + � moments of the moment functions). In consequence, the range of moment

inequality models for which the methods are applicable is very broad.

The results of the paper are summarized as follows. The paper (i) develops critical

values that take account of the issue of moment inequality slackness that arises in �nite

samples and uniform asymptotics, (ii) proves that the con�dence sizes of the CS�s are

correct asymptotically in a uniform sense, (iii) proves that the proposed CS�s yield no

information loss (i.e., that the coverage probability for any point outside the identi�ed set

converges to zero as n!1); (iv) establishes asymptotic local power results for a certain
class of n�1=2-local alternatives, (v) extends the results to allow for the preliminary

estimation of parameters that are identi�ed given knowledge of the parameter of interest

�; as occurs in some game theory examples, and (vi) extends the results to allow for

time series observations. A companion paper, Andrews and Shi (2010), generalizes the

CS�s and extends the asymptotic results to allow for an in�nite number of conditional

or unconditional moment inequalities, which makes the results applicable to tests of

stochastic dominance and conditional stochastic dominance (see Lee andWhang (2009)).

The paper provides Monte Carlo simulation results for three models that exhibit

di¤erent features. The �rst model is a quantile selection model. The parameter of

interest is a nonparametric quantity, a conditional quantile. Selection e¤ects yield the

parameter to be unidenti�ed. We introduce a quantile variant of Manski and Pepper�s

(2000) monotone instrumental variables condition that provides conditional moment

inequalities that bound the conditional quantile.2 The second model is an interval

2Papers in the literature that bound quantiles include Manski (1994), Lee and Melenberg (1998),
and Blundell, Gosling, Ichimura, and Meghir (2007), among others. The condition employed here di¤ers
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outcome linear regression model with a bivariate parameter of interest. This model is

considered in Manski and Tamer (2002).

The third model is a binary entry game model with multiple equilibria. It has

ten parameters and a bivariate parameter of interest, which is the competitive e¤ects

vector. This model is related to models considered in Andrews, Berry, and Jia (2004),

Beresteanu, Molchanov, and Molinari (2009), Galichon and Henry (2009b), and Ciliberto

and Tamer (2009). In this model, the eight non-competitive e¤ects parameters are

estimated via a preliminary maximum likelihood estimator based on the number of

entrants, similar to Berry (1992). These estimators are plugged into a set of moment

conditions that includes two moment inequalities and two moment equalities. In this

model the competitive e¤ects are point identi�ed and the moment inequalities are used

to bring more information to bear. As far as we are aware, no other methods in the

literature can handle a model of this sort.

The simulation results compare di¤erent forms of the test statistic: CvM versus

KS, Sum versus QLR versus Max S function; and di¤erent forms of the critical value:

GMS based on the asymptotic distribution (GMS/Asy), GMS based on the bootstrap

(GMS/Bt), PA/Asy, PA/Bt, and subsampling (Sub). Coverage probabilities (CP�s) for

points in the identi�ed set are computed and false coverage probabilities (FCP�s) for

points outside the identi�ed set are computed.3 In each model, we consider a basecase

and variations on the basecase with di¤erent sample sizes, true data generating processes,

and di¤erent GMS tuning parameters.

The CP�s of all of the CS�s in the �rst two models are quite good in the sense of being

greater than or equal to :944 when the nominal level is :95 in all scenarios considered

(except two with a Sub critical value). The CP�s of CvM-based CS�s with GMS critical

values are quite close to :95 in one of two scenarios in the �rst model and in the second

model and are around :98 in the other scenario in the �rst model. The latter over-

coverage is not too surprising because non-similarity on the boundary in �nite samples

and asymptotically (in a uniform sense) is an inherent feature of good CS�s in these

contexts, as will be shown in future work. In the third model, CP�s of the CS�s vary

across di¤erent true DGP�s with CP�s being greater than or equal to :95 in most cases

except when the competitive e¤ects parameters are large, in which case under-coverage

of some CS�s is as large as :037:

from the conditions in these papers, although it is closely related to them, see Section 9.
3The FCP�s are �coverage probability corrected,�see Section 9 for details.
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Across all three models, the simulation results show that the CvM-based CS�s out-

perform the KS-based CS�s in terms of FCP�s. The Sum, QLR, and Max versions of

the test statistics perform equally well in the �rst two models, while the Max version

performs best in the third model, in terms of FCP�s. In all three models, the GMS

critical values outperform the PA and Sub critical values in terms of FCP�s. The Asy

and Bt versions of the GMS critical values perform similarly in the �rst two models.

(The Bt critical values are not computed in the third model because they are expensive

computationally.)

Variations on the basecase show a relatively low degree of sensitivity of the CP�s and

FCP�s in most cases.

In sum, in the three models considered, the CvM/Max statistic coupled with the

GMS/Asy critical value performed quite well in an absolute sense and best among the

CS�s considered. In the �rst two models, use of the Sum or QLR S function or the

GMS/Bt critical value produced equally good results.

The literature related to this paper includes numerous papers dealing with uncon-

ditional moment inequality models, such as Andrews, Berry, and Jia (2004), Imbens

and Manski (2004), Moon and Schorfheide (2006, 2009), Otsu (2006), Pakes, Porter,

Ho, and Ishii (2006), Woutersen (2006), Bontemps, Magnac, and Maurin (2007), Canay

(2010), Chernozhukov, Hong, and Tamer (2007), Andrews and Jia (2008), Beresteanu,

Molchanov, and Molinari (2008), Beresteanu and Molinari (2008), Chiburis (2008),

Guggenberger, Hahn, and Kim (2008), Romano and Shaikh (2008, 2010), Rosen (2008),

Andrews and Guggenberger (2009), Andrews and Han (2009), Stoye (2009), Andrews

and Soares (2010), Bugni (2010), and Canay (2010).

The literature on conditional moment inequalities is smaller and more recent. The

present paper and the following papers have been written over more or less the same

time period: Chernozhukov, Lee, and Rosen (2008), Fan (2008), Kim (2008), and Menzel

(2008). An earlier paper than these by Galichon and Henry (2009a) considers a related

testing problem with an in�nite number unconditional moment inequalities of a partic-

ular type. The test statistic considered by Kim (2008) is the closest to that considered

here. He considers subsampling critical values. The approach of Chernozhukov, Lee,

and Rosen (2008) is di¤erent from that considered here. They consider tests based on

nonparametric estimators such as kernels and sieves. Their results apply to scalar con-

ditional lower and upper bounds on a parameter. Menzel�s (2008) approach is di¤erent

again. He investigates tests based on a �nite number of moment inequalities in which
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the number of inequalities increases with the sample size. None of the other papers in

the literature that treat conditional moment inequalities provide contributions (ii)-(vi)

listed above.

Papers that convert conditional moments into an in�nite number of unconditional

moments in point identi�ed models include Bierens (1982), Bierens and Ploberger (1997),

Chen and Fan (1999), Dominguez and Lobato (2004), and Khan and Tamer (2009),

among others.

In addition to reporting a CS, it often is useful to report an estimated set. A CS

accompanied by an estimated set reveals how much of the volume of the CS is due to

randomness and how much is due to a large identi�ed set. It is well-known that typical

set estimators su¤er from an inward-bias problem, e.g., see Haile and Tamer (2003) and

Chernozhukov, Lee, and Rosen (2008). The reason is that an estimated boundary often

behaves like the minimum or maximum of multiple random variables.

A simple solution to the inward-bias problem is to exploit the method of constructing

median-unbiased estimators from con�dence bounds with con�dence level 1=2; e.g., see

Lehmann (1959, Sec. 3.5). The CS�s in this paper applied with con�dence level 1=2 are

half-median-unbiased estimated sets. That is, the probability of including a point or any

sequence of points in the identi�ed set is greater than or equal to 1=2 with probability

that converges to one. This property follows immediately from the uniform coverage

probability results for the CS�s. The level 1=2 CS, however, is not necessarily median-

unbiased in two directions.4 Nevertheless, this set is guaranteed not to be inward-median

biased. Chernozhukov, Lee, and Rosen (2008) also provide bias reduction methods for

set estimators.

The results of the paper are stated for the case where the parameter of interest, �;

is �nite-dimensional. However, all of the results except the local power results also hold

for in�nite-dimensional parameters �: Computation of a CS is noticeably more di¢ cult

in the in�nite-dimensional case.

The CS�s constructed in the paper provide model speci�cation tests of the conditional

moment inequality model. One rejects the model if a nominal 1� � CS is empty. The

results of the paper for CS�s imply that this test has asymptotic size less than or equal

to � (with the inequality possibly being strict), e.g., see Andrews and Guggenberger

4That is, the probability of including points outside the identi�ed set is not necessarily less than or
equal to 1=2 with probability that goes to one. This is because lower and upper con�dence bounds on
the boundary of an identi�ed set do not necessarily coincide.
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(2009) for details of the argument.

As noted above, the determination of appropriate critical values plays a major role

in all moment inequality tests. This is because the null distribution of a test statistic

depends greatly on the slackness, or lack thereof, of the di¤erent moment inequalities.

The slackness represents a nuisance parameter that appears under the null hypothesis.

With conditional moment inequalities, slackness comes in the form of a function, which is

an in�nite-dimensional parameter. In consequence, the issues that arise due to slackness

are exacerbated in conditional moment inequality models compared to unconditional

moment inequality models.

The e¤ect of slackness in the moment inequalities causes a discontinuity in the point-

wise asymptotic distribution of typical test statistics. This occurs because if a moment

inequality is binding, then it a¤ects the pointwise asymptotic distribution of the test

statistic, but if the moment inequality is not binding, then the asymptotic distribution of

the test statistic is the same as if this moment inequality did not enter the test statistic

at all. However, in �nite samples there is no discontinuity in the distribution of the test

statistic. If a moment inequality is slack by a small amount, the �nite sample distrib-

ution of the test statistic di¤ers little from when it is binding. In �nite samples what

matters is how close or distant moment inequalities are to binding, not whether they

are binding or not binding. The latter is a potentially misleading distinction obtained

by focusing on pointwise asymptotics and is divorced from the �nite-sample properties

of the test statistic.

In the case of conditional moment inequalities, for some value(s) of x; an inequality

that is binding for Xi = x is not binding for some value of x0 that is arbitrarily close

to x; provided the inequality is not binding for all x and is a smooth function of x: In

consequence, one obtains an extreme form of discontinuity of the pointwise asymptotic

distribution in which two moment inequalities are arbitrarily close to one another but

pointwise asymptotics say that one inequality is irrelevant but the other is not.

The upshot of the discussion above is that pointwise asymptotics do not provide good

approximations to the �nite-sample properties of test statistics in moment inequality

models, especially conditional models. The problem is that pointwise asymptotics do

not provide uniform approximations. Depending on the sample size, di¤erent values of

the �slackness function� cause problems� no matter how large is the sample size. In

consequence, pointwise asymptotics fail to detect the potential problems. For issues

concerning uniformity of asymptotics in other econometric models, see, e.g., Kabaila
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(1995), Leeb and Pötscher (2005), Mikusheva (2007), and Andrews and Guggenberger

(2010) (AG).

To ensure that a test (or CS) has good �nite-sample size properties one needs to

establish asymptotic results that hold uniformly over potential true distributions. AG

and Andrews, Cheng, and Guggenberger (2009) (ACG) show that in certain problems

one can establish uniform asymptotic results by determining the asymptotic behavior

of a statistic and its critical value under particular drifting sequences of true distrib-

utions. These results apply to unconditional moment inequality models, see Andrews

and Guggenberger (2009) and Andrews and Soares (2010). However, they do not ap-

ply to conditional moment inequality models. The reason is that the AG and ACG

results require that the asymptotic distribution of the statistic only depends on a �nite-

dimensional parameter. In the unconditional moment inequality case, this is the vector

of moment inequality slackness values.5 However, with conditional moment inequalities,

the nuisance parameter is a vector of slackness functions, which is in�nite-dimensional.

The main technical contribution of this paper is to introduce a new method of prov-

ing uniformity results that applies to cases in which an in�nite-dimensional nuisance

parameter appears in the problem. The method is to establish an approximation to the

sample size n distribution of the test statistic by a function of a Gaussian distribution

where the function depends on the true slackness functions for the given sample size

n and the approximation is uniform over all possible true slackness functions.6 Then,

one shows that the data-dependent critical value (the GMS critical value in the present

case) is less than or equal to the 1 � � quantile of the given function of the Gaussian

process with probability that goes to one uniformly over all potential true distributions.

This establishes that the CS has correct size, greater than or equal to 1� �; asymptot-
ically and provides the justi�cation for its use. Under a mild distributional continuity

condition, one obtains that the asymptotic size equals 1� �:

The remainder of the paper is organized as follows. Section 2 introduces the mo-

ment inequality/equality model. Section 3 speci�es the class of test statistics that is

considered. Section 4 de�nes GMS CS�s. Section 5 establishes the uniform asymptotic

5It also depends on the variance matrix of the moment functions, but the latter does not cause
uniformity problems and is not an issue because it can be estimated consistently.

6Uniformity is obtained without any regularity conditions in terms of smoothness, uniform continuity,
or even continuity of the conditional moment functions as functions of Xi: This is important because the
slackness functions are normalized by an increasing function of n which typically would cause violation
of uniform continuity or uniform bounds on the derivatives of smooth functions even if the underlying
conditional moment inequality functions were smooth in Xi:
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coverage properties of GMS and PA CS�s. Section 6 establishes the consistency of GMS

and PA tests against all �xed alternatives. This implies that GMS and PA CS�s do

not include any point outside the identi�ed set with probability that goes to one. Sec-

tion 7 shows that GMS and PA tests have power against some n�1=2-local alternatives.

Section 8 considers models in which preliminary consistent estimators of identi�ed para-

meters are plugged into the moment inequalities/equalities. It also considers time series

observations. Section 9 provides the Monte Carlo simulation results.

Appendix A provides proofs of the uniform asymptotic coverage probability results

for GMS and PA CS�s. Appendices B-E are given in the Supplement to this paper,

Andrews and Shi (2009) (AS). Appendix B provides (i) results for KS tests and CS�s,

(ii) the extension of the results of the paper to truncated/simulated CvM tests and

CS�s, (iii) an illustration of the veri�cation of the assumptions used for the local alter-

native results, (iv) an illustration of (serious) uniformity problems that arise with the

Kolmogorov-Smirnov test unless the critical value is chosen carefully, (v) an illustration

of problems with pointwise asymptotics, and (vi) asymptotic coverage probability results

for subsampling CS�s under drifting sequences of distributions. Appendix C gives proofs

of the results stated in the paper, but not given in Appendix A. Appendix D provides

proofs of the results stated in Appendix B. Appendix E provides a proof of some em-

pirical process results that are used in Appendices A, C, and D. Appendix F provides

some additional material concerning the Monte Carlo simulation results of Section 9.

2 Conditional Moment Inequalities/Equalities

2.1 Model

The conditional moment inequality/equality model is de�ned as follows. We suppose

there exists a true parameter �0 2 � � Rd� that satis�es the moment conditions:

EF0(mj (Wi; �0) jXi) � 0 a.s. [FX;0] for j = 1; :::; p and

EF0(mj (Wi; �0) jXi) = 0 a.s. [FX;0] for j = p+ 1; :::; p+ v; (2.1)

where mj(�; �); j = 1; :::; p + v are (known) real-valued moment functions, fWi =

(Y 0
i ; X

0
i)
0 : i � ng are observed i.i.d. random vectors with distribution F0; FX;0 is

the marginal distribution of Xi; Xi 2 Rdx ; Yi 2 Rdy ; and Wi 2 Rdw (= Rdy+dx):
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We are interested in constructing CS�s for the true parameter �0: However, we do not

assume that �0 is point identi�ed. Knowledge of EF0(mj (Wi; �) jXi) for all � 2 � does
not necessarily identify �0: Even knowledge of F0 does not necessarily point identify �0:7

The model, however, restricts the true parameter value to a set called the identi�ed set

(which could be a singleton). The identi�ed set is

�F0 = f� 2 � : (2.1) holds with � in place of �0g: (2.2)

Let (�; F ) denote generic values of the parameter and distribution. Let F denote the
parameter space for (�0; F0): By de�nition, F is a collection of (�; F ) such that

(i) � 2 �;
(ii) fWi : i � 1g are i.i.d. under F;
(iii) EF (mj (Wi; �) jXi) � 0 a.s. [FX ] for j = 1; :::; p;
(iv) EF (mj (Wi; �) jXi) = 0 a.s. [FX ] for j = p+ 1; :::; k;

(v) 0 < V arF (mj(Wi; �)) <1 for j = 1; :::; k; and

(vi) EF jmj(Wi; �)=�F;j(�)j2+� � B for j = 1; :::; k; (2.3)

for some B < 1 and � > 0; where k = p + v; FX is the marginal distribution of Xi

under F; and �2F;j(�) = V arF (mj(Wi; �)):
8 The k-vector of moment functions is denoted

m (Wi; �) = (m1(Wi; �); :::;mk(Wi; �))
0: (2.4)

2.2 Con�dence Sets

We are interested in CS�s that cover the true value �0 with probability greater than

or equal to 1�� for � 2 (0; 1): As is standard, we construct such CS�s by inverting tests
of the null hypothesis that � is the true value for each � 2 �: Let Tn(�) be a test statistic
and cn;1��(�) be a corresponding critical value for a test with nominal signi�cance level

7It makes sense to speak of a �true� parameter �0 in the present context because (i) there may
exist restrictions not included in the moment inequalities/equalities in (2.1) that point identify �0; but
for some reason are not available or are not utilized, and/or (ii) there may exist additional variables
not included in Wi which, if observed, would lead to point identi�cation of �0: Given such restrictions
and/or variables, the true parameter �0 is uniquely de�ned even if it is not point identi�ed by (2.1).

8Additional restrictions can be placed on F and the results of the paper still hold. For example, one
could specify that the support of Xi is the same for all F for which (�; F ) 2 F :
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�: Then, a nominal level 1� � CS for the true value �0 is

CSn = f� 2 � : Tn(�) � cn;1��(�)g: (2.5)

3 Test Statistics

3.1 General Form of the Test Statistic

Here we de�ne the test statistic Tn(�) that is used to construct a CS. We transform

the conditional moment inequalities/equalities into equivalent unconditional moment

inequalities/equalities by choosing appropriate weighting functions, i.e., instruments.

Then, we construct a test statistic based on the unconditional moment conditions.

The unconditional moment conditions are of the form:

EF0mj (Wi; �0) gj (Xi) � 0 for j = 1; :::; p and

EF0mj (Wi; �0) gj (Xi) = 0 for j = p+ 1; :::; k; for g = (g1; :::; gk)0 2 G; (3.1)

where g = (g1; :::; gk)0 are instruments that depend on the conditioning variables Xi and

G is a collection of instruments. Typically G contains an in�nite number of elements.
The identi�ed set �F0(G) of the model de�ned by (3.1) is

�F0(G) = f� 2 � : (3.1) holds with � in place of �0g: (3.2)

The collection G is chosen so that �F0(G) = �F0 ; de�ned in (2.2). Section 3.3 provides
conditions for this equality and gives examples of instrument sets G that satisfy the
conditions.

We construct test statistics based on (3.1). The sample moment functions are

mn(�; g) = n�1
nX
i=1

m(Wi; �; g) for g 2 G; where

m(Wi; �; g) =

0BBBB@
m1(Wi; �)g1(Xi)

m2(Wi; �)g2(Xi)
...

mk(Wi; �)gk(Xi)

1CCCCA for g 2 G: (3.3)
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The sample variance-covariance matrix of n1=2mn(�; g) is

b�n(�; g) = n�1
nX
i=1

(m(Wi; �; g)�mn(�; g)) (m(Wi; �; g)�mn(�; g))
0 : (3.4)

The matrix b�n(�; g) may be singular or near singular with non-negligible probability for
some g 2 G. This is undesirable because the inverse of b�n(�; g) needs to be consistent
for its population counterpart uniformly over g 2 G for the test statistics considered
below. In consequence, we employ a modi�cation of b�n(�; g); denoted �n(�; g); such
that det(�n(�; g)) is bounded away from zero. Di¤erent choices of �n(�; g) are possible.

Here we use

�n(�; g) = b�n(�; g) + " �Diag(b�n(�; 1k)) for g 2 G (3.5)

for some �xed " > 0: Speci�cally, in the simulations in Section 9, we use " = 5=100: By

design, �n(�; g) is a linear combination of two scale equivariant functions and thus is

scale equivariant. (That is, multiplying the moment functions m(Wi; �) by a diagonal

matrix,D; changes �n(�; g) intoD�n(�; g)D:) This yields a test statistic that is invariant

to rescaling of the moment functions m(Wi; �); which is an important property.

The test statistic Tn(�) is either a Cramér-von Mises-type (CvM) or Kolmogorov-

Smirnov-type (KS) statistic. The CvM statistic is

Tn(�) =

Z
S(n1=2mn(�; g);�n(�; g))dQ(g); (3.6)

where S is a non-negative function, Q is a weight function (i.e., probability measure) on

G, and the integral is over G: The functions S and Q are discussed in Sections 3.2 and

3.4 below, respectively.

The Kolmogorov-Smirnov-type (KS) statistic is

Tn(�) = sup
g2G

S(n1=2mn(�; g);�n(�; g)): (3.7)

For brevity, in the text of the paper, the discussion focusses on CvM statistics and

all results stated concern CvM statistics. Appendix B of AS gives detailed results for

KS statistics.
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3.2 Function S

To permit comparisons, we establish results in this paper for a broad family of func-

tions S that satisfy certain conditions stated below. We now introduce three functions

that satisfy these conditions. The �rst is the modi�ed method of moments (MMM) or

Sum function:

S1 (m;�) =

pX
j=1

[mj=�j]
2
� +

p+vX
j=p+1

[mj=�j]
2 ; (3.8)

wheremj is the jth element of the vectorm; �2j is the jth diagonal element of the matrix

�; and [x]� = �x if x < 0 and [x]� = 0 if x � 0:
The second function S is the quasi-likelihood ratio (QLR) function:

S2 (m;�) = inf
t=(t01;0

0
v)
0:t12Rp+;1

(m� t)0��1 (m� t) : (3.9)

The third function S is a �maximum�(Max) function. Used in conjunction with the

KS form of the test statistic, this S function yields a pure KS-type test statistic:

S3(m;�) = maxf[m1=�1]
2
�; :::; [mp=�p]

2
�; (mp+1=�p+1)

2; :::; (mp+v=�p+v)
2g: (3.10)

The function S2 is more costly to compute than S1 and S3:

Let mI = (m1; :::;mp)
0 and mII = (mp+1; :::;mk)

0: Let � be the set of k� k positive-
de�nite diagonal matrices. Let W be the set of k � k positive-de�nite matrices. Let

(i) R[+1]; (ii) R+; and (iii) R+;1 denote the sets of scalars that are (i) real or +1; (ii)

non-negative (and �nite), and (iii) non-negative or +1; respectively. Let S = f(m;�) :
m 2 Rp[+1] �Rv; � 2 Wg; where Rp[+1] = R[+1] � :::�R[+1] with p copies.

We consider functions S that satisfy the following conditions.

Assumption S1. 8 (m;�) 2 S;
(a) S (Dm;D�D) = S (m;�) 8D 2 �;
(b) S (mI ;mII ;�) is non-increasing in each element of mI ;

(c) S (m;�) � 0;
(d) S is continuous, and

(e) S (m;� + �1) � S (m;�) for all k � k positive semi-de�nite matrices �1:

It is worth pointing out that Assumption S1(d) requires S to be continuous in m at

all points m in the extended vector space Rp[+1] �Rv; not only for points in Rp+v:

12



Assumption S2. S(m;�) is uniformly continuous in the sense that, for all m0 2 Rk

and all pd �0; sup�2Rp+�f0gv jS(m+ �;�)� S(m0 + �;�0)j ! 0 as (m;�)! (m0;�0):
9

The following two assumptions are used only to establish the power properties of

tests.

Assumption S3. S(m;�) > 0 if and only if mj < 0 for some j = 1; :::; p or mj 6= 0 for
some j = p+ 1; :::; k; where m = (m1; :::;mk)

0 and � 2 W :

Assumption S4. For some � > 0; S(am;�) = a�S(m;�) for all scalars a > 0; m 2 Rk;
and � 2 W :

Assumptions S1-S4 are not restrictive as is shown by the following result.

Lemma 1. The functions S1; S2; and S3 satisfy Assumptions S1-S4.

3.3 Instruments

When considering consistent speci�cation tests based on conditional moment equal-

ities, see Bierens (1982) and Bierens and Ploberger (1997), a wide variety of di¤erent

types of functions g can be employed without loss of information, see Stinchcombe and

White (1998). With conditional moment inequalities, however, it is much more di¢ -

cult to distill the information in the moments because of the one-sided feature of the

inequalities.

The collection of instruments G needs to satisfy the following condition in order for
the unconditional moments fEFm(Wi; �; g) : g 2 Gg to incorporate the same information
as the conditional moments fEF (m(Wi; �)jXi = x) : x 2 Rdxg:
For any � 2 � and any distribution F with EF jjm(Wi; �)jj <1; let

XF (�) = fx 2 Rdx : EF (mj (Wi; �) jXi = x) < 0 for some j � p or

EF (mj (Wi; �) jXi = x) 6= 0 for some j = p+ 1; :::; kg: (3.11)

Assumption CI. For any � 2 � and distribution F for which EF jjm(Wi; �)jj <1 and

9It is important that the supremum is only over � vectors with non-negative elements �j for j � p:
Without this restriction on the � vectors, Assumption S2 would not hold for typical S functions of
interest.
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PF (Xi 2 XF (�)) > 0; there exists some g 2 G such that

EFmj(Wi; �)gj(Xi) < 0 for some j � p or

EFmj(Wi; �)gj(Xi) 6= 0 for some j = p+ 1; :::; k:

Note that CI abbreviates �conditionally identi�ed.�The following simple Lemma indi-

cates the importance of Assumption CI.

Lemma 2. Assumption CI implies that �F (G) = �F for all F with sup�2�EF jjm(Wi; �)jj
<1:

Collections G that satisfy Assumption CI contain non-negative functions whose sup-
ports are cubes, boxes, or bounded sets with other shapes whose supports are arbitrarily

small, see below.

Next, we state a �manageability� condition that regulates the complexity of G: It
ensures that fn1=2(mn(�; g) � EFnmn(�; g)) : g 2 Gg satis�es a functional central limit
theorem (FCLT) under drifting sequences of distributions fFn : n � 1g: The latter
is utilized in the proof of the uniform coverage probability results for the CS�s. The

manageability condition is from Pollard (1990) and is de�ned and explained in Appendix

E of AS.

Assumption M. (a) 0 � gj(x) � G(x) 8x 2 Rdx ;8j � k;8g 2 G, for some envelope
function G(x);

(b) EFG�1(Xi) � C for all F such that (�; F ) 2 F for some � 2 �; for some C <1;

and for some �1 > 4=� + 2; where Wi = (Y
0
i ; X

0
i)
0 � F and � is as in the de�nition of F

in (2.3), and

(c) the processes fgj(Xn;i) : g 2 G; i � n; n � 1g are manageable with respect to the
envelope function G(Xn;i) for j = 1; :::; k; where fXn;i : i � n; n � 1g is a row-wise i.i.d.
triangular array with Xn;i � FX;n and FX;n is the distribution of Xn;i under Fn for some

(�n; Fn) 2 F for n � 1:10

Now we give two examples of collections of functions G that satisfy Assumptions CI
and M. Appendix B of AS gives three additional examples, one of which is based on

10The asymptotic results given below hold with Assumption M replaced by any alternative assumption
that is su¢ cient to obtain the requisite empirical process results, see Assumption EP in Section 8.
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B-splines.

Example 1. (Countable Hypercubes). Suppose Xi is transformed via a one-to-one

mapping so that each of its elements lies in [0; 1]: There is no loss in information in doing

so. Section 9 and Appendix B of AS provide examples of how this can be done.

Consider the class of indicator functions of cubes with side lengths (2r)�1 for all

large positive integers r that partition [0; 1]dx for each r: This class is countable:

Gc-cube = fg(x) : g(x) = 1(x 2 C) � 1k for C 2 Cc-cubeg; where

Cc-cube =
(
Ca;r =

dxY
u=1

((au � 1)=(2r); au=(2r)] 2 [0; 1]dx : a = (a1; :::; adx)0

au 2 f1; 2; :::; 2rg for u = 1; :::; dx and r = r0; r0 + 1; :::
o

(3.12)

for some positive integer r0:11 The terminology �c-cube�abbreviates countable cubes.

Note that Ca;r is a hypercube in [0; 1]dx with smallest vertex indexed by a and side

lengths equal to (2r)�1:

The class of countable cubes Gc-cube leads to a test statistic Tn(�) for which the
integral over G reduces to a sum.

Example 2 (Boxes). Let

Gbox = fg : g(x) = 1(x 2 C) � 1k for C 2 Cboxg; where (3.13)

Cbox =
(
Cx;r =

dxY
u=1

(xu � ru; xu + ru] 2 Rdx : xu 2 R; ru 2 (0; �r) 8u � dx

)
;

x = (x1; :::; xdx)
0; r = (r1; :::; rdx)

0; �r 2 (0;1]; and 1k is a k-vector of ones. The set Cbox
contains boxes (i.e., hyper-rectangles or orthotopes) in Rdx with centers at x 2 Rdx and
side lengths less than 2�r:

When the support ofXi; denoted Supp(Xi); is a known subset of Rdx ; one can replace

xu 2 R 8u � dx in (3.13) by x 2 CH(Supp(Xi)); where CH(A) denotes the convex hull

of A: Sometimes, it is convenient to transform the elements of Xi into [0; 1] via strictly

increasing transformations as in Example 1 above. If the Xi�s are transformed in this

way, then R in (3.13) is replaced by [0; 1]:

Both of the sets G discussed above can be used with continuous and/or discrete
11When au = 1; the left endpoint of the interval (0; 1=(2r)] is included in the interval.
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regressors.

The following result establishes Assumptions CI and M for Gc-cube and Gbox:

Lemma 3. For any moment function m(Wi; �); Assumptions CI and M hold with

G = Gc-cube and Gbox:

The proof of Lemma 3 is given in Appendix C of AS.

Moment Equalities. The sets G introduced above use the same functions for the
moment inequalities and equalities, i.e., g is of the form g� � 1k; where g� is a real-
valued function. It is possible to use di¤erent functions for the moment equalities than

for the inequalities. One can take g = (g(1)0; g(2)0)0 2 G(1) � G(2); where g(1) is an Rp-
valued function in some set G(1) and g(2) is an Rv-valued function in some set G(2): Any
�generically comprehensively revealing� class of functions G(2); see Stinchcombe and
White (1998), leads to a set G that satis�es Assumption CI provided one uses a suitable
class of functions G(1) (such as any of those de�ned above with 1k replaced by 1p): For
brevity, we do not provide further details.

3.4 Weight Function Q

The weight function Q can be any probability measure on G whose support is G: This
support condition is needed to ensure that no functions g 2 G; which might have set-
identifying power, are �ignored�by the test statistic Tn(�):Without such a condition, a

CS based on Tn(�) would not necessarily shrink to the identi�ed set as n!1: Section 6

below introduces the support condition formally and shows that the probability measures

Q considered here satisfy it.

We now specify two examples of weight functions Q: Three others are speci�ed in

Appendix B of AS.

Weight Function Q for Gc-cube: There is a one-to-one mapping �c-cube : Gc-cube !
AR = f(a; r) : a 2 f1; :::; 2rgdx and r = r0; r0+1; :::g: Let QAR be a probability measure
on AR: One can take Q = ��1c-cubeQAR: A natural choice of measure QAR is uniform

on a 2 f1; :::; 2rgdx conditional on r combined with a distribution for r that has some
probability mass function fw(r) : r = r0; r0 + 1; :::g: This yields the test statistic to be

Tn(�) =

1X
r=r0

w(r)
X

a2f1;:::;2rgdx
(2r)�dxS(n1=2mn(�; ga;r);�n(�; ga;r)); (3.14)
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where ga;r(x) = 1(x 2 Ca;r) � 1k for Ca;r 2 Cc-cube:

Weight Function Q for Gbox: There is a one-to-one mapping �box : Gbox ! f(x; r) 2
Rdx � (0; �r)dxg: Let Q� be a probability measure on f(x; r) 2 Rdx � (0; �r)dxg: Then,
��1boxQ

� is a probability measure on Gbox: One can take Q = ��1boxQ
�: Any probability

measure on Rdx � (0; �r)dx whose support contains Gbox is a valid candidate for Q�: If
Supp(Xi) is known, Rdx can be replaced by the convex hull of Supp(Xi): One choice is

to transform each regressor to lie in [0; 1] and to take Q� to be the uniform distribution

on [0; 1]dx � (0; �r)dx ; i.e., Unif([0; 1]dx � (0; �r)dx): In this case, the test statistic becomes

Tn(�) =

Z
[0;1]dx

Z
(0;�r)dx

S(n1=2mn(�; gx;r);�n(�; gx;r))�r
�dxdrdx; (3.15)

where gx;r(y) = 1(y 2 Cx;r) � 1k and Cx;r denotes the box centered at x 2 [0; 1]dx with
side lengths 2r 2 (0; 2�r)dx :

3.5 Computation of Sums, Integrals, and Suprema

The test statistics Tn(�) given in (3.14) and (3.15) involve an in�nite sum and an

integral with respect toQ: Analogous in�nite sums and integrals appear in the de�nitions

of the critical values given below. These in�nite sums and integrals can be approximated

by truncation, simulation, or quasi-Monte Carlo (QMC) methods. If G is countable, let
fg1; :::; gsng denote the �rst sn functions g that appear in the in�nite sum that de�nes

Tn(�): Alternatively, let fg1; :::; gsng be sn i.i.d. functions drawn from G according to the
distribution Q: Or, let fg1; :::; gsng be the �rst sn terms in a QMC approximation of the
integral wrt Q: Then, an approximate test statistic obtained by truncation, simulation,

or QMC methods is

T n;sn(�) =
snX
`=1

wQ;n(`)S(n
1=2mn(�; g`);�n(�; g`)); (3.16)

where wQ;n(`) = Q(fg`g) when an in�nite sum is truncated, wQ;n(`) = s�1n when

fg1; :::; gsng are i.i.d. draws from G according to Q; and wQ;n(`) is a suitable weight
when a QMC method is used. For example, in (3.14), the outer sum can be truncated

at r1;n; in which case, sn =
Pr1;n

r=r0
(2r)dX and wQ;n(`) = w(r)(2r)�dx for ` such that g`

corresponds to ga;r for some a: In (3.15), the integral over (x; r) can be replaced by an

average over ` = 1; :::; sn; the uniform density �r�dx deleted, and gx;r replaced by gx`;r` ;
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where f(x`; r`) : ` = 1; :::; sng are i.i.d. with a Unif([0; 1]dx � (0; �r)dx) distribution.
In Appendix B of AS, we show that truncation at sn; simulation based on sn simula-

tion repetitions, or QMC approximation based on sn terms, where sn !1 as n!1;

is su¢ cient to maintain the asymptotic validity of the tests and CS�s as well as the as-

ymptotic power results under �xed alternatives and most of the results under n�1=2-local

alternatives.

The KS form of the test statistic requires the computation of a supremum over g 2 G:
For computational ease, this can be replaced by a supremum over g 2 Gn; where Gn " G
as n!1; in the test statistic and in the de�nition of the critical value (de�ned below).

The asymptotic results for KS tests given in Appendix B of AS show that the use of Gn
in place of G does not a¤ect the asymptotic properties of the test.

4 GMS Con�dence Sets

4.1 GMS Critical Values

In this section, we de�ne GMS critical values and CS�s.

It is shown in Section 5 below that when � is in the identi�ed set the �uniform

asymptotic distribution� of Tn(�) is the distribution of T (hn); where hn = (h1;n; h2);

h1;n(�) is a function from G to Rp+;1�f0gv that depends on the slackness of the moment
inequalities and on n; and h2(�; �) is a k � k-matrix-valued covariance kernel on G � G:
For h = (h1; h2); de�ne

T (h) =

Z
S(�h2(g) + h1(g); h2(g; g) + "Ik)dQ(g); (4.1)

where

f�h2(g) : g 2 Gg (4.2)

is a mean zero Rk-valued Gaussian process with covariance kernel h2(�; �) on G � G; h1(�)
is a function from G to Rp+;1 � f0gv; and " is as in the de�nition of �n(�; g) in (3.5).12

The de�nition of T (h) in (4.1) applies to CvM test statistics. For the KS test statistic,

one replaces
R
::: dQ(g) by supg2G ::: .

12The sample paths of �h2(�) are concentrated on the set Uk� (G) of bounded uniformly �-continuous
Rk-valued functions on G; where � is de�ned in Appendix A.
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We are interested in tests of nominal level � and CS�s of nominal level 1� �: Let

c0(h; 1� �) (= c0(h1; h2; 1� �)) (4.3)

denote the 1�� quantile of T (h): If hn = (h1;n; h2) was known, we would use c0(hn; 1��)
as the critical value for the test statistic Tn(�): However, hn is not known and h1;n

cannot be consistently estimated. In consequence, we replace h2 in c0(h1;n; h2; 1 � �)

by a uniformly consistent estimator bh2;n(�) (= bh2;n(�; �; �)) of the covariance kernel h2
and we replace h1;n by a data-dependent GMS function 'n(�) (= 'n(�; �)) on G that is
constructed to be less than or equal to h1;n(g) for all g 2 G with probability that goes
to one as n!1: Because S(m;�) is non-increasing in mI by Assumption S1(b), where

m = (m0
I ;m

0
II)

0; the latter property yields a test whose asymptotic level is less than or

equal to the nominal level �: (It is arbitrarily close to � for certain (�; F ) 2 F :) The
quantities bh2;n(�) and 'n(�) are de�ned below.
The nominal 1� � GMS critical value is de�ned to be

c('n(�);bh2;n(�); 1� �) = c0('n(�);bh2;n(�); 1� �+ �) + �; (4.4)

where � > 0 is an arbitrarily small positive constant, e.g., .001. A nominal 1� � GMS

CS is given by (2.5) with the critical value cn;1��(�) equal to c('n(�);bh2;n(�); 1� �):

The constant � is an in�nitesimal uniformity factor (IUF) that is employed to cir-

cumvent problems that arise due to the presence of the in�nite-dimensional nuisance

parameter h1;n that a¤ects the distribution of the test statistic in both small and large

samples. The IUF obviates the need for complicated and di¢ cult-to-verify uniform con-

tinuity and strictly-increasing conditions on the large sample distribution functions of

the test statistic.

The sample covariance kernel bh2;n(�) (= bh2;n(�; �; �) is de�ned by:
bh2;n(�; g; g�) = bD�1=2

n (�)b�n(�; g; g�) bD�1=2
n (�); where

b�n(�; g; g�) = n�1
nX
i=1

(m(Wi; �; g)�mn(�; g)) (m(Wi; �; g
�)�mn(�; g

�))0 and

bDn(�) = Diag(b�n(�; 1k; 1k)): (4.5)

Note that b�n(�; g); de�ned in (3.4), equals b�n(�; g; g) and bDn(�) is the sample variance-

covariance matrix of n�1=2
Pn

i=1m(Wi; �):
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The quantity 'n(�) is de�ned in Section 4.4 below.

4.2 GMS Critical Values for Approximate Test Statistics

When the test statistic is approximated via a truncated sum, simulated integral, or

QMC quantity, as discussed in Section 3.4, the statistic T (h) in Section 4.1 is replaced

by

T sn(h) =

snX
`=1

wQ;n(`)S(�h2(g`) + h1(g`); h2(g`; g`) + "Ik); (4.6)

where fg` : ` = 1; :::; sng are the same functions fg1; :::; gsng that appear in the approxi-
mate statistic T n;sn(�):We call the critical value obtained using T sn(h) an approximate

GMS (A-GMS) critical value.

Let c0;sn(h; 1 � �) denote the 1 � � quantile of T sn(h) for �xed fg1; :::; gsng: The
A-GMS critical value is de�ned to be

csn('n(�);
bh2;n(�); 1� �) = c0;sn('n(�);

bh2;n(�); 1� �+ �) + �: (4.7)

This critical value is a quantile that can be computed by simulation as follows. Let

fT sn;� (h) : � = 1; :::; � repsg be � reps i.i.d. random variables each with the same distri-

bution as T sn(h) and each with the same functions fg1; :::; gsng; where h = (h1; h2) is

evaluated at ('n(�);bh2;n(�)): Then, the A-GMS critical value, csn('n(�);bh2;n(�); 1� �);
is the 1��+� sample quantile of fT sn;� ('n(�);bh2;n(�)) : � = 1; :::; � repsg plus � for very
small � > 0 and large � reps:

When constructing a CS, one carries out multiple tests with a di¤erent � value

speci�ed in the null hypothesis for each test. When doing so, we recommend using the

same fg1; :::; gsng functions for each � value considered (although this is not necessary
for the asymptotic results to hold).

4.3 Bootstrap GMS Critical Values

Bootstrap versions of the GMS critical value in (4.4) and the A-GMS critical value

in (4.7) can be employed. The bootstrap GMS critical value is

c�('n(�);
bh�2;n(�); 1� �) = c�0('n(�);

bh�2;n(�); 1� �+ �) + �; (4.8)

20



where c�0(h; 1 � �) is the 1 � � quantile of T �(h) and T �(h) is de�ned as in (4.1) but

with f�h2(g) : g 2 Gg and bh2;n(�) replaced by the bootstrap empirical process f��n(g) :
g 2 Gg and the bootstrap covariance kernel bh�2;n(�); respectively. By de�nition, ��n(g) =
n�1=2

Pn
i=1(m(W

�
i ; �; g) �mn(�; g)); where fW �

i : i � ng is an i.i.d. bootstrap sample
drawn from the empirical distribution of fWi : i � ng: Also, bh�2;n(�; g; g�); b��n(�; g; g�);
and bD�

n(�) are de�ned as in (4.5) with W
�
i in place of Wi: Note that bh�2;n(�; g; g�) only

enters c('n(�);bh�2;n(�); 1� �) via functions (g; g�) such that g = g�:

When the test statistic, T n;sn(�); is a truncated sum, simulated integral, or QMC

quantity, a bootstrap A-GMS critical value can be employed. It is de�ned analogously

to the bootstrap GMS critical value but with T �(h) replaced by T �sn(h); where T
�
sn(h)

has the same de�nition as T �(h) except that a truncated sum, simulated integral, or

QMC quantity, appears in place of the integral with respect to Q; as in Section 4.2. The

same functions fg1; :::; gsng are used in all bootstrap critical value calculations as in the
test statistic T n;sn(�):

4.4 De�nition of 'n(�)

Next, we de�ne 'n(�): As discussed above, 'n(�) is constructed such that 'n(�; g) �
h1;n(g) 8g 2 G with probability that goes to one as n!1 uniformly over (�; F ): Let

�n(�; g) = ��1n n1=2D
�1=2
n (�; g)mn(�; g); where Dn(�; g) = Diag(�n(�; g)); (4.9)

�n(�; g) is de�ned in (3.5), and f�n : n � 1g is a sequence of constants that diverges to
in�nity as n!1: The jth element of �n(�; g); denoted �n;j(�; g); measures the slackness

of the moment inequality EFmj(Wi; �; g) � 0 for j = 1; :::; p:
De�ne 'n(�; g) = ('n;1(�; g); :::; 'n;p(�; g); 0; :::; 0)

0 2 Rk via, for j � p;

'n;j(�; g) = 0 if �n;j(�; g) � 1
'n;j(�; g) = h2;n;j(�; g)

1=2Bn if �n;j(�; g) > 1; where

h2;n(�; g) = bD�1=2
n (�)�n(�; g) bD�1=2

n (�) and h2;n;j(�; g) = [h2;n(�; g)]jj: (4.10)

Assumption GMS1. (a) 'n(�; g) satis�es (4.10), where fBn : n � 1g is a non-
decreasing sequence of positive constants, and

(b) for some � > 1; �n � �Bn !1 as n!1:

The constants fBn : n � 1g in Assumption GMS1 need not diverge to in�nity
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for the GMS CS to have asymptotic size greater than or equal to 1 � �: However,

for the GMS CS not to be asymptotically conservative, Bn must diverge to 1; see

Assumption GMS2(b) below. In the simulations in Section 9, we use �n = (0:3 ln(n))1=2

and Bn = (0:4 ln(n)= ln ln(n))1=2; which satisfy Assumption GMS1.

The multiplicand h2;n;j(�; g)1=2 in (4.10) is an �"-adjusted�standard deviation esti-

mator for the jth normalized sample moment based on g: It provides a suitable scaling

for 'n(�; g):

4.5 �Plug-in Asymptotic�Con�dence Sets

Next, for comparative purposes, we de�ne plug-in asymptotic (PA) critical values.

Subsampling critical values are de�ned and analyzed in Appendix B of AS. We strongly

recommend GMS critical values over PA and subsampling critical values because (i)

GMS tests are shown to be more powerful than PA tests asymptotically, see Comment 2

to Theorem 4 below, (ii) it should be possible to show that GMS tests have higher power

than subsampling tests asymptotically and smaller errors in null rejection probabilities

asymptotically by using arguments similar to those in Andrews and Soares (2010) and

Bugni (2010), respectively, and (iii) the �nite-sample simulations in Section 9 show

better performance by GMS critical values than PA and subsampling critical values.

PA critical values are obtained from the asymptotic null distribution that arises when

all conditional moment inequalities hold as equalities a.s. The PA critical value is

c(0G;bh2;n(�); 1� �) = c0(0G;bh2;n(�); 1� �+ �) + �; (4.11)

where � is an arbitrarily small positive constant (i.e., an IUF), 0G denotes the Rk-

valued function on G that is identically (0; :::; 0)0 2 Rk; and bh2;n(�) is de�ned in (4.5).
The nominal 1 � � PA CS is given by (2.5) with the critical value cn;1��(�) equal to

c(0G;bh2;n (�) ; 1� �):

Bootstrap PA, A-PA, and bootstrap A-PA critical values are de�ned analogously to

their GMS counterparts in Sections 4.2 and 4.3.

5 Uniform Asymptotic Coverage Probabilities

In this section, we show that GMS and PA CS�s have correct uniform asymptotic

coverage probabilities. The results of this section and those in Sections 6-8 below are

22



for CvM statistics based on integrals with respect to Q: Extensions of these results to

A-CvM statistics and critical values are provided in Appendix B of AS. Appendix B

also gives results for KS tests.

5.1 Notation

In order to establish uniform asymptotic coverage probability results, we now intro-

duce notation for the population analogues of the sample quantities that appear in (4.5).

De�ne

h2;F (�; g; g
�) = D

�1=2
F (�)�F (�; g; g

�)D
�1=2
F (�)

= CovF

�
D
�1=2
F (�)m(Wi; �; g); D

�1=2
F (�)m(Wi; �; g

�)
�
;

�F (�; g; g
�) = CovF (m(Wi; �; g);m(Wi; �; g

�)); and

DF (�) = Diag(�F (�; 1k; 1k)) (= Diag(V arF (m(Wi; �)))): (5.1)

To determine the asymptotic distribution of Tn(�); we write Tn(�) as a function of the

following quantities:

h1;n;F (�; g) = n1=2D
�1=2
F (�)EFm(Wi; �; g);

hn;F (�; g; g
�) = (h1;n;F (�; g); h2;F (�; g; g

�));bh2;n;F (�; g; g�) = D
�1=2
F (�)b�n(�; g; g�)D�1=2

F (�);

h2;n;F (�; g) = bh2;n;F (�; g; g) + "bh2;n;F (�; 1k; 1k) (= D
�1=2
F (�)�n(�; g)D

�1=2
F (�)); and

�n;F (�; g) = n�1=2
nX
i=1

D
�1=2
F (�)[m(Wi; �; g)� EFm(Wi; �; g)]: (5.2)

As de�ned, (i) h1;n;F (�; g) is a k-vector of normalized means of the moment functions

m(Wi; �; g) for g 2 G; which measure the slackness of the population moment conditions
under (�; F ); (ii) hn;F (�; g; g�) contains the normalized means ofD

�1=2
F (�)m(Wi; �; g) and

the covariances of D�1=2
F (�)m(Wi; �; g) and D

�1=2
F (�)m(Wi; �; g

�); (iii) bh2;n;F (�; g; g�) and
h2;n;F (�; g) are hybrid quantities� part population, part sample� based on b�n(�; g; g�)
and�n(�; g); respectively, and (iv) �n;F (�; g) is the sample average ofD

�1=2
F (�)m(Wi; �; g)

normalized to have mean zero and variance that does not depend on n:

Note that �n;F (�; �) is an empirical process indexed by g 2 G with covariance kernel
given by h2;F (�; g; g�):
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The normalized sample moments n1=2mn(�; g) can be written as

n1=2mn(�; g) = D
1=2
F (�)(�n;F (�; g) + h1;n;F (�; g)): (5.3)

The test statistic Tn(�); de�ned in (3.6), can be written as

Tn(�) =

Z
S(�n;F (�; g) + h1;n;F (�; g); h2;n;F (�; g))dQ(g): (5.4)

Note the close resemblance between Tn(�) and T (h) (de�ned in (4.1)).

Let H1 denote the set of all functions from G to Rp+;1 � f0gv: Let

H2 = fh2;F (�; �; �) : (�; F ) 2 Fg and
H = H1 �H2: (5.5)

On the space of k� k-matrix-valued covariance kernels on G � G; which is a superset of
H2; we use the metric d de�ned by

d(h
(1)
2 ; h

(2)
2 ) = sup

g;g�2G
jjh(1)2 (g; g�)� h

(2)
2 (g; g

�)jj: (5.6)

For notational simplicity, for any function of the form bF (�; g) for g 2 G; let bF (�) de-
note the function bF (�; �) on G: Correspondingly, for any function of the form bF (�; g; g

�)

for g; g� 2 G; let bF (�) denote the function bF (�; �; �) on G2:

5.2 Uniform Asymptotic Distribution of the Test Statistic

The following Theorem provides a uniform asymptotic distributional result for the

test statistic Tn(�): It is used to establish uniform asymptotic coverage probability results

for GMS and PA CS�s.

Theorem 1. Suppose Assumptions M, S1, and S2 hold. Then, for every compact subset
H2;cpt of H2; all constants xhn;F (�) 2 R that may depend on (�; F ) and n through hn;F (�);
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and all � > 0; we have

(a) lim sup
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

�
PF (Tn(�) > xhn;F (�))� P (T (hn;F (�)) + � > xhn;F (�))

�
� 0;

(b) lim inf
n!1

inf
(�;F )2F :

h2;F (�)2H2;cpt

�
PF (Tn(�) > xhn;F (�))� P (T (hn;F (�))� � > xhn;F (�))

�
� 0;

where T (h) =
Z
S(�h2(g) + h1(g); h2(g) + "Ik)dQ(g) and �h2(�) is the Gaussian

process de�ned in (4.2).

Comments. 1. Theorem 1 gives a uniform asymptotic approximation to the distri-

bution function of Tn(�): Uniformity holds without any restrictions on the normalized

mean (i.e., moment inequality slackness) functions fh1;n;Fn(�n) : n � 1g: In particular,
Theorem 1 does not require fh1;n;Fn(�n) : n � 1g to converge as n ! 1 or to belong

to a compact set. The Theorem does not require that Tn(�) has a unique asymptotic

distribution under any sequence f(�n; Fn) 2 F : n � 1g: These are novel features of
Theorem 1.

2. The supremum and in�mum in Theorem 1 are over compact sets of covariance

kernels H2;cpt; rather than the parameter space H2: This is not particularly problematic

because the potential asymptotic size problems that arise in moment inequality models

are due to the pointwise discontinuity of the asymptotic distribution of the test statistic

as a function of the means of the moment inequality functions, not as a function of the

covariances between di¤erent moment inequalities.

3. Theorem 1 is proved using an almost sure representation argument and the

bounded convergence theorem (BCT). The continuous mapping theorem does not apply

because (i) Tn(�) does not converge in distribution uniformly over (�; F ) 2 F and (ii)

h1;n;F (�; g) typically does not converge uniformly over g 2 G even in cases where it has
a pointwise limit for all g 2 G:

5.3 An Additional GMS Assumption

The following assumption is not needed for GMS CS�s to have uniform asymptotic

coverage probability greater than or equal to 1 � �: It is used, however, to show that

GMS CS�s are not asymptotically conservative. (Note that typically GMS and PA CS�s

are asymptotically non-similar.) For (�; F ) 2 F and j = 1; :::; k; de�ne h1;1;F (�) to
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have jth element equal to 1 if EFmj(Wi; �; g) > 0 and j � p and 0 otherwise. Let

h1;F (�) = (h1;1;F (�); h2;F (�)):

Assumption GMS2. (a) For some (�c; Fc)2F ; the distribution function of T(h1;Fc(�c))
is continuous and strictly increasing at its 1 � � quantile plus �; viz., c0(h1;Fc(�c); 1 �
�) + �; for all � > 0 su¢ ciently small and � = 0;

(b) Bn !1 as n!1; and

(c) n1=2=�n !1 as n!1:

Assumption GMS2(a) is not restrictive. For example, it holds for typical choices of

S and Q for any (�c; Fc) for which Q(fg 2 G : h1;1;Fc(�c; g) = 0g) > 0: Assumption

GMS2(c) is satis�ed by typical choices of �n; such as �n = (0:3 lnn)1=2:

5.4 Uniform Asymptotic Coverage Probability Results

The following Theorem gives uniform asymptotic coverage probability results for

GMS and PA CS�s.

Theorem 2. Suppose Assumptions M, S1, and S2 hold and Assumption GMS1 also
holds when considering GMS CS�s. Then, for every compact subset H2;cpt of H2; GMS

and PA con�dence sets CSn satisfy

(a) lim inf
n!1

inf
(�;F )2F :

h2;F (�)2H2;cpt

PF (� 2 CSn) � 1� � and

(b) if Assumption GMS2 also holds and h2;Fc(�c) 2 H2;cpt (for (�c; Fc) 2 F as in

Assumption GMS2), then the GMS con�dence set satis�es

lim
�!0

lim inf
n!1

inf
(�;F )2F :

h2;F (�)2H2;cpt

PF (� 2 CSn) = 1� �;

where � is as in the de�nition of c(h; 1� �):

Comments. 1. Theorem 2(a) shows that GMS and PA CS�s have correct uniform

asymptotic size over compact sets of covariance kernels. Theorem 2(b) shows that GMS

CS�s are at most in�nitesimally conservative asymptotically. The uniformity results hold

whether the moment conditions involve �weak�or �strong�instrumental variables.

2. An analogue of Theorem 2(b) holds for PA CS�s if Assumption GMS2(a) holds

and EFc(mj(Wi; �c)jXi) = 0 a.s. for j � p (i.e., if the conditional moment inequalities
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hold as equalities a.s.) under some (�c; Fc) 2 F .13 However, the latter condition is

restrictive� it fails in many applications.

3. Theorem 2 applies to CvM tests based on integrals with respect to a probability

measure Q: Extensions to A-CvM and KS tests are given in Appendix B of AS.

4. Comments 1 and 2 to Theorem 1 also apply to Theorem 2.

6 Power Against Fixed Alternatives

We now show that the power of GMS and PA tests converges to one as n ! 1 for

all �xed alternatives (for which the moment functions have 2+ � moments �nite). Thus,

both tests are consistent tests. This implies that for any �xed distribution F0 and any

parameter value �� not in the identi�ed set �F0 ; the GMS and PA CS�s do not include

�� with probability approaching one. In this sense, GMS and PA CS�s based on Tn(�)

fully exploit the conditional moment inequalities and equalities. CS�s based on a �nite

number of unconditional moment inequalities and equalities do not have this property.

The null hypothesis is

H0 : EF0(mj(Wi; ��)jXi) � 0 a.s. [FX;0] for j = 1; :::; p and

EF0(mj(Wi; ��)jXi) = 0 a.s. [FX;0] for j = p+ 1; :::; k; (6.1)

where �� denotes the null parameter value and F0 denotes the �xed true distribution of

the data. The alternative is H1 : H0 does not hold. The following assumption speci�es

the properties of �xed alternatives (FA).

Assumption FA. The value �� 2 � and the true distribution F0 satisfy: (a) PF0(Xi 2
XF0(��)) > 0; where XF0(��) is de�ned in (3.11), (b) fWi : i � 1g are i.i.d. under F0; (c)
V arF0(mj (Wi; ��))> 0 for j = 1; :::; k; (d) EF0jjm(Wi; ��)jj2+� <1 for some � > 0; and

(e) Assumption M holds with F0 in place of F and Fn in Assumptions M(b) and M(c),

respectively.

Assumption FA(a) states that violations of the conditional moment inequalities or equal-

ities occur for the null parameter �� for Xi values in some set with positive probability

under F0: Thus, under Assumption FA(a), the moment conditions speci�ed in (6.1)

do not hold. Assumptions FA(b)-(d) are standard i.i.d. and moment assumptions. As-

13The proof follows easily from results given in the proof of Theorem 2(b).

27



sumption FA(e) holds for Gc-cube and Gbox because Cc-cube and Cbox are Vapnik-Cervonenkis
classes of sets.

For g 2 G; de�ne

m�
j(g) = EF0mj(Wi; ��)gj(Xi)=�F0;j(��) and

�(g) = maxf�m�
1(g); :::;�m�

p(g); jm�
p+1(g)j; :::; jm�

k(g)jg: (6.2)

Under Assumptions FA(a) and CI, �(g0) > 0 for some g0 2 G:
For a test based on Tn(�) to have power against all �xed alternatives, the weight-

ing function Q cannot �ignore�any elements g 2 G; because such elements may have
identifying power for the identi�ed set. This requirement is captured in the following

assumption, which is shown in Lemma 4 to hold for the two probability measures Q

considered in Section 3.4.

Let FX;0 denote the distribution of Xi under F0: De�ne the pseudo-metric �X on G
by

�X(g; g
�) = (EFX;0jjg(Xi)� g�(Xi)jj2)1=2 for g; g� 2 G: (6.3)

Let B�X (g; �) denote an open �X-ball in G centered at g with radius �:

Assumption Q. The support of Q under the pseudo-metric �X is G: That is, for all
� > 0; Q(B�X (g; �)) > 0 for all g 2 G:

The next result establishes Assumption Q for the probability measures Q on Gc-cube
and Gbox discussed in Section 3.4 above. Appendix B of AS provides analogous results
for three other choices of Q and G:

Lemma 4. Assumption Q holds for the weight functions:
(a) Qa = ��1c-cubeQAR on Gc-cube; where QAR is uniform on a 2 f1; :::; 2rgdx conditional

on r and r has some probability mass function fw(r) : r = r0; r0 + 1; :::g with w(r) > 0
for all r and

(b) Qb = ��1boxUnif([0; 1]
dx� (0; �r)dx) on Gbox with the centers of the boxes in [0; 1]dx :

Comment. The uniform distribution that appears in both speci�cations of Q in the

Lemma could be replaced by another distribution and the results of the Lemma still

hold provided the other distribution has the same support.

The following Theorem shows that GMS and PA tests are consistent against all �xed

alternatives.
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Theorem 3. Under Assumptions FA, CI, Q, S1, S3, and S4,
(a) limn!1 PF0(Tn(��) > c('n(��);bh2;n(��); 1� �)) = 1 and

(b) limn!1 PF0(Tn(��) > c(0G;bh2;n(��); 1� �)) = 1:

Comment. Theorem 3 implies the following for GMS and PA CS�s: Suppose (�0; F0) 2
F for some �0 2 �; �� (2 �) is not in the identi�ed set �F0 (de�ned in (2.2)), and
Assumptions FA(c), FA(d), CI, M, S1, S3, and S4 hold, then for GMS and PA CS�s we

have

lim
n!1

PF0(�� 2 CSn) = 0:14 (6.4)

7 Power Against n�1=2-Local Alternatives

In this section, we show that GMS and PA tests have power against certain, but

not all, n�1=2-local alternatives. This holds even though these tests fully exploit the

information in the conditional moment restrictions, which is of an in�nite-dimensional

nature. These testing results have immediate implications for the volume of CS�s, see

Pratt (1961).

We show that a GMS test has asymptotic power that is greater than or equal to

that of a PA test (based on the same test statistic) under all alternatives with strict

inequality in certain scenarios. Although we do not do so here, arguments analogous to

those in Andrews and Soares (2010) could be used to show that a GMS test�s power is

greater than or equal to that of a subsampling test with strictly greater power in certain

scenarios.

For given �n;� 2 � for n � 1; we consider tests of

H0 : EFnmj(Wi; �n;�) � 0 for j = 1; :::; p;

EFnmj(Wi; �n;�) = 0 for j = p+ 1; :::; k; (7.1)

and (�n;�; Fn) 2 F ; where Fn denotes the true distribution of the data. The null values
�n;� are allowed to drift with n or be �xed for all n: Drifting �n;� values are of interest

because they allow one to consider the case of a �xed identi�ed set, say �0; and to derive

the asymptotic probability that parameter values �n;� that are not in the identi�ed set,

but drift toward it at rate n�1=2; are excluded from a GMS or PA CS. In this scenario,

14This holds because �� =2 �F0 implies Assumption FA(a) holds, (�0; F0) 2 F implies Assumption
FA(b) holds, and Assumption M with F = Fn = F0 implies Assumption FA(e) holds.
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the sequence of true distributions are ones that yield �0 to be the identi�ed set, i.e.,

Fn 2 F0 = fF : �F = �0g:
The true parameters and distributions are denoted (�n; Fn):We consider the Kolmog-

orov-Smirnov metric on the space of distributions F:

The n�1=2-local alternatives are de�ned as follows.

Assumption LA1. The true parameters and distributions f(�n; Fn) 2 F : n � 1g and
the null parameters f�n;� : n � 1g satisfy:
(a) �n;� = �n + �n

�1=2(1 + o(1)) for some � 2 Rd� ; �n;� 2 �; �n;� ! �0; and Fn ! F0

for some (�0; F0) 2 F ,
(b) n1=2EFnmj(Wi; �n; g)=�Fn;j(�n)! h1;j(g) for some h1;j(g) 2 R+;1 for j = 1; :::; p

and g 2 G;
(c) d(h2;Fn(�n); h2;F0(�0)) ! 0 and d(h2;Fn(�n;�); h2;F0(�0)) ! 0 as n ! 1 (where d

is de�ned in (5.6)),

(d) V arFn(mj(Wi; �n;�)) > 0 for j = 1; :::; k; for n � 1; and
(e) supn�1EFnjmj(Wi; �n;�)=�Fn;j(�n;�)j2+� <1 for j = 1; :::; k for some � > 0:

Assumption LA2. The k�d matrix �F (�; g) = (@=@�0)[D�1=2
F (�)EFm(Wi; �; g)] exists

and is continuous in (�; F ) for all (�; F ) in a neighborhood of (�0; F0) for all g 2 G:

For notational simplicity, we let h2 abbreviate h2;F0(�0) throughout this section.

Assumption LA1(a) states that the true values f�n : n � 1g are n�1=2-local to the
null values f�n;� : n � 1g: Assumption LA1(b) speci�es the asymptotic behavior of
the (normalized) moment inequality functions when evaluated at the true values f�n :
n � 1g: Under the true values, these (normalized) moment inequality functions are non-
negative. Assumption LA1(c) speci�es the asymptotic behavior of the covariance kernels

fh2;Fn(�n; �; �) : n � 1g and fh2;Fn(�n;�; �; �) : n � 1g: Assumptions LA1(d) and LA1(e)
are standard. Assumption LA2 is a smoothness condition on the normalized expected

moment functions. Given the smoothing properties of the expectation operator, this

condition is not restrictive.

Under Assumptions LA1 and LA2, we show that the moment inequality functions

evaluated at the null values f�n;� : n � 1g satisfy:

lim
n!1

n1=2D
�1=2
Fn

(�n;�)EFnm(Wi; �n;�; g) = h1(g) + �0(g)� 2 Rk; where

h1(g) = (h1;1(g); :::; h1;p(g); 0; :::; 0)
0 2 Rk and �0(g) = �F0(�0; g): (7.2)
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If h1;j(g) = 1; then by de�nition h1;j(g) + y = 1 for any y 2 R: We have h1(g) +

�0(g)� 2 Rp[+1] � Rv: Let �0;j(g) denote the jth row of �0(g) written as a column

d�-vector for j = 1; :::; k:

The null hypothesis, de�ned in (7.1), does not hold (at least for n large) when the

following assumption holds.

Assumption LA3. For some g 2 G; h1;j(g) + �0;j(g)0� < 0 for some j = 1; :::; p or

�0;j(g)
0� 6= 0 for some j = p+ 1; :::; k:

Under the following assumption, if � = ��0 for some � > 0 and some �0 2 Rd� ; then

the power of GMS and PA tests against the perturbation � is arbitrarily close to one

for � arbitrarily large:

Assumption LA3 0. Q(fg 2 G : h1;j(g) < 1 and �0;j(g)0�0 < 0 for some j = 1; :::; p

or �0;j(g)0�0 6= 0 for some j = p+ 1; :::; kg) > 0:

Assumption LA3 0 requires that either (i) the moment equalities detect violations of the

null hypothesis for g functions in a set with positive Q measure or (ii) the moment

inequalities are not too far from being binding, i.e., h1;j(g) < 1; and the perturbation

�0 occurs in a direction that yields moment inequality violations for g functions in a set

with positive Q measure.

Assumption LA3 is employed with the KS test. It is weaker than Assumption LA3 0:

It is shown in Appendix B of AS that if Assumption LA3 holds with � = ��0 (and

some other assumptions), then the power of KS-GMS and KS-PA tests against the

perturbation � is arbitrarily close to one for � arbitrarily large.

In Appendix B of AS we illustrate the veri�cation of Assumptions LA1-LA3 and LA3 0

in a simple example. In this example, v = 0; h1;j(g) <18g 2 G, and�0;j(g) = �Eg(Xi)

8g 2 G, so �0;j(g)0�0 < 0 in Assumption LA3 0 8g 2 G with Eg(Xi) > 0 for all �0 > 0:

Assumptions LA3 and LA3 0 can fail to hold even when the null hypothesis is violated.

This typically happens if the true parameter/true distribution is �xed, i.e., (�n; Fn) =

(�0; F0) 2 F for all n in Assumption LA1(a), the null hypothesis parameter �n;� drifts

with n as in Assumption LA1(a), and PF0(Xi 2 Xzero) = 0; where Xzero = fx 2 Rdx :

EF0(m(Wi; �0)jXi = x) = 0g: In such cases, typically h1;j(g) = 1 8g 2 G (because the
conditional moment inequalities are non-binding with probability one), Assumptions

LA3 and LA3 0 fail, and Theorem 4 below shows that GMS and PA tests have trivial

asymptotic power against such n�1=2-local alternatives. For example, this occurs in the

example of Section 12.5 in Appendix B of AS when PF0(Xi 2 Xzero) = 0:
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As discussed in Section 12.5, asymptotic results based on a �xed true distribution

provide poor approximations when PF0(Xi 2 Xzero) = 0: Hence, one can argue that it
makes sense to consider local alternatives for sequences of true distributions fFn : n �
1g for which h1;j(g) < 1 for a non-negligible set of g 2 G; as in Assumption LA3 0;
because such sequences are the ones for which the asymptotics provide good �nite-

sample approximations. For such sequences, GMS and PA tests have non-trivial power

against n�1=2-local alternatives, as shown in Theorem 4 below.

Nevertheless, local-alternative power results can be used for multiple purposes and

for some purposes, one may want to consider local-alternatives other than those that

satisfy Assumptions LA3 and LA3 0:

The asymptotic distribution of Tn(�n;�) under n�1=2-local alternatives is shown to be

Jh;�: By de�nition, Jh;� is the distribution of

T (h1 +�0�; h2) =

Z
S(�h2(g) + h1(g) + �0(g)�; h2(g) + "Ik)dQ(g); (7.3)

where h = (h1; h2); �0 denotes �0(�); and �h2(�) is a mean zero Gaussian process with
covariance kernel h2 = h2;F0(�0): For notational simplicity, the dependence of Jh;� on �0
is suppressed.

Next, we introduce two assumptions, viz., Assumptions LA4 and LA5, that are used

only for GMS tests in the context of local alternatives. The population analogues of

�n(�; g) and its diagonal matrix are

�F (�; g) = �F (�; g; g) + "�F (�; 1k; 1k) and DF (�; g) = Diag(�F (�; g)); (7.4)

where �F (�; g; g) is de�ned in (5.1). Let �F;j(�; g) denote the square-root of the (j; j)

element of �F (�; g):

Assumption LA4. ��1n n1=2EFnmj(Wi; �n; g)=�Fn;j(�n; g) ! �1;j(g) for some �1;j(g)

2 R+;1 for j = 1; :::; p and g 2 G:

In Assumption LA4 the functions are evaluated at the true value �n; not at the null

value �n;�; and (�n; Fn) 2 F : In consequence, the moment functions in Assumption LA4
satisfy the moment inequalities and �1;j(g) � 0 for all j = 1; :::; p and g 2 G: Note that
0 � �1;j(g) � h1;j(g) for all j = 1; :::; p and all g 2 G (by Assumption LA1(b) and
�n !1:)

Let �1(g) = (�1;1(g); :::; �1;p(g); 0; :::; 0)0 2 Rp+;1�f0gv: Let c0('(�1); h2; 1��) denote
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the 1� � quantile of

T ('(�1); h2) =

Z
S(�h2(g) + '(�1(g)); h2(g) + "Ik)dQ(g); where

'(�1(g)) = ('(�1;1(g)); :::; '(�1;p(g)); 0; :::; 0)
0 2 Rk and

'(x) = 0 if x � 1 and '(x) =1 if x > 1: (7.5)

Let '(�1) denote '(�1(�)): The probability limit of the GMS critical value c('n(�);bh2;n(�);
1� �) is shown below to be c('(�1); h2; 1� �) = c0('(�1); h2; 1� �+ �) + �:

Assumption LA5. (a) Q(G') = 1; where G' = fg 2 G : �1;j(g) 6= 1 for j = 1; :::; pg;
and

(b) the distribution function (df) of T ('(�1); h2) is continuous and strictly increasing

at x = c('(�1); h2; 1� �); where h2 = h2;F0(�0):

The value 1 that appears in G' in Assumption LA5(a) is the discontinuity point of
': Assumption LA5(a) implies that the n�1=2-local power formulae given below do not

apply to certain �discontinuity vectors��1(�); but this is not particularly restrictive.15

Assumption LA5(b) typically holds because of the absolute continuity of the Gaussian

random variables �h2(g) that enter T ('(�1); h2):
16

The following assumption is used only for PA tests.

Assumption LA6. The df of T (0G; h2) is continuous and strictly increasing at x =
c(0G; h2; 1� �); where h2 = h2;F0(�0):

The probability limit of the PA critical value is shown to be c(0G; h2; 1 � �) =

c0(0G; h2; 1��+ �) + �; where c0(0G; h2; 1��) denotes the 1�� quantile of J(0G ;h2);0d� :

Theorem 4. Under Assumptions M, S1, S2, and LA1-LA2,
(a) limn!1 PFn(Tn(�n;�) > c('n(�n;�);

bh2;n(�n;�); 1��)) = 1�Jh;�(c('(�1); h2; 1��))
provided Assumptions GMS1, LA4, and LA5 also hold,

15Assumption LA5(a) is not particularly restrictive because in cases where it fails, one can obtain
lower and upper bounds on the local asymptotic power of GMS tests by replacing c('(�1); h2; 1��) by
c('(�1�); h2; 1� �) and c('(�1+); h2; 1� �); respectively, in Theorem 4(a). By de�nition, '(�1�) =
'(�1(�)�) and '(�1(g)�) is the limit from the left of '(x) at x = �1(g): Likewise '(�1+) = '(�1(�)+)
and '(�1(g)+) is the limit from the right of '(x) at x = �1(g):
16If Assumption LA5(b) fails, one can obtain lower and upper bounds on the local asymptotic power

of GMS tests by replacing Jh;�(c('(�1); h2; 1 � �)) by Jh;�(c('(�1); h2; 1 � �)+) and Jh;�(c('(�1);
h2; 1 � �)�); respectively, in Theorem 4(a), where the latter are the limits from the left and right,
respectively, of Jh;�(x) at x = c('(�1); h2; 1� �):
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(b) limn!1 PFn(Tn(�n;�) > c(0G;bh2;n(�n;�); 1��)) = 1�Jh;�(c(0G; h2; 1��)) provided
Assumption LA6 also holds, and

(c) lim�!1[1� Jh;��0(c('(�1); h2; 1� �))] = lim�!1[1� Jh;��0(c(0G; h2; 1� �))] = 1
provided Assumptions LA3 0, S3, and S4 hold.

Comments. 1. Theorem 4(a) and 4(b) provide the n�1=2-local alternative power

function of the GMS and PA tests, respectively. Theorem 4(c) shows that the asymptotic

power of GMS and PA tests is arbitrarily close to one if the n�1=2-local alternative

parameter � = ��0 is su¢ ciently large in the sense that its scale � is large.

2. We have c('(�1); h2; 1��) � c(0G; h2; 1��) (because '(�1(g)) � 0 for all g 2 G
and S(m;�) is non-increasing in mI by Assumption S1(b), where m = (m0

I ;m
0
II)

0):

Hence, the asymptotic local power of a GMS test is greater than or equal to that of a PA

test. Strict inequality holds whenever �1(�) is such that Q(fg 2 G : '(�1(g)) > 0g) > 0:
The latter typically occurs whenever the conditional moment inequalityEFn(mj(Wi; �n;�)

jXi) for some j = 1; :::; p is bounded away from zero as n ! 1 with positive Xi

probability.

3. The results of Theorem 4 hold under the null hypothesis as well as under the

alternative. The results under the null quantify the degree of asymptotic non-similarity

of the GMS and PA tests.

4. Suppose the assumptions of Theorem 4 hold and each distribution Fn generates

the same identi�ed set, call it �0 = �Fn 8n � 1: Then, Theorem 4(a) implies that the

asymptotic probability that a GMS CS includes, �n;�; which lies within O(n�1=2) of the

identi�ed set, is Jh;�(c('(�1); h2; 1 � �)): If � = ��0 and Assumptions LA3 0, S3, and

S4 also hold, then �n;� is not in �0 (at least for � large) and the asymptotic probability

that a GMS or PA CS includes �n;� is arbitrarily close to zero for � arbitrarily large by

Theorem 4(c). Analogous results hold for PA CS�s.

8 Preliminary Consistent Estimation of

Identi�ed Parameters and Time Series

In this section, we consider the case in which the moment functions in (2.4) depend

on a parameter � as well as � and a preliminary consistent estimator, b�n(�); of � is
available when � is the true value. (This requires that � is identi�ed given the true value

�:) For example, this situation often arises with game theory models, as in the third
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model considered in Section 9 below. The parameter � may be �nite dimensional or

in�nite dimensional. As pointed out to us by A. Aradillas-López, in�nite-dimensional

parameters arise as expectations functions in some game theory models. Later in the

section, we also consider the case where fWi : i � ng are time series observations.
Suppose the moment functions are of the form mj(Wi; �; �) and the model speci�es

that (2.1) holds with mj(Wi; �; �F (�)) in place of mj(Wi; �) for j � k for some �F (�)

that may depend on � and F:

The normalized sample moment functions are of the form

n1=2mn(�; g) = n�1=2
nX
i=1

m(Wi; �;b�n(�); g): (8.1)

In the in�nite-dimensional case, m(Wi; �;b�n(�); g) can be of the formm�(Wi; �;b�n(Wi; �)

; g); where b�n(Wi; �) : R
dw ��! Rd� for some d� <1:

Given (8.1), the quantity �F (�; g; g�) in (5.1) denotes the asymptotic covariance of

n1=2mn(�;b�n(�); g) and n1=2mn(�;b�n(�); g�) under (�; F ); rather than CovF (m(Wi; �; g);

m(Wi; �; g
�)): Correspondingly, b�n(�; g; g�) is not de�ned by (4.5) but is taken to be

an estimator of �F (�; g; g�) that is consistent under (�; F ): With these adjusted de�ni-

tions of mn(�; g) and b�n(�; g; g�); the test statistic Tn(�) and GMS or PA critical value
cn;1��(�) are de�ned in the same way as above.17

For example, when � is �nite dimensional, the preliminary estimator b�n(�) is chosen
to satisfy:

n1=2(b�n(�)� �F (�))!d ZF as n!1 under (�; F ) 2 F ; (8.2)

for some normally distributed random vector ZF with mean zero.

The normalized sample moments can be written as

n1=2mn(�; g) = D
1=2
F (�)(�n;F (�; g) + h1;n;F (�; g)); where

�n;F (�; g) = n�1=2
nX
i=1

D
�1=2
F (�)[m(Wi; �;b�n(�); g)� EFm(Wi; �; �F (�); g)];

h1;n;F (�; g) = n1=2D
�1=2
F (�)EFm(Wi; �; �F (�); g): (8.3)

In place of Assumption M, we use the following empirical process (EP) assumption.

17When computing bootstrap critical values, one needs to bootstrap the estimator b�n(�) as well as
the observations fWi : i � ng:
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Let ) denote weak convergence. Let fan : n � 1g denote a subsequence of fng:

Assumption EP. (a) For some speci�cation of the parameter space F that imposes the
conditional moment inequalities and equalities and all (�; F ) 2 F ; �n;F (�; �)) �h2;F (�)(�)
as n ! 1 under (�; F ); for some mean zero Gaussian process �h2;F (�)(�) on G with
covariance kernel h2;F (�) on G � G and bounded uniformly �-continuous sample paths
a.s. for some pseudo-metric � on G:
(b) For any subsequence f(�an ; Fan) 2 F : n � 1g for which limn!1 supg;g�2G

jjh2;Fan (�an ; g; g�) � h2(g; g
�)jj = 0 for some k � k matrix-valued covariance kernel

on G � G; we have (i) �an;Fan (�an ; �) ) �h2(�) and (ii) supg;g�2G jjbh2;an;Fan (�an ; g; g�) �
h2(g; g

�)jj !p 0 as n!1:

The quantity bh2;an;Fan (�an ; g; g�) is de�ned as in previous sections but with b�n(�; g; g�)
and �F (�; g; g�) de�ned as in this section.

With Assumption EP in place of Assumption M, the results of Theorem 2 hold when

the GMS or PA CS depends on a preliminary estimator b�n(�):18 (The proof is the same
as that given for Theorem 2 in Appendices A and C with Assumption EP replacing the

results of Lemma A1.)

Next, we consider time series observations fWi : i � ng: Let the moment conditions
and sample moments be de�ned as in (2.3) and (3.3), but do not impose the de�nitions

of F and b�n(�; g) in (2.3) and (3.4). Instead, de�ne b�n(�; g) in a way that is suitable
for the temporal dependence properties of fm(Wi; �; g) : i � ng: For example, b�n(�; g)
might need to be de�ned to be a heteroskedasticity and autocorrelation consistent (HAC)

variance estimator. Or, if fm(Wi; �) : i � ng have zero autocorrelations under (�; F );
de�ne b�n(�; g) as in (3.4). Given these de�nitions of mn(�; g) and b�n(�; g); de�ne the
test statistic Tn(�) and GMS or PA critical value cn;1��(�) as in previous sections.19

De�ne �n;F (�; g) as in (5.2). Now, with Assumption EP in place of Assumption M,

the results of Theorem 2 hold with time series observations.

Note that Assumption EP also can be used when the observations are independent

but not identically distributed.

18Equation (8.2) is only needed for this result in order to verify Assumption EP(a) in the �nite-
dimensional � case.
19With bootstrap critical values, the bootstrap employed needs to take account of the time series

structure of the observations. For example, a block bootstrap does so.
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9 Monte Carlo Simulations

9.1 Description of the Tests

In this section, we provide simulation evidence concerning the �nite sample properties

of the tests introduced in this paper. We consider three models: a quantile selection

model, an interval outcome regression model, and an entry game model with multiple

equilibria.

We compare di¤erent test statistics and critical values in terms of their coverage

probabilities (CP�s) for points in the identi�ed set and their false coverage probabilities

(FCP�s) for points outside the identi�ed set. Obviously, one wants FCP�s to be as small

as possible. FCP�s are directly related to the power of the tests used to constructed the

CS and are related to the volume of the CS, see Pratt (1961).

The following test statistics are considered: (i) CvM/Sum, (ii) CvM/QLR, (iii)

CvM/Max, (iv) KS/Sum, (v) KS/QLR, and (vi) KS/Max. In all three models countable

hypercubes and truncated versions of the test statistics are employed. (More details are

given below.) The weights fw(r) : r = r0; :::g employed by the CvM statistics, see

(3.14), are proportional to (r2 + 100)�1 for a cube with side-edge length indexed by r;

for r = r0; :::: The number of boxes with side-edge length indexed by r is (2r)dX ; where

dX denotes the dimension of the covariate Xi: The weights are normalized to sum to

one, but this does not a¤ect the results.

In all three models we consider the PA/Asy and GMS/Asy critical values. In the �rst

two models we also consider the PA/Bt, GMS/Bt, and Sub critical values. The critical

values are simulated using 5001 repetitions (for each original sample repetition).20 The

GMS critical value is based on �n;bc = (0:3 ln(n))1=2; Bn;bc = (0:4 ln(n)= ln ln(n))1=2; and

" = 5=100; where bc abbreviates �basecase.�The same basecase values �n;bc; Bn;bc; and

" are used in all three models. Additional results are reported for variations of these

values. The subsample size is 20 when the sample size is 250: Results are reported for

nominal 95% CS�s. The number of simulation repetitions used to compute CP�s and

FCP�s is 5000 for all cases. This yields a simulation standard error of :0031:

The reported FCP�s are �CP corrected�by employing a critical value that yields a

20The Sum, QLR, and Max statistics use the functions S1; S2; and S3; respectively. The PA/Asy and
PA/Bt critical values are based on the asymptotic distribution and bootstrap, respectively, and likewise
for the GMS/Asy and GMS/Bt critical values. The IUF � is set to 0 because its value, provided it is
su¢ ciently small, has no e¤ect in these models. Sub denotes a (non-recentered) subsampling critical
value. The number of subsamples considered is 5001. They are drawn randomly without replacement.
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CP equal to .95 at the closest point of the identi�ed set if the CP at the closest point is

less than .95. If the CP at the closest point is greater than .95, then no CP correction

is carried out. The reason for this �asymmetric�CP correction is that CS�s may have

CP�s greater than .95 for points in the identi�ed set, even asymptotically, in the present

context and one does not want to reward over-coverage of points in the identi�ed set by

CP correcting the critical values when making comparisons of FCP�s.

9.2 Quantile Selection Model

9.2.1 Description of the Model

In this model we are interested in the conditional � -quantile of a treatment response

given the value of a covariate Xi: The results also apply to conditional quantiles of

arbitrary responses that are subject to selection. We introduce a quantile monotone

instrumental variable (QMIV) condition that is a variant of Manski and Pepper�s (2000)

Monotone Instrumental Variable (MIV) condition. (The latter applies when the pa-

rameter of interest is a conditional mean of a treatment response.) A nice feature of

the QMIV condition is that non-trivial bounds are obtained without assuming that the

support of the response variable is bounded, which is restrictive in some applications.

The nontrivial bounds result from the fact that the df�s that de�ne the quantiles are

naturally bounded between 0 and 1:

Other papers that bound quantiles using the natural bounds of df�s include Manski

(1994), Lee and Melenberg (1998), and Blundell, Gosling, Ichimura, and Meghir (2007).

The QMIV condition di¤ers from the conditions in these papers, although it is closely

related to them.21

The model set-up is quite similar to that in Manski and Pepper (2000). The obser-

vations are i.i.d. for i = 1; :::; n: Let yi(t) 2 Y be individual i�s �conjectured�response
variable given treatment t 2 T . Let Ti be the realization of the treatment for individual
i: The observed outcome variable is Yi = yi(Ti): Let Xi be a covariate whose support

21Manski (1994, pp. 149-153) establishes the worst case quantile bounds, which do not impose any
restrictions. Lee and Melenberg (1998, p. 30) and Blundell, Gosling, Ichimura, and Meghir (2007, pp.
330-331) provide quantile bounds based on the assumption of monotonicity in the selection variable
Ti (which is binary in their contexts), which is a quantile analogue of Manski and Pepper�s (2000)
monotone treatment selection condition, as well as bounds based on exclusion restrictions. In addition,
Blundell, Gosling, Ichimura, and Meghir (2007, pp. 332-333) employ a monotonicity assumption that is
close to the QMIV assumption, but their assumption is imposed on the whole conditional distribution of
yi(t) given Xi; rather than on a single conditional quantile, and they do not explicitly bound quantiles.
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contains an ordered set X . We observe Wi = (Yi; Xi): The parameter of interest, �; is

the conditional � -quantile of yi(t) given Xi = x0 for some t 2 T and some x0 2 X ; which
is denoted Qyi(t)jXi(� jx0): We assume the conditional distribution of yi(t) given Xi = x

is absolutely continuous at its � -quantile for all x 2 X :
For examples, one could have: (i) yi(t) is conjectured wages of individual i for t years

of schooling, Ti is realized years of schooling, and Xi is measured ability or wealth, (ii)

yi(t) is conjectured wages when individual i is employed, say t = 1; Xi is measured

ability or wealth, and selection occurs due to elastic labor supply, (iii) yi(t) is consumer

durable expenditures when a durable purchase is conjectured, Xi is income or non-

durable expenditures, and selection occurs because an individual may decide not to

purchase a durable, and (iv) yi(t) is some health response of individual i given treatment

t; Ti is the realized treatment, which may be non-randomized or randomized but subject

to imperfect compliance, and Xi is some characteristic of individual i; such as weight,

blood pressure, etc.

The quantile monotone IV assumption is as follows:

Assumption QMIV. The covariate Xi satis�es: for some t 2 T and all (x1; x2) 2 X 2

such that x1 � x2;

Qyi(t)jXi(� jx1) � Qyi(t)jXi(� jx2);

where � 2 (0; 1) ; X is some ordered subset of the support of Xi; and Qyi(t)jXi(� jx) is
the quantile function of yi(t) conditional on Xi = x:22

This assumption may be suitable in the applications mentioned above.

Given Assumption QMIV, we have: for (x; x0) 2 X 2 with x � x0;

� = P
�
yi(t) � Qyi(t)jXi(� jx)jXi = x

�
� P (yi(t) � �jXi = x)

= P (yi(t) � � & Ti = tjXi = x) + P (yi(t) � � & Ti 6= tjXi = x)

� P (Yi � � & Ti = tjXi = x) + P (Ti 6= tjXi = x) ; (9.1)

22The �� -quantile monotone IV� terminology follows that of Manski and Pepper (2000). Alterna-
tively, it could be called a �� -quantile monotone covariate.�
Assumption QMIV can be extended to the case where additional (non-monotone) covariates arise, say

Zi: In this case, the QMIV condition becomes Qyi(t)jZi;Xi
(� jz; x1) � Qyi(t)jZi;Xi

(� jz; x2) when x1 � x2
for all z in some subset Z of the support of Zi: Also, as in Manski and Pepper (2000), the assumption
QMIV is applicable if X is only a partially-ordered set.
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where �rst equality holds by the de�nition of the � -quantile Qyi(t)jXi(� jx); the �rst
inequality holds by Assumption QMIV, and the second inequality holds because Yi =

yi(Ti) and P (A \B) � P (B):

Analogously, for (x; x0) 2 X 2 with x � x0;

� = P
�
yi(t) � Qyi(t)jXi(� jx)jXi = x

�
� P (yi(t) � �jXi = x)

= P (yi(t) � � & Ti = tjXi = x) + P (yi(t) � � & Ti 6= tjXi = x)

� P (Yi � � & Ti = tjXi = x) ; (9.2)

where the �rst inequality holds by Assumption QMIV and the second inequality holds

because P (A) � 0:
The inequalities in (9.1) and (9.2) impose sharp bounds on �: They can be rewritten

as conditional moment inequalities:

E (1(Xi � x0)[1(Yi � �; Ti = t) + 1(Ti 6= t)� � ]jXi) � 0 a.s. and

E (1(Xi � x0)[� � 1(Yi � �; Ti = t)]jXi) � 0 a.s. (9.3)

For the purposes of the Monte Carlo simulations, we consider the following data

generating process (DGP):

yi(1) = �(Xi) + � (Xi)ui; where @� (x) =@x � 0 and � (x) � 0;
Ti = 1f' (Xi) + "i � 0g; where @' (x) =@x � 0;
Xi � Unif [0; 2]; ("i; ui) � N(0; I2); Xi ? ("i; ui);
Yi = yi(Ti); and t = 1: (9.4)

The variable yi(0) is irrelevant (because Yi enters the moment inequalities in (9.3) only

through 1(Yi � �; Ti = t)) and, hence, is left unde�ned.

Under the DGP above, Xi satis�es the QMIV assumption for any � 2 (0; 1) : We
consider the median: � = 0:5: We focus on the conditional median of yi(1) given Xi =

1:5; i.e., � = Qyi(1)jXi(0:5j1:5) and x0 = 1:5:
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Some algebra shows that the conditional moment inequalities in (9.3) imply:

� � �(x) := �(x) + � (x) ��1
�
1� [2� (' (x))]�1

�
for x � 1:5 and

� � �� (x) := �(x) + � (x) ��1
�
[2� (' (x))]�1

�
for x � 1:5: (9.5)

We call �(x) and �� (x) the lower and upper bound functions on �; respectively. The

identi�ed set for the quantile selection model is�
sup
x�x0

�(x); inf
x�x0

�� (x)

�
: (9.6)

The shape of the lower and upper bound functions depends on the shape of the ';

�; and � functions. We consider two speci�cations, one that yields �at bound functions

and the other that yields kinky bound functions.

Under the �at bound DGP, �(x) = 2; � (x) = 1; and ' (x) = 1 8x 2 [0; 2] : In this
case,

�(x) = 2 + ��1
�
1� [2� (1)]�1

�
for x � 1:5 and

�� (x) = 2 + ��1
�
[2� (1)]�1

�
for x � 1:5: (9.7)

Figure 1 shows the �at bound functions. The solid line is the lower bound function �(x);

and the dashed line is the upper bound function �� (x) : Note that �(x) is de�ned only

for x 2 [0; 1:5] and �� (x) only for x 2 [1:5; 1]:
Under the kinky bound DGP, �(x) = 2(x ^ 1); � (x) = x; ' (x) = x ^ 1:23 In this

case,

�(x) = 2(x ^ 1) + x � ��1
�
1� [2� (x ^ 1)]�1

�
for x � 1:5 and

�� (x) = 2 (x ^ 1) + x � ��1
�
[2� (x ^ 1)]�1

�
for x � 1:5: (9.8)

23The kinky shaped � and ' functions are the same as in the simulation example in Chernozhukov,
Lee, and Rosen (2008).
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Figure 2 shows the kinky bound functions.
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Figure 1. Flat bound functions
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Figure 2. Kinky bound functions
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9.2.2 g Functions

The g functions employed by the test statistics are indicator functions of hypercubes

in [0; 1]; i.e., intervals. It is not assumed that the researcher knows that Xi � U [0; 2]:

Hence, the regressor Xi is transformed via a general method to lie in (0; 1): This method

takes the transformed regressor to be �((Xi � Xn)=�X;n); where Xn and �X;n are the

sample mean and standard deviations of Xi and �(�) is the standard normal df. The
hypercubes have side-edge lengths (2r)�1 for r = r0; :::; r1; where r0 = 1 and the basecase

value of r1 is 7: The basecase number of hypercubes is 56: We also report results for

r1 = 5; 9; and 11; which yield 30; 90; and 132 hypercubes, respectively.

9.2.3 Simulation Results

Tables I-III report CP�s and CP-corrected FCP�s for a variety of test statistics and

critical values for a range of cases. The CP�s are for the lower endpoint of the identi�ed

interval in Tables I-III. (Appendix F of AS provides additional results for the upper

endpoints.) FCP�s are for points below the lower endpoint.24

Table I provides comparisons of di¤erent test statistics when each statistic is cou-

pled with PA/Asy and GMS/Asy critical values. Table II provides comparisons of the

24Note that the DGP is the same for FCP�s as for CP�s, just the value � that is to be covered is
di¤erent. For the lower endpoint of the identi�ed set and the �at bound, FCP�s are computed for �
equal to �(1)� 0:25� sqrt(250=n): For the lower endpoint with the kinky bound, FCP�s are computed
for � equal to �(1)� 0:58� sqrt(250=n): These points are chosen to yield similar values for the FCP�s
across the di¤erent cases considered.
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Table I. Quantile Selection Model: Basecase Test Statistic Comparisons

(a) Coverage Probabilities

Statistic: CvM/Sum CvM/QLR CvM/Max KS/Sum KS/QLR KS/Max

DGP Crit Val

Flat Bound PA/Asy .979 .979 .976 .972 .972 .970

GMS/Asy .953 .953 .951 .963 .963 .960

Kinky Bound PA/Asy .999 .999 .999 .994 .994 .994

GMS/Asy .983 .983 .983 .985 .985 .984

(b) False Coverage Probabilities (coverage probability corrected)

Flat Bound PA/Asy .51 .50 .48 .68 .67 .66

GMS/Asy .37 .37 .37 .60 .60 .59

Kinky Bound PA/Asy .65 .65 .62 .68 .68 .67

GMS/Asy .35 .35 .34 .53 .53 .52
� These results are for the lower endpoint of the identi�ed interval.

PA/Asy, PA/Bt, GMS/Asy, GMS/Bt, and Sub critical values for the CvM/Max and

KS/Max test statistics. Table III provides robustness results for the CvM/Max and

KS/Max statistics coupled with GMS/Asy critical values. The Table III results show

the degree of sensitivity of the results to (i) the sample size, n; (ii) the number of

cubes employed, as indexed by r1; (iii) the choice of (�n; Bn) for the GMS/Asy critical

values, and (iv) the value of "; upon which the variance estimator �n(�; g) depends.

Table III also reports results for con�dence intervals with nominal level .5, which yield

asymptotically half-median unbiased estimates of the lower endpoint.

Table I shows that all tests have CP�s greater than or equal to .95 with �at and kinky

bound DGP�s. The PA/Asy critical values lead to noticeably larger over-coverage than

the GMS/Asy critical values. The GMS/Asy critical values lead to CP�s that are close

to .95 with the �at bound DGP and larger than .95 with the kinky bound DGP. The

CP results are not sensitive to the choice of test statistic function: Sum, QLR, or Max.

They are only marginally sensitive to the choice of test statistic form: CvM or KS.

The FCP results of Table I show (i) a clear advantage of CvM-based CI�s over
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Table II. Quantile Selection Model: Basecase Critical Value Comparisons�

(a) Coverage Probabilities

Critical Value: PA/Asy PA/Bt GMS/Asy GMS/Bt Sub

DGP Statistic

Flat Bound CvM/Max .976 .977 .951 .950 .983

KS/Max .970 .973 .960 .959 .942

Kinky Bound CvM/Max .999 .999 .983 .982 .993

KS/Max .994 1.00 .984 .982 .950

(b) False Coverage Probabilities (coverage probability corrected)

Flat Bound CvM/Max .48 .49 .37 .36 .57

KS/Max .66 .69 .59 .57 .69

Kinky Bound CvM/Max .62 .64 .34 .33 .47

KS/Max .67 .72 .52 .50 .47
� These results are for the lower endpoint of the identi�ed interval.

KS-based CI�s, (ii) a clear advantage of GMS/Asy critical values over PA/Asy critical

values, and (iii) little di¤erence between the test statistic functions: Sum, QLR, and

Max. These results hold for both the �at and kinky bound DGP�s.

Table II compares the critical values PA/Asy, PA/Bt, GMS/Asy, GMS/Asy, and

Sub. The results show little di¤erence in terms of CP�s and FCP�s between the Asy and

Bt versions of the PA and GMS critical values in most cases. The GMS critical values

noticeably out-perform the PA critical values in terms of FCP�s. For the CvM/Max

statistic, which is the better statistic of the two considered, the GMS critical values also

noticeably out-perform the Sub critical values in terms of FCP�s.

Table III provides results for the CvM/Max and KS/Max statistics coupled with

the GMS/Asy critical values for several variations of the basecase. The table shows

that these CS�s perform quite similarly for di¤erent sample sizes, di¤erent numbers of

cubes, and a smaller constant ":25 There is some sensitivity to the magnitude of the GMS

25The � value at which the FCP�s are computed di¤ers from the lower endpoint of the identi�ed set
by a distance that depends on n�1=2: Hence, Table III suggests that the �local alternatives�that give
equal FCP�s decline with n at a rate that is slightly faster than n�1=2 over the range n = 100 to 1000:
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Table III. Quantile Selection Model with Flat Bound: Variations on the Basecase�

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Basecase (n = 250; r1 = 7; " = 5=100) .951 .960 .37 .59

n = 100 .957 .968 .40 .64

n = 500 .954 .955 .36 .58

n = 1000 .948 .948 .34 .57

r1 = 5 .949 .954 .36 .56

r1 = 9 .951 .963 .37 .61

r1 = 11 .951 .966 .37 .63

(�n; Bn) = 1=2(�n;bc; Bn;bc) .948 .954 .38 .58

(�n; Bn) = 2(�n;bc; Bn;bc) .967 .968 .38 .63

" = 1=100 .949 .957 .37 .64

� = :5 .518 .539 .03 .08

� = :5 & n = 500 .513 .531 .03 .07
� These results are for the lower endpoint of the identi�ed interval.

tuning parameters, (�n; Bn)� doubling their values increases CP�s, but halving their

values does not decrease their CP�s below .95. Across the range of cases considered the

CvM-based CS�s out perform the KS-based CS�s in terms of FCP�s and are comparable

in terms of CP�s.

The last two rows of Table III show that a CS based on � = :5 provides a good

choice for an estimator of the identi�ed set. For example, the lower endpoint estimator

based on the CvM/Max-GMS/Asy CS with � = :5 is close to being median-unbiased.

It is less than the lower bound with probability is :518 and exceeds it with probability

:482 when n = 250:

In conclusion, we �nd that the CS based on the CvM/Max statistic with the GMS/Asy

critical value performs best in the quantile selection models considered. Equally good

are the CS�s that use the Sum or QLR statistic in place of the Max statistic and the

GMS/Bt critical value in place of the GMS/Asy critical value. The CP�s and FCP�s of

the CvM/Max-GMS/Asy CS are quite good over a range of sample sizes.
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9.3 Interval Outcome Regression Model

9.3.1 Description of Model

This model has been considered by Manski and Tamer (2002, Sec. 4.5). It is a

regression model where the outcome variable Y �
i is partially observed:

Y �
i = �1 +Xi�2 + Ui; where E(UijXi) = 0 a.s., for i = 1; :::; n: (9.9)

One observes Xi and an interval [YL;i; YU;i] that contains Y �
i : YL;i = [Yi] and YU;i =

[Yi] + 1; where [x] denotes the integer part of x: Thus, Y �
i 2 [YL;i; YU;i]:

It is straightforward to see that the following conditional moment inequalities hold

in this model:

E(�1 +Xi�2 � YL;ijXi) � 0 a.s. and

E(YU;i � �1 �Xi�2jXi) � 0 a.s. (9.10)

In the simulation experiment, we take the true parameters to be (�1; �2) = (1; 1)

(without loss of generality), Xi � U [0; 1]; and Ui � N(0; 1): We consider a basecase

sample size of n = 250; as well as n = 100; 500; and 1000:

The parameter � = (�1; �2) is not identi�ed. The identi�ed set is a parallelogram

in (�1; �2) space with vertices at (:5; 1); (:5; 2); (1:5; 0); and (1:5; 1): (Appendix F of AS

provides a �gure that illustrates the identi�ed set.) By symmetry, CP�s of CS�s are the

same for the points (:5; 1) and (1:5; 1): Also, they are the same for (:5; 2) and (1:5; 0):We

focus on CP�s at the corner point (:5; 1); which is in the identi�ed set, and at points close

to (:5; 1) but outside the identi�ed set.26 The corner point (:5; 1) is of interest because

it is a point in the identi�ed set where CP�s of CS�s typically are strictly less than one.

Due to the features of the model, the CP�s of CS�s typically equal one (or essentially

equal one) at interior points, non-corner boundary points, and the corner points (:5; 2)

and (1:5; 0):

26Speci�cally, the � values outside the identi�ed set are given by �1 = 0:5 � 0:075 � (500=n)1=2 and
�2 = 1:0� 0:050� (500=n)1=2: These � values are selected so that the FCP�s of the CS�s take values in
an interesting range for all values of n considered.
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9.3.2 g Functions

The g functions employed by the test statistics are indicator functions of hypercubes

in [0; 1]: It is not assumed that the researcher knows that Xi � U [0; 1] and so the

regressor Xi is transformed via the same method as in the quantile selection model to

lie in (0; 1):

9.3.3 Simulation Results

Tables IV-VI provide results for the interval outcome regression model that are

analogous to the results in Tables I-III for the quantile selection model. In spite of

the di¤erences in the models� the former is linear and parametric with a bivariate

parameter, while the latter is nonparametric with a scalar parameter� the results are

similar.

Table IV shows that the CvM/Max statistic combined with the GMS/Asy critical

value has CP�s that are very close to the nominal level .95. Its FCP�s are noticeably lower

than those for CS�s that use the KS form or PA-based critical values. The CvM/Sum-

GMS/Asy and CvM/QLR-GMS/Asy CS�s perform equally well as the Max version.

Table V shows that the results for the Asy and Bt versions of the critical values are

quite similar for the CvM/Max-GMS CS, which is the best CS. The Sub critical value

yields substantial under-coverage for the KS/Max statistic. The Sub critical values are

dominated by the GMS critical values in terms of FCP�s.

Table VI shows that the CS�s do not exhibit much sensitivity to the sample size or

the number of cubes employed. It also shows that at the non-corner boundary point

� = (1:0; 0:5) and the corner point � = (1:5; 0); all CP�s are (essentially) equal to one.27

Lastly, Table VI shows that the lower endpoint estimator based on the CvM/Max-

GMS/Asy CS with � = :5 is close to being median-unbiased, as in the quantile selection

model. It is less than the lower bound with probability is :472 and exceeds it with

probability :528 when n = 250:

We conclude that the preferred CS for this model is of the CvM form, combined with

the Max, Sum, or QLR function, and uses a GMS critical value, either Asy or Bt.

27This is due to the fact that the CP�s at these points are linked to their CP�s at the corner point
� = (0:5; 1:0) given the linear structure of the model. If the CP is reduced at the two former points (by
reducing the critical value), the CP at the latter point is very much reduced and the CS does not have
the desired size.
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Table IV. Interval Outcome Regression Model: Basecase Test Statistic Comparisons

(a) Coverage Probabilities

Critical Statistic: CvM/Sum CvM/QLR CvM/Max KS/Sum KS/QLR KS/Max

Value

PA/Asy .990 .993 .990 .989 .990 .989

GMS/Asy .950 .950 .950 .963 .963 .963

(b) False Coverage Probabilities (coverage probability corrected)

PA/Asy .62 .66 .61 .78 .80 .78

GMS/Asy .37 .37 .37 .61 .61 .61

Table V. Interval Outcome Regression Model: Basecase Critical Value Comparisons

(a) Coverage Probabilities

Critical Value: PA/Asy PA/Bt GMS/Asy GMS/Bt Sub

Statistic

CvM/Max .990 .995 .950 .941 .963

KS/Max .989 .999 .963 .953 .890

(b) False Coverage Probabilities (coverage probability corrected)

CvM/Max .61 .69 .37 .38 .45

KS/Max .78 .96 .61 .54 .66

9.4 Entry Game Model

9.4.1 Description of the Model

This model is a complete information simultaneous game (entry model) with two

players and n i.i.d. plays of the game. We consider Nash equilibria in pure strategies.

Due to the possibility of multiple equilibria, the model is incomplete. In consequence,
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Table VI. Interval Outcome Regression Model: Variations on the Basecase

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Basecase (n = 250; r1 = 7; " = 5=100) .950 .963 .37 .61

n = 100 .949 .970 .39 .66

n = 500 .950 .956 .37 .60

n = 1000 .954 .955 .37 .60

r1 = 5 (30 cubes) .949 .961 .37 .59

r1 = 9 (90 cubes) .951 .965 .37 .63

r1 = 11 (132 cubes) .950 .968 .38 .64

(�n; Bn) = 1=2(�n;bc; Bn;bc) .944 .961 .40 .62

(�n; Bn) = 2(�n;bc; Bn;bc) .958 .973 .39 .65

" = 1=100 .946 .966 .39 .69

(�1; �2) = (1:0; 0:5) .999 .996 .91 .92

(�1; �2) = (1:5; 0:0) 1.000 .996 .99 .97

� = :5 .472 .481 .03 .08

� = :5 & n = 500 .478 .500 .03 .07

two conditional moment inequalities and two conditional moment equalities arise. An-

drews, Berry, and Jia (2004), Beresteanu, Molchanov, and Molinari (2009), Galichon

and Henry (2009b), and Ciliberto and Tamer (2009) also consider moment inequalities

and equalities in models of this sort.

We consider the case where the two players�utility/pro�ts depend linearly on vectors

of covariates, Xi:1 andXi;2; with corresponding parameters � 1 and � 2: A scalar parameter

�1 indexes the competitive e¤ect on player 1 of entry by player 2. Correspondingly, �2
indexes the competitive e¤ect on player 2 of entry by player 1.

Speci�cally, for player b = 1; 2; player b�s utility/pro�ts are given by

X 0
i;b� b + Ui;b if the other player does not enter and

X 0
i;b� b � �b + Ui;b if the other player enters, (9.11)
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where Ui;b is an idiosyncratic error known to both players, but unobserved by the

econometrician. The random variables observed by the econometrician are the co-

variates Xi;1 2 R4 and Xi;2 2 R4 and the outcome variables Yi;1 and Yi;2; where Yi;b
equals 1 if player b enters and 0 otherwise for b = 1; 2: The unknown parameters are

� = (�1; �2)
0 2 [0;1)2; and � = (� 01; � 02)0 2 R8: Let Yi = (Yi;1; Yi;2) and Xi = (X

0
i;1; X

0
i;2)

0:

The covariate vector Xi;b equals (1; Xi;b;2; Xi;b;3; X
�
i )
0 2 R4; where Xi;b;2 has a Bern(p)

distribution with p = 1=2; Xi;b;3 has a N(0; 1) distribution, X�
i has a N(0; 1) distribution

and is the same for b = 1; 2: The idiosyncratic error Ui;b has a N(0; 1) distribution. All

random variables are independent of each other. Except when speci�ed otherwise, the

equilibrium selection rule (ESR) employed is a maximum pro�t ESR (which is unknown

to the econometrician). That is, if Yi could be either (1; 0) or (0; 1) in equilibrium, then

it is (1; 0) if player 1�s monopoly pro�t exceeds that of player 2 and is (0; 1) otherwise.

We also provide some results for a �player 1 �rst�ESR in which Yi = (1; 0) whenever Yi
could be either (1; 0) or (0; 1) in equilibrium.

The moment inequality functions are

m1(Wi; �; �) = P (X 0
i;1� 1 + Ui;1 � 0; X 0

i;2� 2 � �2 + Ui;2 � 0jXi)� 1(Yi = (1; 0))
= �(X 0

i;1� 1)�(�X 0
i;2� 2 + �2)� 1(Yi = (1; 0)) and

m2(Wi; �; �) = P (X 0
i;1� 1 � �1 + Ui;1 � 0; X 0

i;2� 2 + Ui;2 � 0jXi)� 1(Yi = (0; 1));
= �(�X 0

i;1� 1 + �1)�(X
0
i;2� 2)� 1(Yi = (0; 1)): (9.12)

We have E(m1(Wi; �0; � 0)jXi) � 0 a.s., where �0 and � 0 denote the true values, because
given Xi a necessary condition for Yi = (1; 0) is X 0

i;1� 1 + Ui;1 � 0 and X 0
i;2� 2 � �2 +

Ui;2 � 0: However, this condition is not su¢ cient for Yi = (1; 0) because some sample

realizations with Yi = (0; 1) also may satisfy this condition. An analogous argument

leads to E(m2(Wi; �0; � 0)jXi) � 0 a.s.
The two moment equality functions are

m3(Wi; �; �) = 1(Yi = (1; 1))� P (X 0
i;1� 1 � �1 + Ui;1 � 0; X 0

i;2� 2 � �2 + Ui;2 � 0jXi);

= 1(Yi = (1; 1))� �(X 0
i;1� 1 � �1)�(X

0
i;2� 2 � �2); and

m4(Wi; �; �) = 1(Yi = (0; 0))� P (X 0
i;1� 1 + Ui;1 � 0; X 0

i;2� 2 + Ui;2 � 0jXi)

= 1(Yi = (0; 0))� �(�X 0
i;1� 1)�(�X 0

i;2� 2): (9.13)

We employ a preliminary estimator of � given �; as in Section 8. In particular, we
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use the probit ML estimator b�n(�) = (b�n;1(�)0;b�n;2(�)0)0 of � = (� 01; � 02)0 given � based on
the observations f(1(Yi = (0; 0)); 1(Yi = (1; 1)); Xi;1; Xi;2) : i � ng:28

The model described above is point identi�ed because � is identi�ed by the sec-

ond moment equality m4(Wi; �; �) and � is identi�ed by the �rst moment equality

m3(Wi; �; �) given that � is identi�ed. However, additional information about � and

� is provided by the moment inequalities in (9.12), which we exploit by the methods

employed here.

9.4.2 g Functions

We take the functions g to be hypercubes in R2: They are functions of the 2-vector

X�
i = (X

�0
i;1; X

�0
i;2)

0 = (X 0
i;1b�n;1(�); X 0

i;2b�n;2(�)0: The vector X�
i is transformed �rst to have

sample mean equal to zero and sample variance matrix equal to I2 (by multiplication

by the inverse of the upper-triangular Cholesky decomposition of the sample covariance

matrix of X�
i ). Then, it is transformed to lie in [0; 1]

2 by applying the standard normal

df �(�) element by element.
The hypercubes have side-edge lengths (2r)�1 for r = r0; :::; r1; where r0 = 1 and

the basecase value of r1 is 3: The basecase number of hypercubes is 56: We also report

results for r1 = 2 and 4; which yield 20 and 120 hypercubes, respectively.

9.4.3 Simulation Results

Tables VII and VIII provide results for the entry game model. Results are pro-

vided for GMS/Asy critical values only because (i) PA/Asy critical values are found to

provide identical results and (ii) bootstrap and subsampling critical values are compu-

tationally quite costly because they require computation of the bootstrap or subsample

ML estimator for each repetition of the critical value calculations.

Table VII provides CP�s and FCP�s for competitive e¤ect � values ranging from

(0; 0) to (3; 1):29 Table VII shows that the CP�s for all CS�s vary as � varies with values

ranging from :913 to :987: The QLR-based CS�s tend to have higher CP�s than the Sum-

and Max-based CS�s. The CvM/Max statistic dominates all other statistics except the

CvM/QLR statistic in terms of FCP�s. In addition, CvM/Max dominates CvM/QLR�

in most cases by a substantial margin� except for � = (2; 2) or (3; 1): Hence, CvM/Max

28See Appendix F of AS for the speci�cation of the log likelihood function and its gradient.
29The � values for which FCP�s are computed are given by �1 � :1 � sqrt(500=n) and �2 � :1 �

sqrt(500=n); where (�1; �2) is the true parameter vector.
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Table VII. Entry Game Model: Test Statistic Comparisons for Di¤erent Competitive

E¤ects Parameters (�1; �2)

(a) Coverage Probabilities

Case Statistic: CvM/Sum CvM/QLR CvM/Max KS/Sum KS/QLR KS/Max

(�1; �2) = (0; 0) .979 .972 .980 .977 .975 .985

(�1; �2) = (1; 0) .961 .980 .965 .959 .983 .972

(�1; �2) = (1; 1) .961 .985 .961 .955 .985 .962

(�1; �2) = (2; 0) .935 .982 .935 .944 .984 .952

(�1; �2) = (2; 1) .943 .974 .940 .953 .987 .947

(�1; �2) = (3; 0) .921 .975 .915 .938 .935 .984

(�1; �2) = (2; 2) .928 .942 .913 .943 .972 .922

(�1; �2) = (3; 1) .928 .950 .918 .949 .973 .932

(b) False Coverage Probabilities (coverage probability corrected)

(�1; �2) = (0; 0) .76 .99 .59 .91 .99 .83

(�1; �2) = (1; 0) .60 .99 .42 .83 .66 .99

(�1; �2) = (1; 1) .62 .96 .41 .82 .99 .58

(�1; �2) = (2; 0) .51 .83 .35 .66 .96 .47

(�1; �2) = (2; 1) .57 .57 .38 .69 .82 .44

(�1; �2) = (3; 0) .49 .41 .36 .61 .43 .64

(�1; �2) = (2; 2) .59 .34 .39 .65 .42 .49

(�1; �2) = (3; 1) .57 .27 .39 .65 .47 .44

is clearly the best statistic in terms of FCP�s. The CP�s of the CvM/Max CS are good

for many � values, but they are low for relatively large � values. For � = (3; 0); (2; 2);

and (3; 1); its CP�s are :915; :913; and :918; respectively. This is a �small� sample

e¤ect� for n = 1000; this CS has CP�s for these three cases equal to :934; :951; and

:952; respectively.

Table VIII provides results for variations on the basecase � value of (1; 1) for the

CvM/Max and KS/Max statistics combined with GMS/Asy critical values. The CP�s

and FCP�s of the CvM/Max CS increase with n: They are not sensitive to the number of

hypercubes. There is some sensitivity to the magnitude of (�n; Bn); but it is relatively

small. There is noticeable sensitivity of the CP of the KS/Max CS to "; but less so for
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Table VIII. Entry Game Model: Variations on the Basecase (�1; �2) = (1; 1)

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Basecase (n = 500; r1 = 3; " = 5=100) .961 .962 .41 .58
n = 250 .948 .963 .39 .56

n = 1000 .979 .968 .52 .65

r1 = 2 (20 cubes) .962 .956 .41 .55

r1 = 4 (120 cubes) .962 .964 .42 .59

(�n; Bn) = 1=2(�n;bc; Bn;bc) .954 .959 .39 .57

(�n; Bn) = 2(�n;bc; Bn;bc) .967 .962 .42 .58

" = 1=100 .926 .873 .32 .66

Reg�r Variances = 2 .964 .968 .54 .71

Reg�r Variances = 1/2 .963 .966 .29 .43

Player 1 First Eq Sel Rule .955 .957 .39 .57

� = :5 .610 .620 .05 .13

� = :5 & n = 1000 .695 .650 .06 .16

the CvM/Max CS. There is relatively little sensitivity of CP�s to changes in the DGP

via changes in the regressor variances (of Xi;b;2 and Xi;b;3 for b = 1; 2) or a change in the

equilibrium selection rule to player 1 �rst.

The last two rows of Table VIII provide results for estimators of the identi�ed set

based on CS�s with � = :5: The two CS�s considered are half-median unbiased. For

example, the CvM/Max-GMS/Asy CS with � = :5 covers the true value with probability

:610; which exceeds :5; when n = 500:

In conclusion, in the entry game model we prefer the CvM/Max-GMS/Asy CS over

other CS�s considered because of its the clear superiority in terms of FCP�s even though

it under-covers somewhat for large values of the competitive e¤ects vector �:
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10 Appendix A

In this Appendix, we prove Theorems 1 and 2(a). Proofs of the other results stated

in the paper are given in Appendix C in AS.

The following Lemma is used in the proofs of Theorems 1, 2, 3, and 4. It establishes

a functional CLT and uniform LLN for certain independent non-identically distributed

empirical processes.

Let h2 denote a k� k-matrix-valued covariance kernel on G �G (such as an element
of H2):

De�nition SubSeq(h2). SubSeq(h2) is the set of subsequences f(�an ; Fan) : n � 1g;
where fan : n � 1g is some subsequence of fng; for which

(i) lim
n!1

sup
g;g�2G

jjh2;Fan (�an ; g; g
�)� h2(g; g

�)jj = 0;

(ii) �an 2 �; (iii) fWi : i � 1g are i.i.d. under Fan ; (iv) V arFan (mj(Wi; �an)) > 0 for j =

1; :::; k; for n � 1; (v) supn�1EFan jmj(Wi; �an)=�Fan ;j(�an)j2+� < 1 for j = 1; :::; k; for

some � > 0; and (vi) Assumption M holds with Fan in place of F and Fn in Assumptions

M(b) and M(c), respectively.

The sample paths of the Gaussian process �h2(�); which is de�ned in (4.2) and appears
in the following Lemma, are bounded and uniformly �-continuous a.s. The pseudo-metric

� on G is a pseudo-metric commonly used in the empirical process literature:

�2(g; g�) = tr (h2(g; g)� h2(g; g
�)� h2(g

�; g) + h2(g
�; g�)) : (10.1)

For h2(�; �) = h2;F (�; �; �); where (�; F ) 2 F ; this metric can be written equivalently as

�2(g; g�) = EF jjD�1=2
F (�)[em(Wi; �; g)� em(Wi; �; g

�)]jj2; whereem(Wi; �; g) = m(Wi; �; g)� EFm(Wi; �; g): (10.2)

Lemma A1. For any subsequence f(�an ; Fan) : n � 1g 2 SubSeq(h2);
(a) �an;Fan (�an ; �)) �h2 (�) as n!1 (as processes indexed by g 2 G), and
(b) supg;g�2G jjbh2;an;Fan (�an ; g; g�)� h2(g; g

�)jj !p 0 as n!1:

Comments. 1. The proof of Lemma A1 is given in Appendix E of AS. Part (a) is
proved by establishing the manageability of fm(Wi; �an ; g)�EFanm(Wi; �an ; g) : g 2 Gg
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and by establishing a functional central limit theorem (FCLT) for Rk-valued i.n.i.d.

empirical processes with the pseudo-metric � by using the FCLT in Pollard (1990, Thm.

10.2) for real-valued empirical processes. Part (b) is proved using a maximal inequality

given in Pollard (1990, (7.10)).

2. To obtain uniform asymptotic coverage probability results for CS�s, Lemma A1 is
applied with (�an ; Fan) 2 F for all n � 1 and h2 2 H2: In this case, conditions (ii)-(vi) in

the de�nition of SubSeq(h2) hold automatically by the de�nition of F : To obtain power
results under �xed and local alternatives, Lemma A1 is applied with (�an ; Fan) =2 F for

all n � 1 and h2 may or may not be in H2:

Proof of Theorem 1. First, we prove part (a). Let f(�n; Fn) 2 F : n � 1g be a
sequence for which h2;Fn(�n) 2 H2;cpt for all n � 1 and the term in square brackets

in Theorem 1(a) evaluated at (�n; Fn) di¤ers from its supremum over (�; F ) 2 F with

h2;F (�) 2 H2;cpt by �n or less, where 0 < �n ! 0 as n ! 1: Such a sequence always

exists. To prove part (a), it su¢ ces to show that part (a) holds with the supremum

deleted and with (�; F ) replaced by (�n; Fn):

By the compactness ofH2;cpt; given any subsequence fun : n � 1g of fng; there exists
a subsubsequence fan : n � 1g for which d(h2;Fan (�an); h2;0) ! 0 as n ! 1 for some

�0 2 �; where d is de�ned in (5.6), and some h2;0 2 H2;cpt: This and (�an ; Fan) 2 F for

all n � 1 implies that f(�an ; Fan) : n � 1g 2 SubSeq(h2):

Now, by Lemma A1, we have 
�an;Fan (�an ; �)bh2;an;Fan (�an ; �)

!
)
 
�h2;0(�)
h2;0(�)

!
as n!1 (10.3)

as stochastic processes on G; where bh2;an;Fan (�an ; g) = bh2;an;Fan (�an ; g; g) and h2;0(g) =
h2;0(g; g):

Given this, by the almost sure representation theorem, e.g., see Pollard (1990,

Thm. 9.4), there exists a probability space and random quantities ~�an(�); ~h2;an(�);
~�0(�); and ~h2(�) de�ned on it such that (i) (~�an(�); ~h2;an(�)) has the same distribution as
(�an;Fan (�an ; �);bh2;an;Fan (�an ; �)); (ii) (~�0(�); ~h2(�)) has the same distribution as (�h2;0(�);
h2;0(�)); and

(iii) sup
g2G







 

~�an(g)
~h2;an(g)

!
�
 
~�0(g)
~h2(g)

!




! 0 as n!1 a.s. (10.4)
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Because h2;0(�) is deterministic, condition (ii) implies that ~h2(�) = h2;0(�) a.s.
De�ne

~h"2;an(�) = ~h2;an(�) + " �Diag(~h2;an(1k));

~Tan =

Z
S(~�an(g) + h1;an;Fan (�an ; g);

~h"2;an(g))dQ(g);

h"2;0(�) = h2;0(�) + "Ik; and

~Tan;0 =

Z
S
�
~�0(g) + h1;an;Fan (�an ; g); h

"
2;0(g)

�
dQ(g): (10.5)

By construction, ~Tan and Tan(�an) have the same distribution, and ~Tan;0 and

T (han;Fan (�an)) have the same distribution for all n � 1:
Hence, to prove part (a), it su¢ ces to show that

A = lim sup
n!1

h
PFan (

~Tan > xhan;Fan (�an ))� P ( ~Tan;0 + � > xhan;Fan (�an ))
i
� 0: (10.6)

Below we show that
~Tan � ~Tan;0 ! 0 as n!1 a.s. (10.7)

Let

e�n = 1( ~Tan;0 + ( ~Tan � ~Tan;0) > xhan;Fan (�an ))� 1( ~Tan;0 + � > xhan;Fan (�an ))

= e�+
n � e��

n ; where (10.8)e�+
n = maxfe�n; 0g 2 [0; 1] and e��

n = maxf�e�n; 0g 2 [0; 1]:

By (10.7) and � > 0; limn!1 e�+
n = 0 a.s. Hence, by the BCT,

lim
n!1

EFan
e�+
n = 0 and

A =lim sup
n!1

EFan
e�n = lim sup

n!1
EFan

e�+
n � lim inf

n!1
EFan

e��
n

= �lim inf
n!1

EFan
e��
n � 0: (10.9)

Hence, (10.6) holds and the proof of part (a) is complete, except for (10.7).

To prove part (b), analogous results to (10.6), (10.8), and (10.9) hold by analogous

arguments.

It remains to show (10.7). We do so by �xing a sample path ! and using the bounded
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convergence theorem (because ~Tan and ~Tan;0 are both integrals over g 2 G with respect
to the measure Q): Let ~
 be the collection of all ! 2 
 such that (~�an(g); ~h2;an(g))(!)
converges to (~�0(g); h2;0(g))(!) uniformly over g 2 G as n!1 and supg2G k~�0(g)(!)k <
1: By (10.4) and ~h2(�) = h2;0(�) a.s., P (~
) = 1: Consider a �xed ! 2 ~
: By Assumption
S2 and (10.4), for all g 2 G;

sup
�2Rp+�f0gv

���S �~�an(g)(!) + �; ~h"2;an(g)(!)
�
� S

�
~�0(g)(!) + �; h"2;0(g)

����! 0 (10.10)

as n!1 a.s. Thus, for all g 2 G and all ! 2 e
;
S
�
~�an(g)(!) + h1;an;Fan (�an ; g);

~h"2;an(g)(!)
�

�S
�
~�0(g)(!) + h1;an;Fan (�an ; g); h

"
2;0(g)

�
! 0 as n!1: (10.11)

Next, we show that for �xed ! 2 ~
 the �rst summand on the left-hand side of (10.11)
is bounded by a constant. Let 0 < � < 1: By (10.4), there exists N <1 such that for

all n � N;

sup
g2G

k~�an(g)(!)� ~�0(g)(!)k < � and



Diag(~h2;an(1k))(!)� Ik




 < � (10.12)

using the fact that Diag(h2;0(1k)) = Ik by construction. Let B�(!) = supg2G jj~�0(g)(!)jj
+ �: Then, for all n � N;

sup
g2G

k~�an(g)(!)k � B�(!) <1: (10.13)

First, consider the case where no moment equalities are present, i.e., v = 0 and

k = p: In this case, for n � N; we have: for all g 2 G;

0 � S(~�an(g)(!) + h1;an;Fan (�an ; g);
~h"2;an(g)(!))

� S(~�an(g)(!); ~h
"
2;an(g)(!))

� S(�B�(!)1p; " �Diag(~h2;an(1p)))
� S(�B�(!)1p; "(1� �)Ip); (10.14)

where the �rst inequality holds by Assumption S1(c), the second inequality holds by
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Assumption S1(b) and h1;an;Fan (�an ; g) � 0p (which holds because (�an ; Fan) 2 F); the
third inequality holds by Assumption S1(b) and (10.13) as well as by Assumption S1(e)

and the de�nition of ~h"2;an(g)(!) in (10.5), and the last inequality holds by Assumption

S1(e) and (10.12). For �xed ! 2 ~
; the constant S(�B�(!)1p; "(1 � �)Ip) bounds the

�rst summand on the left-hand side of (10.11) for all n � N:

For the case where v > 0; the third inequality in (10.14) needs to be altered because

S(m;�) is not assumed to be non-increasing in mII ; where m = (m0
I ;m

0
II)

0: In this case,

for the bound with respect to the last v elements of ~�an(g)(!); denoted by ~�an;II(g)(!);

we use the continuity condition on S(m;�); i.e., Assumption S1(d), which yields uni-

form continuity of S(�B�(!)1p;mII ; "(1 � �)Ik) over the compact set fmII : jjmII jj �
B�(!) <1g and delivers a �nite bound because supg2G;n�1 jj~�an;II(g)(!)jj � B�(!):

By an analogous but simpler argument, for �xed ! 2 ~
; the second summand on the
left-hand side of (10.11) is bounded by a constant.

Hence, the conditions of the BCT hold and for �xed ! 2 ~
; ~Tan(!) � ~Tan;0(!) ! 0

as n!1: Thus, (10.7) holds and the proof is complete. �

For GMS CS�s, Theorem 2(a) follows immediately from the following three Lemmas.

The PA critical value is a GMS critical value with 'n(x) = 0 for all x 2 R and this

function 'n(x) satis�es Assumption GMS1 (though not Assumption GMS2(b)). Hence,

Theorem 2(a) for GMS CS�s covers PA CS�s.

Lemma A2. Suppose Assumptions M, S1, and S2 hold. Then, for every compact
subset H2;cpt of H2 and all � > 0;

lim sup
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

PF (Tn(�) > c0(hn;F (�); 1� �) + �) � �:

Lemma A3. Suppose Assumptions M, S1, and GMS1 hold. Then, for every compact
subset H2;cpt of H2;

lim
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

PF

�
c('n(�);

bh2;n(�); 1� �) < c(h1;n;F (�);bh2;n(�); 1� �)
�
= 0:

Lemma A4. Suppose Assumptions M, S1, and S2 hold. Then, for every compact
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subset H2;cpt of H2 and for all 0 < � < � (where � is as in the de�nition of c(h; 1��)),

lim
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

PF

�
c(h1;n;F (�);bh2;n(�); 1� �)<c0(h1;n;F (�); h2;F (�); 1� �) + �

�
=0:

The following Lemma is used in the proof of Lemma A4.

Lemma A5. Suppose Assumptions M, S1, and S2 hold. Let fh2;n : n � 1g and
fh�2;n : n � 1g be any two sequences of k � k-valued covariance kernels on G � G such
that d(h2;n; h�2;n)! 0 and d(h2;n; h2;0)! 0 for some k� k-valued covariance kernel h2;0
on G � G: Then, for all �1 > 0 and all � > 0;

lim inf
n!1

inf
h12H1

�
c0(h1; h2;n; 1� �+ �1) + � � c0(h1; h

�
2;n; 1� �)

�
� 0:

Proof of Lemma A2. For all � > 0; we have

lim sup
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

PF (Tn(�) > c0(hn;F (�); 1� �) + �)

� lim sup
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

[PF (Tn(�) > c0(hn;F (�); 1� �) + �)

� P (T (hn;F (�)) > c0(hn;F (�); 1� �))]

+lim sup
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

P (T (hn;F (�)) > c0(hn;F (�); 1� �))

� 0 + �; (10.15)

where the second inequality holds by Theorem 1(a) with xhn;F (�) = c0(hn;F (�); 1��)+ �
and by the de�nition of the quantile c0(hn;F (�); 1� �) of T (hn;F (�)): �

Proof of Lemma A3. Let f(�n; Fn) 2 F : n � 1g be a sequence for which h2;Fn(�n) 2
H2;cpt and the probability in the statement of the Lemma evaluated at (�n; Fn) di¤ers

from its supremum over (�; F ) 2 F (with h2;F (�) 2 H2;cpt) by �n or less, where 0 < �n !
0 as n!1: Such a sequence always exists. It su¢ ces to show

lim
n!1

PFn

�
c('n(�n);

bh2;n(�n); 1� �) < c(h1;n;Fn(�n);bh2;n(�n); 1� �)
�
= 0: (10.16)

By the compactness of H2;cpt; given any subsequence fun : n � 1g of fng; there
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exists a subsubsequence fan : n � 1g for which d(h2;Fan (�an); h2;0) ! 0 as n ! 1 for

some h2;0 2 H2;cpt: This and (�an ; Fan) 2 F for all n � 1 implies that f(�an ; Fan) : n �
1g 2 SubSeq(h2): Hence, it su¢ ces to show

lim
n!1

PFan

�
c('an(�an);

bh2;an(�an); 1� �) < c(h1;an;Fan (�an);
bh2;an(�an); 1� �)

�
= 0

(10.17)

for f(�an ; Fan) : n � 1g 2 SubSeq(h2):
By Lemma A1(a), for f(�an ; Fan) : n � 1g 2 SubSeq(h2); we have

�an;Fan (�an ; �)) �h2;0(�) as n!1: (10.18)

We now show that for all sequences �n !1 as n!1; we have

lim
n!1

PFan

 
sup

g2G;j�p

j�an;Fan ;j(�an ; g)j > �an

!
= 0; (10.19)

where �an;Fan ;j(�an ; g) denotes the jth element of �an;Fan (�an ; g):We show this by noting

that (10.18) and the continuous mapping theorem give: 8� > 0;

lim
n!1

PFan

 
sup

g2G;j�p

j�an;Fan ;j(�an ; g)j > �

!
= P

 
sup

g2G;j�p

j�h2;0;j(g)j > �

!
; (10.20)

where �h2;0;j(g) denotes the jth element of �h2;0(g): In addition, the sample paths of

�h2;0;j(�) are bounded a.s., which yields 1
�
sup

g2G;j�p
j�h2;0;j(g)j > �

�
! 0 as � !1 a.s.

Hence, by the bounded convergence theorem,

lim
�!1

P

 
sup

g2G;j�p

j�h2;0;j(g)j > �

!
= 0: (10.21)

Equations (10.20) and (10.21) imply (10.19).

Next, we have

�an(�an ; g) = ��1an

�
D
�1=2
an (�an ; g)D

1=2
Fan
(�an)

�
a1=2n D

�1=2
Fan

(�an)man(�an ; g)

= ��1anDiag
�1=2(h2;an;Fan (�an ; g))Diag

1=2(h2;an(�an ; g)) (10.22)

�Diag�1=2(h2;an(�an ; g))
�
�an;Fan (�an ; g) + h1;an;Fan (�an ; g)

�
= ��1an ((Ik + op(1))Diag

�1=2(h2;an(�an ; g))
�
�an;Fan (�an ; g) + h1;an;Fan (�an ; g)

�
;
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where the second equality holds by the de�nitions of h2;an;Fan (�an ; g); �an;Fan (�an ; g); and

h1;an;Fan (�an ; g) in (5.2) and Dn(�; g) = Diag(�n(�; g)) and the third equality holds by

Lemma A1(b) using the fact that h2;an;Fan (�an ; g) is a function of
bh2;an;Fan (�an ; g); see

(5.2), and De�nition SubSeq(h2).

Let �n = (�n=� � Bn)=2: By Assumption GMS1(b), �n = (�n � �Bn)=2� ! 1 as

n!1: Also,

(�n=� � �n)�Bn = (�n=� +Bn)=2�Bn = �n !1 as n!1: (10.23)

For �n de�ned in this way, we have

PFan

�
c('an(�an);

bh2;an(�an); 1� �) < c(h1;an;Fan (�an);
bh2;an(�an); 1� �)

�
� PFan

�
'an;j(�an ; g) > h1;an;Fan ;j(�an ; g) for some j � p; some g 2 G

�
� PFan

 
�an;j(�an ; g) > 1 & h1;an;Fan ;j(�an ; g) < h2;an;Fan ;j(�an ; g)

1=2Ban

for some j � p; some g2 G

!

� PFan

 
(1 + op(1))[h

�1=2
2;an;Fan ;j

(�an ; g)�an;Fan ;j(�an ; g) + h
�1=2
2;an;Fan ;j

(�an ; g)h1;an;Fan ;j(�an ; g)]

> �an & h1;an;Fan ;j(�an ; g)<h2;an;Fan ;j(�an ; g)
1=2Ban for some j � p; some g 2 G

!

� PFan

 
(1 + op(1))[�an + h

�1=2
2;an;Fan ;j

(�an ; g)h1;an;Fan ;j(�an ; g)] > �an &

h
�1=2
2;an;Fan

(�an ; g)h1;an;Fan ;j(�an ; g) < Ban for some j � p; some g 2 G

!

+PFan

 
sup

g2G;j�p

jh�1=22;an;Fan ;j
(�an ; g)�an;Fan ;j(�an ; g)j > �an

!

� PFan

 
h
�1=2
2;an;Fan

(�an ; g)h1;an;Fan ;j(�an ; g) > �an=� � �an &

h
�1=2
2;an;Fan

(�an ; g)h1;an;Fan ;j(�an ; g) < Banfor some j � p; some g 2 G

!
+ o(1)

= o(1); (10.24)

where the �rst inequality holds because c0(h; 1��+�) and c(h; 1��) are non-increasing
in the �rst p elements of h1 by Assumption S1(b), the second inequality holds because

(�an ; Fan) 2 F implies that h1;an;Fan ;j(�an ; g) � 0 8j � p; 8g 2 G and Assumption
GMS1(a) implies that (i) 'an;j(�an ; g) = 0 � h1;an;Fan (�an ; g) whenever �an;j(�an ; g) � 1
and (ii) 'an;j(�an ; g) � h2;an;Fan ;j(�an ; g)

1=2Ban a.s. 8j � p; 8g 2 G; the third inequality
holds by (10.22), the fourth inequality holds because P (A) � P (A \ B) + P (Bc); the

last inequality holds with probability that goes to one as n ! 1 (wp! 1) because

�an=(1 + op(1)) > �an=� wp! 1 for � > 1 and using (10.19) with �an replaced by
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"1=2�an=2 because h
�1=2
2;an;Fan ;j

(�an ; g) � "�1=2h
�1=2
2;j (1k; 1k)(1 + op(1)) = "�1=2(1 + op(1)) by

Lemma A1(b) and (5.2), and the equality holds using (10.23).

Hence, (10.17) holds and the Lemma is proved. �

Proof of Lemma A4. The result of the Lemma is equivalent to

lim
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

PF

�
c0(h1;n;F (�);bh2;n(�); 1� �+ �)

< c0(h1;n;F (�); h2;F (�);1� �)� "�
�
= 0; (10.25)

where "� = � � � > 0: By considering a sequence f(�n; Fn) 2 F : n � 1g that is within
�n ! 0 of the supremum in (10.25) for all n � 1; it su¢ ces to show that

lim
n!1

PFn

�
c0(h1;n;Fn(�n);bh2;n(�n); 1� �+ �)

< c0(h1;n;Fn(�n); h2;Fn(�n);1� �)� "�
�
= 0: (10.26)

Given any subsequence fung of fng; there exists a subsubsequence fang such that
d(h2;Fan (�an); h2;0) ! 0 as n ! 1 for some h2;0 2 H2;cpt because h2;Fn(�n) 2 H2;cpt:

Hence, it su¢ ces to show that (10.26) holds with an in place of n:

The condition d(h2;Fan (�an); h2;0) ! 0 and (�n; Fn) 2 F for all n � 1 imply that

f(�an ; Fan) : n � 1g 2 SubSeq(h2;0): Hence, by Lemma A1(b), d(bh2;an;Fan (�an); h2;0)!p

0 as n!1: Furthermore,

bh2;an(�an ; g; g�)
= bD�1=2

an (�an)b�an(�an ; g; g�) bD�1=2
an (�an) (10.27)

= Diag(bh2;an;Fan (�an ; 1k))�1=2bh2;an;Fan (�an ; g; g�)Diag(bh2;an;Fan (�an ; 1k))�1=2:
Hence, d(bh2;an(�an); h2;0) !p 0 as n ! 1: Given this, using the almost sure rep-

resentation theorem as above, we can construct f~h2;an(g; g�) : g; g� 2 Gg such that
d(~h2;an ; h2;0) ! 0 as n ! 1 a.s. and ~h2;an and bh2;an(�an) have the same distribution
under (�an ; Fan) for all n � 1:
For �xed ! in the underlying probability space such that d(~h2;an(�; �)(!); h2;0)! 0 as

n!1; Lemma A5 with h2;n = ~h2;an(!) (= ~h2;an(�; �)(!)); h�2;n = h2;Fan (�an); h2;0 = h2;0;
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and �1 = � gives: for all � > 0;

lim inf
n!1

h
c0(h1;an;Fan (�an);

~h2;an(!); 1� �+ �) + �

�c0(h1;an;Fan (�an); h2;Fan (�an);1� �)
i
� 0: (10.28)

Equation (10.28) holds a.s. This implies that (10.26) holds with an in place of n because

(i) ~h2;an and bh2;an(�an) have the same distribution for all n � 1 and (ii) for any sequence
of sets fAn : n � 1g; P (An ev:) (= P ([1m=1 \1k=m Ak)) = 1 (where ev. abbreviates

eventually) implies that P (An)! 1 as n!1: �

Proof of Lemma A5. Below we show that for fh2;ng and fh�2;ng as in the statement
of the Lemma, for all constants xh1;h�2;n 2 R that may depend on h1 2 H1 and h�2;n; and

all � > 0;

lim sup
n!1

sup
h12H1

h
P (T (h1; h2;n) � xh1;h�2;n)� P (T (h1; h

�
2;n) � xh1;h�2;n + �)

i
� 0: (10.29)

Note that this result is similar to those of Theorem 1.

We use (10.29) to obtain: for all � > 0 and �1 > 0;

lim sup
n!1

sup
h12H1

P (T (h1; h2;n) � c0(h1; h
�
2;n; 1� �)� �)

� lim sup
n!1

sup
h12H1

�
P (T (h1; h2;n) � c0(h1; h

�
2;n; 1� �)� �)

�P (T (h1; h�2;n) � c0(h1; h
�
2;n; 1� �)� �=2)

�
+lim sup

n!1
sup
h12H1

P (T (h1; h
�
2;n) � c0(h1; h

�
2;n; 1� �)� �=2)

� 0 + 1� �

< 1� �+ �1; (10.30)

where the second inequality holds by (10.29) with �=2 in place of � and xh1;h�2;n =

c0(h1; h
�
2;n; 1� �)� � and by the de�nition of the 1� � quantile of T (h1; h�2;n):

We now use (10.30) to show by contradiction that the result of the Lemma holds.

Suppose the result of the Lemma does not hold. Then, there exist constants � > 0 and

"� > 0; a subsequence fan : n � 1g; and a sequence fh1;an 2 H1 : n � 1g such that

lim
n!1

�
c0(h1;an ; h2;an ; 1� �+ �1) + � � c0(h1;an ; h

�
2;an ; 1� �)

�
� �"� < 0: (10.31)
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Using this and (10.30), we have

lim sup
n!1

P (T (h1;an ; h2;an) � c0(h1;an ; h2;an ; 1� �+ �1) + �)

� lim sup
n!1

P (T (h1;an ; h2;an) � c0(h1;an ; h
�
2;an ; 1� �)� "�=2)

� lim sup
n!1

sup
h12H1

P (T (h1; h2;an) � c0(h1; h
�
2;an ; 1� �)� "�=2)

< 1� �+ �1; (10.32)

where the �rst inequality holds by (10.31) and the last inequality holds by (10.30) with

"�=2 in place of �:

Equation (10.32) is a contradiction to (10.31) because the left-hand side quantity in

(10.32) (without the lim supn!1) is greater than or equal to 1� �+ �1 for all n � 1 by
the de�nition of the 1��+ �1 quantile c0(h1;an ; h2;an ; 1��+ �1) of T (h1;an ; h2;an): This
completes the proof of the Lemma except for establishing (10.29).

To establish (10.29), we write

lim sup
n!1

sup
h12H1

h
P (T (h1; h2;n) � xh1;h�2;n)� P (T (h1; h

�
2;n) � xh1;h�2;n + �)

i
(10.33)

� lim sup
n!1

sup
h12H1

h
P (T (h1; h2;n) � xh1;h�2;n)� P (T (h1; h2;0) � xh1;h�2;n + �=2)

i
+lim sup

n!1
sup
h12H1

h
P (T (h1; h2;0) � xh1;h�2;n + �=2)� P (T (h1; h

�
2;n) � xh1;h�2;n + �)

i
:

The �rst summand on the right-hand side of (10.33) is less than or equal to 0 by the

same argument as used to prove Theorem 1(a) with �an;Fan (�an ; �) replaced by �h2;an (�)
in (10.3), where �h2;an (�) is de�ned in (4.2), because d(h2;an ; h2;0) ! 0 as n ! 1
implies that the Gaussian processes �h2;an (�) ) �h2;0(�) as n ! 1: This argument uses

Assumption S2.

Similarly, the second summand on the right-hand side of (10.33) is less than or equal

to 0 by an argument analogous to that for Theorem 1(b). Hence, (10.29) is established,

which completes the proof. �
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