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Abstract

Risk compensation can undermine the ability of partially-effective vaccines to curb epi-

demics: Vaccinated agents may optimally choose to engage in more risky interactions

and, as a result, may increase everyone’s infection probability. We show that—in contrast

to the prediction of standard models—things can be worse than that: Free and perfectly

safe but only partially effective vaccines can reduce everyone’s welfare, and hence fail to

satisfy—in a strong sense—the fundamental principle of “first, do no harm.” Our main

departure from standard economic epidemiological models is that we allow agents to

strategically choose their partners, which we show creates strategic complementarities

in risky interactions. As a result, the introduction of a partially-effective vaccine can lead

to a much denser interaction structure—whose negative welfare effects overwhelm the

beneficial direct welfare effects of this intervention.
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1 Introduction

Finding a safe and effective Covid-19 vaccine is an urgent priority. More than 50 different

such vaccines are being developed, and billions of dollars are already being spent to produce

the most promising ones at large scale (e.g., Aten 2020). However, in the spirit of the motto

“hope for the best, plan for the worst,” we have to plan for the possibility that none of these

vaccines will be perfectly effective. In this case, we would likely to be tempted to produce

and distribute the best safe vaccine that we can find. Would this necessarily be a good idea?

In this paper, we show that a free and perfectly safe but only partially-effective vaccine

can reduce everyone’s welfare, and hence fail to satisfy—in a strong sense—the fundamental

principle of “first, do no harm.” In particular, we uncover a novel mechanism that suggests

that delivering a vaccine whose effectiveness is below a certain threshold is not necessarily

a good idea, and it underscores the importance of developing models that help practitioners

estimate this threshold in particular applications.

A partially-effective vaccine has two opposing effects on welfare. On the one hand, it

allows agents to have more risky interactions, making them better off. On the other hand, it

can increase the probability that agents become infected (as a consequence of the increase in

risky interactions), making them worse off. We show that—in contrast to the prediction of

standard models—the second effect can uniformly dominate the first.

Our key departure from the standard economic epidemiological models (e.g., Kremer

1996 and Fenichel et al. 2011) is that we allow agents to strategically choose their partners—

instead of only allowing each agent to choose her number of partners, and then having

matches occur uniformly at random. This departure is crucial because it uncovers the existence—

even in low-risk settings—of strategic complementarities in consensual risky partnerships,

which are central to the mechanism that we uncover in this paper.

Let us illustrate the intuition behind the existence of these strategic complementarities

with the simplest example. Suppose that there are two pairs of agents having risky part-

nerships to begin with: Ann and Bob are one pair, and Chloé and Dane the other (Network

1 in Figure 1). Each individual has a fixed probability of contracting a given virus inde-

pendently of her partnerships, and an infected individual transmits the virus in any given

partnership with probability p. Infection and transmission are independent across agents

and partnerships, respectively. To build intuition, consider first the extreme case in which

each partnership transmits the virus with probability one—that is, p = 1. The partnership

between Chloé and Bob is risky for each of them, since under some states of the world only
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Figure 1: Two illustrative partnership networks.

one of them is infected, and hence their partnership would infect the other. We claim that

Ann and Dane’s partnership (that is, a switch from Network 1 to Network 2 in Figure 1) in-

creases Chloé and Bob’s incentives to become partners (as long as their initial partnerships

are sufficiently valuable so that neither of them wants to become isolated instead). Indeed,

in Network 2, the states of the world where one catches the virus are the same as the states

of the world where the other one catches it, so their partnership is risk free. Remarkably, the

same is true for all positive values of the transmission probability p: Ann and Dane’s partner-

ship decreases the probability that only one of Chloé and Bob is infected, hence increasing

their incentives to become partners.

The introduction of a partially-effective vaccine has obvious positive direct welfare ef-

fects: Fixing the partnership network, it reduces everyone’s probability of becoming in-

fected, and hence makes everyone better off. But the introduction of a partially-effective vac-

cine can also have subtle negative indirect welfare effects: By reducing the (ceteris-paribus)

cost of each risky interaction, it can destabilize the existing partnership network. We show

that—because of the strategic complementarities in risky interactions illustrated above—the

best stable partnership network after this intervention can be much denser than before such

an intervention, and—as a consequence of the negative externalities of risky interactions—

be worse for everyone.

More generally, our analysis highlights how relatively high infection transmission probabili-

ties can play a beneficial role by preventing deviations from the efficient social structure. As

a result, the beneficial effects of partially-effective vaccines—in terms of decreased infection

probability given any social structure—must be traded off against the welfare effects of the

change in social structure that they can unleash.

In the context of a general game with externalities, Hoy and Polborn (2015) show that the

combination of strategic complementarities and negative externalities implies that a safety

technology improvement can be welfare reducing. From this perspective, the contribution of

this paper is to (i) show how strategic complementarities in consensual risky partnerships
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arise naturally when the agents strategically choose their partners, and (ii) illustrate how

this can imply that a free and perfectly-safe but only partially-effective vaccine can reduce

everyone’s welfare.

Many social scientists have long realized that social networks play a central role in epi-

demiological processes (see for example Jacquez et al. 1988, Barnard 1993 and Friedman et al.

2006). Standard economic epidemiological models, however, abstract away from the struc-

ture of social interactions, so they are unable to capture the mechanism that we illustrate in

this paper. Indeed, a free and perfectly safe but only partially effective vaccine necessarily

makes everyone better off in these models. Kremer (1996, page 555) explains the logic as

follows:1

Adoption of an imperfectly effective vaccine could not cause the number of part-

ners to increase so much that [the per-interaction probability of infection] in-

creased, because people would not be willing to have more partners if the prob-

ability of infection from an additional partner increased.

Hence, in these canonical models, everyone is better off after the adoption of a free and

perfectly safe but only partially-effective vaccine. Indeed, since such a vaccine decreases the

per-interaction probability of infection, everyone can choose the same amount of interaction

as before its introduction, and in this way obtain the same benefits from her interactions with

a reduced probability of infection. In order to clarify this point, and to highlight the role that

the strategic choice of partners plays in the mechanism that we illustrate, in Appendix B

we describe a random-matching version of our model, and we show that, as long as the

infection risk is not extreme, strategic complementarities in risky partnerships do not arise

in this model. As a result, a partially-effective vaccine increases everyone’s welfare in this

random-matching version of our model, which shows that strategic complementarities are

central to the mechanism that we uncover in this paper.

The remainder of this paper is organized as follows. In section 2, we introduce the model

that we use to illustrate our argument and, in section 3, we discuss how strategic comple-

mentarities in risky partnerships naturally arise in this model. In section 4, we characterize

the set of stable networks and, in section 5, we show how a free and perfectly safe but only

1In this quote, we have substituted the symbol βY with its corresponding words: The per-interaction prob-

ability of infection. The sentence that follows the one in this quote is: “However, the combined costs of the

increased prevalence, plus the expense and side effects of the vaccine, could outweigh the benefits of a reduced

risk of infection per partner and so introduction of an imperfect vaccine could make everybody worse off.” In

this paper we show that an imperfect vaccine can reduce everyone’s welfare even if it is free and has no side effects.
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partially-effective vaccine can harm everyone. After discussing extensions of our model in

section 6, we further discuss the contribution of this paper in the context of the related lit-

erature in section 7, and we conclude in section 8. In Appendix A, we derive the infection

probabilities that we use to prove some of the statements in the main body of the paper.

Finally, in Appendix B, we describe a random-matching version of our model, and we show

how, in this case, (i) no strategic complementarities arise, and hence (ii) a free and perfectly

safe but only partially-effective vaccine necessarily makes everyone better off.

2 Epidemiological model with strategic choice of partners

In order to capture the central tradeoff between the benefit and costs of partnership forma-

tion in the simplest possible way, we follow the modeling approach of Blume et al. (2011),

which provides a tractable static reduced-form model for the inherently dynamic process of

contagion (see Remark 2.1 and Remark 2.2 below).

For simplicity, we start by focusing on a relatively simple case featuring n ≥ 2 men and n

women, where n is even. We also assume that agents value only (up to two) partners of the

opposite sex. This case represents a sexually-transmitted disease better than Covid-19, but

is useful to illustrate the mechanism as transparently as possible. In section 6, we discuss

how the results extend to the case in which homogeneous agents value an arbitrary amount

of partnerships, which better represents infectious diseases like Covid-19.

The game consists in the following four stages:

Stage 1: Network Formation. Each agent announces which partners he or she wants to have.

An edge between two agents is formed if and only if both of them have announced

that they want to form a partnership with the other.

Stage 2: Infection. Each agent becomes exogenously infected with probability q > 0. Infection

is independent across agents.

Stage 3: Contagion. Each edge becomes live with probability p > 0. Each agent connected

via a path of live edges to an infected agent becomes infected. Edges become live

independently of each other.

Stage 4: Utility Realized. The utility of each agent is the benefit that he or she derives from his

or her partners (0 if no opposite-sex partners, s1 if one opposite-sex partner, and s1 +s2

if two opposite-sex partners, with s2 ≤ s1) minus the cost of infection (c if infected, and

0 otherwise).
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Stage 1 is the only stage in which the agents take actions. We focus on situations in which

having a risky partnership involves mutual consent. To capture this idea, we assume that

the outcome in stage 1 is a stable network—in the sense that no agent can profitably drop any

subset of his or her edges, and no pair of agents can both benefit by adding an edge between

them (while possibly removing some of their existing edges). We discuss alternative notions

of stability in Remark 4.2 below, and we show that our results are robust to stronger notions

of stability in section 6.

Remark 2.1. This model can be seen as a network-based variation of the well-known epidemiological

model in Philipson and Posner (1993, page 33), and it is similar to the one in Blume et al. (2011);

the main differences are that Blume et al. (2011) assume that all edges provide the same benefit and

that infected agents do not benefit from their edges, whereas we assume decreasing returns to scale

in edges and that infected agents benefit from their edges but pay a cost c when they become infected.

More importantly, their objective is different: Whereas we focus on the effects of partially-effective

vaccines—which we think of as reductions in the probabilities p and/or q—they focus on characteriz-

ing the structural differences between optimal and (pairwise) stable networks.

Remark 2.2. The contagion stage of the model (stage 3) can be seen as a reduced form version of

the following dynamic model: Each partnership consists of interactions that occur periodically over

time. There are two types of partnerships, risky and safe. Each interaction in a risky partnership has

a positive probability of involving risky behavior that transmits the infection (if one of its members is

infected). In contrast, the interactions in safe partnerships do not involve such risky behavior. Each

partnership has a probability p of being risky. Agents are not able to tell whether a partnership is risky

or safe, so forming a partnership is always risky. In this model, the infection must stop spreading at

some point; the agents that are infected in stage 3 can be thought of as all the agents that are infected

once the contagion stops spreading.

Notation 2.1 reviews standard notation that we shall use throughout the text.

Notation 2.1. Given a network G = (N,E) with node set N and edge set E, and given

N ′ ⊆ N and E ′ ⊆ E, we say that (N ′, E ′) is a subnetwork of G. We say that a subnetwork

G′ = (N ′, E ′) of G is a component of G if E contains no edges between N ′ and N\N ′, and, for

any two nodes i and j in N ′, there is a walk (sequence of edges) in E ′ from i to j.

3 Strategic complementarities in risky partnerships

We start by showing how strategic complementarities in risky partnerships naturally arise in

this model. For simplicity, we focus on the case in which the value s1 of having one partner
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Figure 2: The networks I , N and X .

is high enough so that no network with an isolated agent is stable.

Figure 2 depicts all the possible networks (up to isomorphism) of four non-isolated agents

that can emerge in the network formation stage. Let µi denote the probability that agent

i becomes infected (exogenously—i.e., in stage 2—or endogenously—i.e., in stage 3); for

brevity, we denote by µI and µX the infection probability of any given agent in the symmetric

networks I and X , respectively. In Appendix A we derive the infection probability of the

agent in each relevant network position.

Proposition 3.1 uses Definition 3.1 to formalize the idea that risky partnerships are strate-

gic complements. For brevity, we denote the edge between nodes i and j by ij.

Definition 3.1. Given a network G, the risk of the edge ij for agent i is the difference in i’s

infection probability in G∪ ij and i’s infection probability in G. When the risk of the edge ij

is the same for agents i and j, we refer to it simply as the risk of the edge ij.

Proposition 3.1. The risk of the edge N2N3 in Network N is strictly smaller than the risk of the edge

I2I3 in Network I .

Proof. The risk of edge N2N3 is µX − µN2 , and the risk of edge I2I3 is µN1 − µI . Using the

expressions derived in Appendix A, it is easily verified that µX − µN2 < µN1 − µI for all

values of p and q.

Figure 4 depicts the risk of edge N2N3 and I2I3 as a function of the transmission prob-

ability p when the exogenous infection probability is q = 1
4
; the picture looks similar for

all q ∈ (0, 1). To understand this picture, it is useful to keep in mind that the transmission

probability p affects agents’ optimal actions in two different ways. On the one hand, p is

the probability that infection is transmitted between two prospective partners. On the other

hand, p influences the probability that the agents under consideration have already become

infected through contagion from other agents in their networks. This explains why the risk
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of edge N2N3 is increasing in p for low values of p and decreasing in p for high values of p:

the risk of edge N2N3 is highest when the transmission probability is high enough so that

this edge has a substantial probability of transmitting an infection but low enough so that

there is a substantial probability that only one of N2 and N3 are infected.

Remark 3.2. Philipson and Posner (1993) discuss how increases in the prevalence of a disease reduce

the demand for risky partnerships for low levels of prevalence, but can increase it for high enough

levels of prevalence. The intuition there is that, if prevalence is sufficiently high, then agents may have

such a high probability of being already infected that they might rationally reduce their precautions.

In contrast, the non-monotonicity depicted in Figure 4 is present for all values of infection probability

q, and hence for all levels of prevalence. To understand the difference, note that, even when q is

very small, so the prevalence of the disease is very small, the edge N2N3 is essentially riskless when

the transmission p is high—not because the probability that N2 and N3 are already infected is high,

but because the probability that N2 is infected conditional on N3 being infected is high.

Remark 3.3. The key behind Proposition 3.1 is the observation that the risk of a partnership only

comes from the situations in which one and only one of the parties is infected. In other words, the

correlation between the health states of two agents created by overlapping partnerships is important

to understand the incentives behind strategic partnership formation. Relatedly, Toxvaerd (2017)

discusses how overlapping partnerships can affect the speed of agents’ learning about transmission

risks via the correlation in health states that they induce, and that the riskiness of an activity does not

necessarily correspond to how much it exposes one to a disease, but rather to how much it exposes one

to a disease while not already infected.

4 Stable networks

Proposition 4.1 shows that only the pair-complete and the cross-complete networks (see Defini-

tion 4.1 below) can be stable. Every pair-complete network is isomorphic to n/2 copies of

Network I , and every cross complete network is isomorphic to n/2 copies of Network X .

Definition 4.1. We say that a network is pair complete if each agent is part of exactly one edge

(that is, each agent has exactly one partner). We say that a network is cross complete if each

agent is in a component of the network that is isomorphic to Network X (see Figure 2).

Proposition 4.1 shows that pair-complete networks are stable for intermediate values of

the transmission probability p, which is intuitive: When the transmission probability p is

small enough, Network I is unstable because agents have incentives to form the diagonal
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Figure 3: The networks M and M ′.

links. In contrast, when the transmission probability p is high enough, Network I is not sta-

ble because agents have incentives to remove their one link. Proposition 4.1 also shows that

cross-complete networks are stable with the only potential exception of a range of interme-

diate values of transmission probability, which is also intuitive: The benefit from removing

the edgeX2X3 for its adjacent vertices is highest for intermediate values of p, when it is most

likely that exactly one of them is infected in network N .

Proposition 4.1. Only pair-complete and cross-complete networks are ever stable. Moreover:

1. There exist p? ≤ p?? such that any pair-complete network is stable if and only if p is in

[p?, p??].

2. There exist p? < p ≤ p such that any cross-complete network is stable if and only if p is not

in (p, p).

Proof. A pair-complete network is stable if and only if (i) no agent wants to remove her

existing edge (that is, the cost s1 of removing this edge is greater than the associated benefit

cµI) and (ii) no two agents have incentives to form a partnership—that is, the cost c(µN1−µI)

of an extra edge is greater than its benefit s2, or

µN1 − µI ≥
s2
c
.(1)

Using equation (4) in Appendix A, it is easily verified that there exists p?? such that condition

(i) holds for all transmission probabilities p < p??. Using equation (6) in Appendix A, it is

easily verified that there exists p? < p?? such that condition (ii) holds for all p > p?.

A cross-complete network is stable if and only (i) the benefit c(µX −µN2) from deleting an

edge is smaller than its cost s2, or

µX − µN2 ≤
s2
c
,(2)
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Figure 4: Illustration of Proposition 4.1 and when q = 1
4

and s2
c

= .11. Assuming s1 is

large enough, a pair-complete network is stable if and only if s2
c

is below µN1 − µI . A cross-

complete network is stable if and only if s2
c

is above µX − µN2 .

and (ii) no two agents have incentives to remove one of their edges and create an edge

between them; that is, µM3 ≥ µX (see Figure 3). Using equation (7) in Appendix A, it is

easily verified that condition (i) is satisfied for all p except possibly those in an intermediate

range (p, p). The fact that p? < p follows from Proposition 3.1. Condition (ii) follows from

the fact that combining equation (5) and equation (8) in Appendix A gives µM3 > µX .

It only remains to be shown that a network that is neither pair complete nor cross com-

plete is not stable. The fact that µM3 > µX implies that no subnetwork of a stable network

is isomorphic to network M . Note that no agent is part of more than two edges in any sta-

ble network, so a component of such a network contains a node that is part of two edges

if and only if all of the nodes in this component are part of two edges (otherwise, because

n is even, there must be two agents who are each part of only one edge who can profitably

deviate by removing their one edge and matching to each other). Hence, we only have to

show that no subnetwork of a stable network is isomorphic to network M ′ (see Figure 3).

This follows from the fact that µX < µM ′ , where µM ′ denotes the infection probability of

each agent in M ′.2 This last inequality is intuitive: The probability that each of the agents

2Indeed, µX < µM ′ implies that M ′2 and M ′3 strictly benefit from partnering while dropping their partner-

ships with M ′5 and M ′6, respectively.
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′
6, M ′

6M
′
5, and

M ′
5M

′
2 are replaced by the edge M ′

3M
′
2, since this leaves each of them with the same number

of edges but decreases the independent sources of infection.

Figure 4 illustrates the determinants of the cutoff p? when the infection probability is q = 1
4

and s2
c

= .11. For clarity, in Figure 4, we don’t show the determinants of the cutoff p??; this

cutoff is 1 if s1 is large enough. Figure 4 also illustrates the determinants of the cutoff values

p and p for the same parameters q = 1
4

and s2
c

= .11. For large enough values of s2
c

, every

cross-complete network is stable for all transmission probabilities p.

Remark 4.2. Our notion of stability is stronger than the standard pairwise stability notion of

Jackson and Wolinsky (1996). In particular, while pairwise stability considers one link at a time, we

allow pairs of agents to deviate by forming an edge between them while, at the same time, dropping

some of their existing edges. We regard this notion of stability as being just as reasonable, and it

simplifies our arguments by allowing us to deem networks like M and M ′ as unstable, leaving only

the pair-complete and cross-complete networks as the potentially stable ones. We show how our results

are robust to stronger notions of group stability in section 6.

5 Partially-effective vaccines can harm everyone

Pair-complete and cross-complete networks—the only two (non-trivial) potentially stable

types of networks—are fully symmetric. Hence, in every stable network, all agents’ expected

utilities are the same. Therefore, the total welfare in each network scales with the expected

utility of a single agent in this network.

From Proposition 4.1, we have that there always exists a nonempty region (p?, p) of val-

ues of the transmission probability p in which (i) both pair-complete and cross-complete

networks are stable and (ii) a reduction in p leads to only pair-complete networks being

stable. Theorem 5.1 follows directly from this observation and the fact that, for all values

of p close enough to p?, everyone’s expected utility in a pair-complete network is strictly

greater than in a cross-complete network. To see this last fact, note that, when p = p?, agent

1’s expected utility in network I is the same as that in network N , and hence, each agent’s

expected utility in a pair-complete network is strictly greater than that in a cross-complete

network.

Theorem 5.1. There exists ∆ > 0 such that each agent’s expected utility in the most efficient stable

network when p ∈ (p?, p? + ∆) is strictly greater than when p ∈ (p? −∆, p?).
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Figure 5: Illustration of Theorem 5.1 when s1 = 40, c = 80, s2
c

= .11 and q = 1/4. Each agent’s

expected utility under the most efficient stable network structure is in bold.

Figure 5 illustrates Theorem 5.1 for a particular utility function (s1 = 40, c = 80 and
s2
c

= .11) and exogenous infection probability q = 1
4
. In this case, p? is approximately .48.

Remark 5.2. Theorem 5.1 implies that there is always a non-empty range of transmission proba-

bilities above p? such that—assuming that we start with a transmission probability in this range

and from an efficient stable network (a pair-complete network)—there is a non-empty range of reduc-

tions in the transmission probability p that necessarily harm everyone. A similar statement holds for

interventions that either reduce q, or that reduce both p and q.

6 Discussion and extensions

We have shown how strategic complementarities in consensual risky partnerships naturally

arise when agents strategically choose their partners. The intuition is that, when two agents

become partners, they reduce the cost—in terms of infection risk—of partnerships among

their partners. We have also shown how these strategic complementarities—combined with

risk compensation—imply that an intervention that reduces the (ceteris-paribus) transmis-

sion probability of an infection can reduce everyone’s welfare.

In order to make the analysis as transparent as possible, we have worked with a stylized
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Figure 6: The 3- and 4-complete networks when n = 12.

model featuring a number of simplifying assumptions. But the mechanism that we have un-

covered is a natural one, and it is thus robust to more general environments. For example,

we have assumed that agents only value up to two partners, and that homosexual partner-

ships are not valuable. In this section, we show that the mechanism that we have illustrated

in this paper does not rely on these assumptions. Also, so far we have focused on a stability

notion that ensures that pairs that can form a beneficial partnership (while possibly drop-

ping some of their other partnerships) do so. But this notion of stability does not ensure that

larger groups of agents do not have incentives to deviate. In order to show that our results

go through under stronger notions of group stability as well, we now focus on equilibria in

which no group of agents (irrespective of its size) can arrange the partnerships among its

members (while possibly dropping some partnerships with non-members) to make all of its

members better off.

Consider the following modification of the game described in section 2, where agents are

homogeneous (in particular, they are all of the same sex or, alternatively, they do not mind

the sex of their partners) and value an arbitrary amount of partnerships. There are n ≥ 2

agents. The expected utility of an agent with m ∈ {1, 2, . . . , n − 1} partnerships who has

a probability µ of becoming infected is
∑m

`=1 s` − cµ, where s` denotes the benefit of the

`th-partnership, and the returns to partnerships are decreasing (i.e., s`+1 ≤ s`).

For the rest of this section, let 2 ≤ m ≤ n be such that n is divisible by both m and

m+1. We say that a network is m-complete if it consists of n/m cliques of size m—that is, n/m

components, each containing all possible links among its m members.3 Figure 6 illustrates

the 3-complete and the 4-complete network in the case n = 12. We restrict attention to

3For the purposes of illustration, we focus on the case in which n is divisible by bothm andm+1, so that the

m-complete network and the (m + 1)-complete network are well-defined. When this divisibility assumption

is not satisfied, slight modifications of these networks (that include smaller “remainder components”) can be

constructed so that our main result still holds.
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situations in which the infection probability in the m-complete network is not extreme. In

particular, we assume that the exogenous infection probability q is sufficiently small so that

each agent’s infection probability µm in the m-complete network is not larger than 1/2.

Theorem 6.1 below is the analog of Theorem 5.1 in the more general framework described

in this section. It establishes that a reduction in the transmission probability p can reduce ev-

eryone’s welfare. For simplicity, we focus on symmetric equilibria—in which every agent has

the same number of partnerships. To prove Theorem 6.1, we describe situations in which (i)

only the m-complete and the (m+ 1)-complete networks are stable, (ii) everyone’s expected

utility under the m-complete network is strictly higher than under the (m + 1)-complete

network, and (iii) a reduction in the transmission probability p leaves the (m + 1)-complete

network as the only stable network.

Theorem 6.1. There exist pm > 0, ∆ > 0 and 0 < κm+1 < κm < κm−1 such that, if sm−1 > κm−1,

sm < κm and sm+1 < κm+1, then each agent’s expected utility in the most efficient symmetric stable

network when p ∈ (pm, pm + ∆) is strictly larger than when p ∈ (pm −∆, pm).

Proof. Let sm−1 > κm−1, where κm−1 is sufficiently large so that networks in which agents

have strictly less than m − 1 partners are not stable. Also, let sm+1 < κm+1, where κm+1

is sufficiently small so that networks in which agents have strictly more than m partners

are not stable either. The only equilibrium network candidates are then the m-complete

and the (m + 1)-complete networks. This is because—conditional on each agent having k

partnerships—the probability of infection of a member of a clique is as low as it can be. As a

result, in every network other than the m-complete network in which every agent has m− 1

partnerships, a group of m agents can profitably deviate by dropping all of their edges with

others and forming all possible links among themselves. Similarly, in every network other

than the (m + 1)-complete network in which every agent has m partnerships, a group of

m + 1 agents can profitably deviate by dropping all of their edges with others and forming

all possible links among themselves.

The m-complete network is stable if and only if an agent’s cost (in terms of infection risk)

of forming an additional edge is greater than its benefit. In other words, the m-complete

network is stable if and only if4

sm ≤ (1− µm)µmpc.(3)

4The increase in infection probability due to an added edge ab in the m-complete network is the probability

1 − µm that a is not infected from another source times the probability µm that node b is infected times the

probability p that the edge ab is active.
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Figure 7: The 334-network when n = 12.

Since µm < 1/2 is increasing in p, the right-hand side of (3) is also increasing in p. Hence,

there exist unique values pm and pm+1 that satisfy

pm =
sm

c(1− µm)µm

and pm+1 =
sm+1

c(1− µm+1)µm+1

,

respectively. These are the threshold values of the transmission probability p below which

the m-complete and the (m + 1)-complete network, respectively, are not stable. Given that

µm < µm+1 and that sm+1 ≤ sm, we have that pm+1 < pm. Hence, because the cost of an

additional link (1 − µm)µmpc increases with p, a reduction in p from pm to a value between

pm+1 and pm renders the m-complete network unstable, and leaves the (m + 1)-complete

network as the only stable network.

We conclude by showing that there exists a threshold pm > 0 such that, if pm < pm, then

everyone’s expected utility in the (m + 1)-complete network when p = pm is strictly lower

than in the m-complete network. Given that pm is increasing in sm, this implies that there

exists κm such that, if sm < κm, then pm ≤ pm, and hence the expected utility in the (m + 1)-

complete network when the transmission probability is at the threshold pm at which the

m-complete network becomes unstable is strictly lower than in the m-complete network.

Define the mab-network to be the m-complete network with an extra edge (between agents

a and b). Figure 7 illustrates the 334-network when n = 12. By definition of the threshold

pm, if the transmission probability p is equal to pm, then everyone’s expected utility in the

m-complete network is the same as the expected utility of agents a and b in the mab-network.

Since agent a has m edges in both the mab-network and the (m + 1)-complete network, it is

enough to show that, when p is small enough, her infection probability in the mab-network

is smaller than in the (m + 1)-complete network. For this, note that the number of different

paths of length 2 that can transmit the infection to her in the (m + 1)-complete network is

larger than in the mab-network.5 Given that the number of different paths of length 1 that
5A path of a network is a walk that contains any given node at most once. In the (m+1)-complete network,

there are m(m − 1) different paths of length 2 that end in node a. In the mab-network, there are (m − 1)(m −
2) +m− 1 = (m− 1)2 different such paths.
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can transmit the infection to her in the (m + 1)-complete network is the same as in the mab-

network (namely, the number of neighbors she has, m), and that, when p is small enough,

the probability that the network has a path of length strictly greater than 2 is second-order

compared to the probability that the network has a path of length 2, we conclude that, when

p is small enough, agent a’s probability of infection is larger in the (m+1)-complete network

than in the mab-network.

An important part of the proof of Theorem 6.1 is to show that the increase in the density

of the network triggered by the reduction in the transmission probability p makes everyone

worse off. In the case that we have focused on throughout the main body of the paper (in

which agents only value up to two heterosexual partnerships), this step is simpler because

Network N is a strict subset of Network X , which directly implies that everyone’s infec-

tion probabilities are strictly smaller in the former than in the latter. In the more general

setting discussed in this section, the reasoning is a bit more subtle, because there are edges

in the (m + 1)-network that are not in the mab-network, and vice versa. As a result, it is

not immediate to see that, when the transmission probability p is at the threshold pm, the

infection probability of agents a and b in the (m + 1)-complete network is larger than in the

mab network. As we have shown, however, this is true as long as the threshold transmission

probability pm is smaller than an upper bound pm > 0. As an illustration, the following table

provides the approximate upper bounds on pm in the case m ∈ {2, 3, 4, 5, 6} and q = 1/4.

p2 p3 p4 p5 p6

.57 .51 .47 .43 .4

Hence, if p3 < .51, for example, then a reduction in the transmission probability forces a

society that starts with a 3-complete network and a transmission probability just above p3
to switch to a different social structure (e.g., a 4-complete network), potentially making ev-

eryone worse off unless the reduction in the transmission probability is large enough to

compensate for the reduction in welfare created by the induced change in social structure.

Remark 6.2. Beyond the specific modeling assumptions of this paper in terms of strategic network

formation, the analysis in this section has shown that, as long as the threshold transmission probabil-

ity pm is below pm, when the transmission probability p is close to pm, the (m+ 1)-complete network

gives lower welfare to everyone than the m-complete network. A similar analysis holds when we de-

fine them-complete and the (m+1)-complete networks to be networks with distinct components, with

the components not necessarily being cliques, but with everyone having exactly m− 1 and m edges,

respectively. Hence, the mechanism that we have illustrated in this paper is present in alternative
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models of network formation in which the agents organize themselves into different components (not

necessarily cliques), and in which no two agents can have incentives to form an additional edge (so

that, when the transmission probability p moves below a threshold, the efficient network is no longer

stable, while a denser network can still be stable).

7 Relation to the existing literature

The well-known phenomenon of risk compensation is an important element of the mechanism

that we describe in this paper. Observed at least as early as the Victorian era (see for exam-

ple Adams 1879), it was popularized by Peltzman (1975), who controversially suggested

that automobile safety regulations would not diminish automobile-related deaths. The im-

portance of risk compensation in various settings has been a source of heated debates ever

since. Most recently, Greenwood et al. (2019) calibrate a general equilibrium search model

to quantitatively assess the extent to which behavioral reactions can reduce the effectiveness

of several policy interventions.

In the context of HIV, the evidence on risk compensation is mixed.6 For example, on the

one hand, Eaton and Kalichman (2007) (see also Chan et al. 2015, Delavande and Kohler

2015, and Blumenthal and Haubrich 2017) review the empirical literature on risk compen-

sation in HIV prevention and conclude that “risk compensation is evident in response to

prevention technologies that are used in advance of HIV exposure and at minimal personal

cost.” On the other hand, Marcus et al. (2013) argue that there is no evidence of risk com-

pensation in a recent trial of Daily Oral HIV Preexposure Prophylaxis (iPrEx).

The mechanism that we illustrate in this paper is distinct from the one described in Kre-

mer (1996), which relies on heterogeneities in agents’ preferences, and can be summarized

as follows: If low-activity people reduce their activity by a higher proportion than high-

activity people in response to an increase in the prevalence of a disease, the composition of the

pool of available partners worsens after such a change, which creates positive feedbacks.

In contrast to our mechanism, however, the feedback effects in Kremer (1996) only make

partially-effective vaccines more desirable. For example, for those with sufficiently many

partners, the introduction of a partially-effective vaccine will actually increase the marginal

risk of infection from an additional partner, reducing their optimal number of partners, and

hence making the pool of available partners safer for everyone. These feedback effects are

absent in our analysis because—in order to illustrate our mechanism as simply as possible—

6See Philipson and Posner (1993) for an interesting in-depth economic perspective on the HIV epidemic.
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we focus on the case of homogeneous preferences.

Pongou and Serrano (2013) provide a strategic model of network formation that shows

how a higher optimal number of partners for men than for women can explain the fact

that more women are infected from HIV/AIDS than men. For this, they describe two dif-

ferent dynamic processes of network formation whose long-run predictions refine the set

of pairwise-stable networks. They assume that both the benefits and costs of each link are

exogenous, so that each agent has a fixed optimal number of partners. In contrast, in the

present setting, the costs of a link are endogenous—and this is the key for the strategic com-

plementarities in risky interactions that we uncover.

This paper complements the growing body of theoretical literature that studies the effects

of different interventions on epidemiological processes (e.g., Galeotti and Rogers 2013, Chen

and Toxvaerd 2014, Rowthorn and Toxvaerd 2015, Goyal and Vigier 2015 and Goyal et al.

2016). The main difference between this paper and most of this literature is that we focus on

the welfare effects of such interventions—that is, the trade-off between changes in behavior

and changes in infection rates—rather than just on the effects on infection rates. In a similar

vein, Toxvaerd (2019) uses a dynamic version of a standard economic epidemiological model

to show that reducing the infectiousness of a disease can—via negative welfare effects along

the transition between steady states—reduce agents’ discounted lifetime welfare. However,

as in related economic epidemiological models (e.g., Kremer 1996 and Fenichel et al. 2011),

reductions in the infectiousness of a disease cannot reduce anyone’s steady state welfare.

In particular, the steady state per-exposure probability of infection in Toxvaerd (2019) is

independent of the infectiousness of the disease. Hence, each agent can—by choosing her

exposure level exactly as before the change in infectiousness—be exactly as well off as before.

In contrast, we show—using a different model that allows agents to strategically choose

whom to interact with—that the conclusion that a free and perfectly safe but only partially-

effective vaccine necessarily makes everyone better off in steady state is an artifact of the

anonymous-mixing assumption of the standard models.

8 Conclusion

The capacity of infectious-disease epidemics to disrupt societies is comparable to that of

wars and natural disasters. For this reason, considerable resources are expended to manage

and ameliorate the effects of such epidemics. Because of risk compensation, however, the

effects of different potential interventions are subtle. As a consequence, before deciding
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whether and how to intervene, we might wish to ensure that our interventions at least do

no harm.

In this paper, we show that an intervention that consists of distributing a free and per-

fectly safe but only partially effective vaccine can fail this fundamental principle of “first,

do no harm” in a strong sense, since it can actually harm everyone. A key force in the mech-

anism that we uncover is that consensual risky partnerships can feature strategic comple-

mentarities, even in low-risk environments. These strategic complementarities can generate

feedback effects that can lead to large changes in the structure of risky partnerships after a

relatively small intervention—overwhelming the direct effects of this intervention.

The result of this paper underscores the importance of taking into account the network

of social interactions in theoretical and empirical epidemiological studies in order to under-

stand the potential effects that different interventions have on social structure—and hence

on behavior and welfare. Measuring the relevant interaction structure—and how it changes

with different interventions—can be crucial for understanding which social groups are more

likely to feature strategic complementarities in risky interactions, and hence which parts of a

society are more vulnerable to the potentially-negative welfare effects of different interven-

tions.
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A Appendix: Infection probabilities

Lemma A.1 describes the probability that an agent becomes infected (exogenously—i.e., in

stage 2—or endogenously—i.e., in stage 3) conditional on her network position.

Lemma A.1. The probability that any given agent in network I is infected is

(4) µI = qp+ (1− qp)q.

the probability that any given agent in network X is infected is

(5)

µX = (1− p)2µI

+ p(1− p) [q(2− q) + (1− q)2qp(2− qp)]
+ p(1− p) [q + (1− q)p(pq + (1− pq)q(2− q))]
+ p2 [q(2− q) + (1− q(2− q))q(2− q)p(2− p)] ,

the probability that N1 is infected is

(6) µN1 = µI + (1− q)(1− pq)µIp,

the probability that N2 is infected is

(7) µN2 = q + (1− q)pq + (1− q)2p2µI ,

and, finally, the probability that M3 is infected is

(8) µM3 = µN2 + (1− µN2)µIp.

Proof. To see equation (4), consider for concreteness the probability that I1 is infected. The

probability that I2 infects I1 is qp and, conditional on not being infected by I2, I1 is infected

with probability q.

To derive equation (5), consider the three exhaustive and mutually exclusive cases de-

picted below, where thick edges correspond to live edges. We say that i is infected from j if j

is exogenously infected and there is an live path from i to j.

X1

X2

X3

X4

Case 0

X1

X2

X3

X4

X1

X2

X3

X4

Case 1

X1

X2

X3

X4

Case 2

20



Case 0: None of the edges X1X4 and X2X3 are live. This happens with probability (1 − p)2.

The probability that any given agent is infected is µI .

Case 1: Exactly one of the edges X1X4 and X2X3 is live. This happens with probability

2p(1 − p). Assume without loss of generality that X1X4 is live (and hence X2X3 is not live).

The probability that node X1 is infected is q(2− q) + (1− q(2− q))(qp+ (1− qp)qp) or

(9) q(2− q) + (1− q)2qp(2− qp)

To see this, note that the probability thatX1 is infected exogenously or fromX4 is 1−(1−q)2 =

q(2− q), and the probability that X1 is infected from X2 or X3 is qp+ (1− qp)qp.

The probability that node X2 is infected is

(10) q + (1− q)p(pq + (1− pq)q(2− q))

To see this, note that the probability that X2 is exogenously infected is q. Conditional on

this not happening, the probability that X2 is infected is p times the probability that X1 is

infected from X3, or X1 or X4, which is pq + (1− pq)q(2− q).

We conclude that each agent’s expected probability of infection in this case is the average

of expressions (9) and (10).

Case 2: Both edges X1X4 and X2X3 are live. This happens with probability p2. The proba-

bility that X1 is infected is

q(2− q) + (1− q(2− q))q(2− q)p(2− p).

To see this, note that the probability thatX1 is infected exogenously or fromX4 is 1−(1−q)2 =

q(2− q), and the probability that X1 is infected from X3 or X4 is the probability q(2− q) that

either of them is infected times the probability p(2 − p) that at least one of the edges X1X2

and X3X4 is live.

To see equation (6), note that µN1 − µI = (1 − q)(1 − pq)µIp, since the probability that N1

is infected from either N3 or N4 and is not infected from either N1 or N2 is the probability

1 − q that N1 is not infected from N1 times the probability 1 − qp that N1 is not infected

from N2 times the probability µI that N4 is infected either exogenously or from N3 times the

probability p that the edge N1N4 is live.

To see equation (7), note that the probability thatN2 is infected is the probability q that she

becomes exogenously infected plus the probability (1−q)p that she does not become infected

and N1N2 is live times the probability q+ (1− q)pµI that N1 is infected exogenously, from N3

or from N4. That is, µN2 = q + (1− q)p [q + (1− q)pµI ], which is equivalent to equation (7).
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To see equation (8), note that the probability that M3 is infected is the probability µN2

that she becomes infected exogenously or from either M1,M2 or M4 plus the complement

probability times the probability that the edge M3M6 is live times the probability that M6 is

infected exogenously or from M5,M7 or M8.

B Epidemiological model with random matching

In this section we describe a model similar to the one described in section 2 that features ran-

dom matching instead of strategic choice of partners. We then discuss how both the strate-

gic complementarities in risky partnerships and the negative welfare effects of partially-

effective vaccines naturally vanish in this case. There are n ≥ 2 agents, and four stages,

listed below. For simplicity, we focus on the case in which n is even.

Stage 1: Network Formation. Each agent announces how many partners he or she wants to

have. Edges are then formed as follows: One pair of agents is selected uniformly

at random, and if both of them have less edges than the number that they have an-

nounced, an edge is formed between them. This process continues until everyone but

at most one agent has less edges than the number that she has announced.

Stage 2: Infection. Each agent becomes exogenously infected with probability q. Infection is

independent across agents.

Stage 3: Contagion. Each edge becomes live with probability p. Each agent connected via a

directed path of live edges to an infected agent becomes infected. Edges become live

independently of each other.

Stage 4: Utility Realized. The utility of each agent is the benefit that she derives from his

partners (0 if no partners, s1 if one partner, and s1 + s2 if two partners) less the cost of

infection (c if infected, and 0 otherwise).

When everyone announces that she or she wants to have one partner, the outcome of the

random network formation is necessarily a pair-complete network (Definition 4.1). Hence,

it follows from our analysis in section 4 that this is an equilibrium if and only if p ∈ (p?, p??).

When the number of agents n is large, and each agent is part of at most two edges, the

process of random matching implies that the event that an agent i transmits the infection to

an agent j is approximately independent from the event that an agent k 6= i transmits the

22



infection to agent j. For simplicity, in what follows, we shall assume that n is large enough,

so that these events can be safely treated as being independent (alternatively, we can assume,

as is standard in the literature using epidemiological models with random matching, that

there is a continuum of agents, so that these approximations are exact). Also, we focus on

the natural case in which the equilibrium per-partnership infection probability is below 1/2

(this is guaranteed, for example, by c ≥ 2s1).7

When an agent decides to have more partners, the probability of becoming infected from

each partnership increases. Hence, everyone’s incentives to have additional partners dimin-

ish after this deviation. In other words, with random matching, there are no strategic complemen-

tarities in risky partnerships. As a consequence, as we now discuss, partially-effective vaccines

cannot harm anyone in this random-matching version of our model.

Suppose for contradiction that a partially-effective vaccine reduces someone’s expected

utility. Denote by µ and µ′ the average equilibrium per-partnership infection probability

before and after introducing the vaccine, respectively. We have that

µ′ > µ.(11)

Indeed, otherwise, each agent can have an expected utility at least as high after the interven-

tion as she had before the intervention—by doing exactly as she was doing before.

Equation (11) implies that some agents must be choosing strictly more partners after the

intervention. Moreover, the vaccine cannot reduce anyone’s expected utility in equilibrium

if either everyone is choosing zero partners or everyone is choosing two partners before the

intervention, so we have that

s1 ≥ µpc︸︷︷︸
expected infection cost of first partnership

and s2 ≤ (1− µp)µpc︸ ︷︷ ︸
expected infection cost of second partnership

Hence, the following two cases are exhaustive. On the one hand, if no one chooses to have

zero partners before the intervention, equation (11) implies that some agents choose to have

two partners after the intervention, so s2 ≥ (1− µ′p)µ′pc > (1− µp)µpc, a contradiction.8 On

the other hand, if some (but not all) agents choose to have zero partners before the interven-

tion, we have that µpc = s1, so that µ′pc > s1 (i.e., no one chooses to have any partners after

the intervention), also a contradiction.
7This rules out situations in which agents are fatalistic, in the sense that they are so likely to become infected

by their first partnership that they might as well choose additional partnerships (e.g., Kremer 1996). Note that

the mechanism that we illustrate in this paper does not rely on such extreme scenarios.
8This inequality follows from the assumption that the equilibrium per-partnership probability µ′p is below

1/2.
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